Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96966
標題: 基於消息理論之無參考視覺品質評估於相機雜訊影像
No-Reference Visual Quality Assessment for Camera Noisy Images Based on Information Theory
作者: 李沅罡
Yuan-Kang Lee
指導教授: 丁建均
Jian-Jiun Ding
關鍵字: 無參考影像品質評估,影像資訊容量,雜訊估計,影像自然度,柯爾莫哥洛夫-阿諾德網絡,
No-reference image quality assessment,image information capacity,noise estimation,image naturalness,Kolmogorov-Arnold Networks,
出版年 : 2025
學位: 碩士
摘要: 由於所有相機拍攝的影像不可避免地會受到各種雜訊的影響,無參考雜訊影像品質評估在多媒體處理領域具有重要的實際價值。我們提出的方法基於以下兩個核心理念: 1. 影像的客觀品質主要取決於人類視覺系統 (HVS) 感知的有效資訊量與雜訊。2. 影像雜訊水平估計的精確性對於雜訊失真影像的品質預測性能至關重要。我們設計了一個基於人類視覺系統的影像資訊容量,利用影像功率譜、雜訊估計和對比敏感度函數 (CSF),以確定雜訊失真影像中的最大感知資訊量。此外,本文還提出了一種基於離散小波變換 (DWT) 的精確影像雜訊估計算法。影像在不同雜訊類型下的變化,則可透過局部均值減法和對比度正規化 (MSCN) 係數的分布來捕捉影像自然特徵。我們採用了柯爾莫哥洛夫-阿諾德網絡 (KANs) 進行訓練,將特徵向量映射到對應的主觀評分。實驗結果顯示,在 TID2008、 TID2013 和 KADID-10k 資料庫上,我們的方法 ICNEN-IQA 在雜訊影像品質預測方面優於其他最先進的影像品質評估方法。
Since all camera-captured images are inevitably subjected to various types of noises, no-reference noisy image quality assessment holds significant practical value in the field of multimedia processing. Our proposed method is based on the following two ideas: 1. The objective image quality is largely determined by the amount of useful information perceived by the Human Visual System (HVS) and noises. 2. Accurate image noise level estimation is the key to the perceptual quality of a noisy image. We design a HVS-based Shannon Information Capacity which leverages image power spectrum, noise estimation and a Contrast Sensitivity Function (CSF) to determine the maximum perception information in noise-distorted images. An accurate DWT-based image noise estimation algorithm is also proposed in this paper. Additionally, the variations in images under different types of noises can be captured via naturalness measurements, as characterized by the distributions of locally mean subtracted and contrast normalized (MSCN) coefficients. Kolmogorov-Arnold Networks (KANs) are used for training to map our feature vectors into corresponding subjective scores. Experimental results on TID2008, TID2013, and KADID-10k databases demonstrate that our method using image information capacity, noise estimation, and naturalness measurements, ICNENM-IQA, outperforms other state-of-the-art image quality assessment methods for noisy image quality prediction.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96966
DOI: 10.6342/NTU202500551
全文授權: 未授權
電子全文公開日期: N/A
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
4.02 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved