請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96955完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游琇伃 | zh_TW |
| dc.contributor.advisor | Hsiu-Yu Yu | en |
| dc.contributor.author | 范詠琪 | zh_TW |
| dc.contributor.author | Yung-Chi Fan | en |
| dc.date.accessioned | 2025-02-25T16:13:12Z | - |
| dc.date.available | 2025-02-26 | - |
| dc.date.copyright | 2025-02-25 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-07 | - |
| dc.identifier.citation | 1. Ahmad, D., et al., Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018. 40(22): p. 2686-2725.
2. Agirre, A., M. Aguirre, and J.R. Leiza, Characterization of grafting properties of ABS latexes: ATR-FTIR vs NMR spectroscopy. Polymer, 2022. 253: p. 124997. 3. Grund, S., M. Bauer, and D. Fischer, Polymers in Drug Delivery—State of the Art and Future Trends. Advanced Engineering Materials, 2011. 13(3): p. B61-B87. 4. Azzaroni, O., Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. Journal of Polymer Science Part A: Polymer Chemistry, 2012. 50(16): p. 3225-3258. 5. Yanagishima, T., et al., Influence of internal viscoelastic modes on the Brownian motion of a λ-DNA coated colloid. Soft Matter, 2014. 10(11): p. 1738-45. 6. Adumeau, L., et al., Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors. Biochim Biophys Acta Gen Subj, 2017. 1861(6): p. 1587-1596. 7. Schwarzl, R. and R.R. Netz, Hydrodynamic Shear Effects on Grafted and Non-Grafted Collapsed Polymers. Polymers (Basel), 2018. 10(8). 8. Savage, B., J.J. Sixma, and Z.M. Ruggeri, Functional self-association of von Willebrand factor during platelet adhesion under flow. Proc Natl Acad Sci U S A, 2002. 99(1): p. 425-30. 9. Ruggeri, Z.M., Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost, 2003. 1(7): p. 1335-42. 10. Ruggeri, Z.M., von Willebrand factor. The Journal of clinical investigation, 1997. 99(4): p. 559-564. 11. Schneider, S.W., et al., Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proceedings of the National Academy of Sciences, 2007. 104(19): p. 7899-7903. 12. Edwards, S.F. and M. Muthukumar, Brownian dynamics of polymer solutions. Macromolecules, 1984. 17(4): p. 586-596. 13. Tothova, J. and V. Lisy, Generalized Langevin theory of the Brownian motion and the dynamics of polymers in solution. Acta Phys. Slovaca, 2015. 65: p. 1-64. 14. Doi, M. and S.F. Edwards, The Theory of Polymer Dynamics. 1986: Clarendon Press. 15. Grosberg, A.Y., et al. Statistical physics of macromolecules. 1995. 16. Ferry, J.D., Viscoelastic properties of polymers. Journal of the American Chemical Society, 1961. 83: p. 4110-4111. 17. Grosberg, A.Y., A.R. Khokhlov, and T.C. Halsey, Giant Molecules: Here, There, and Everywhere. Physics Today, 1997. 51: p. 73-74. 18. Chou, C.J., A. Hiltner, and E. Baer, The role of surface stresses in the deformation of hard elastic polypropylene. Polymer, 1986. 27(3): p. 369-376. 19. Einstein, A., Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der physik, 1905. 4. 20. Langevin, P., Sur la théorie du mouvement Brownien, C. R. Acad. Sci., 1908, 146, 530. 1950, CNRS: Paris. p. 301-303. 21. Zwanzig, R., Theoretical basis for the Rouse‐Zimm model in polymer solution dynamics. The Journal of Chemical Physics, 1974. 60(7): p. 2717-2720. 22. Fujimori, S., et al., Computer simulation of brownian motion of a polyelectrolyte molecule (charged bead-spring model). Journal of Polymer Science: Polymer Physics Edition, 1975. 13(11): p. 2135-2153. 23. Dünweg, B. and K. Kremer, Molecular dynamics simulation of a polymer chain in solution. Journal of Chemical Physics, 1993. 99: p. 6983-6997. 24. Cyron, C.J. and W.A. Wall, Finite-element approach to Brownian dynamics of polymers. Physical Review E, 2009. 80(6): p. 066704. 25. Doyle, P.S., E.S.G. Shaqfeh, and A.P. Gast, Rheology of Polymer Brushes: A Brownian Dynamics Study. Macromolecules, 1998. 31(16): p. 5474-5486. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96955 | - |
| dc.description.abstract | 我們使用布朗動力學模擬研究單一聚合物鏈的結構特徵和動態弛豫。我們強調單一聚合物系統以簡化系統的複雜度,進而研究嫁接對於聚合物在流體內行為之影響。粗粒聚合物由固定數量的單體粒子與虎克彈簧連接而成。單體珠之間的非鍵結相互作用被認為是 Lennard-Jones 電位或指數衰減電位,以解釋單體之間的軟排除體積。粒子之間的成對流體動力相互作用透過體塊的 Rotne-Prager-Yamakawa 張量納入擴散張量中。分析的結構特徵包括聚合物迴轉半徑和端對端距離的分佈函數。鏈的時間鬆弛由粒子的Kirkwood擴散係數和端到端距離的自相關函數來表徵。我們透過先前的研究驗證了遊離聚合物的結果。 | zh_TW |
| dc.description.abstract | We study the structural characteristics and dynamical relaxation of a single polymer chain using Brownian dynamics simulations. We focus on the single polymer to simplify the complexity of the system and further enhance the fundamental understanding of the effect of grafting on the behavior of the polymer in a fluid. The coarse-grained polymer is composed of a fixed number of monomer beads connected with the Hookean springs. The non-bonded interactions between monomer beads are considered as either the Lennard-Jones potential or an exponentially decaying potential accounting for a soft exclude volume between monomers. The pair-hydrodynamic interaction between beads is incorporated in the diffusivity tensor through the Rotne-Prager-Yamakawa tensor for the bulk. The structural characteristics analyzed include the distribution functions of the polymer radius of gyration and the end-to-end distance. The temporal relaxation of the chain is characterized by the Kirkwood diffusion coefficient of the bead and the autocorrelation function for the end-to-end distance. We validate the free polymer results with previous studies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:13:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-25T16:13:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement i
摘要 ii Abstract iii Contents v List of Figures vi List of Tables viii Chapter 1 Introduction 1 Chapter 2 Models and Simulation Methods 9 2.1 Model 9 2.2 Simulation Details 13 Chapter 3 Results and Discussion 18 3.1 The results of free polymer 18 3.2 The results of tethered polymer 26 Chapter 4 Conclusions 33 Chapter 5 Future Perspective 36 Reference 39 | - |
| dc.language.iso | en | - |
| dc.subject | 聚合物鏈的結構特徵和動態弛豫 | zh_TW |
| dc.subject | Rotne-Prager-Yamakawa 張量 | zh_TW |
| dc.subject | 布朗運動 | zh_TW |
| dc.subject | Kirkwood擴散係數 | zh_TW |
| dc.subject | 端對端距離的自相關函數 | zh_TW |
| dc.subject | 聚合物迴轉半徑和端對端距離的分佈函數 | zh_TW |
| dc.subject | Autocorrelation function | en |
| dc.subject | Brownian dynamics simulations | en |
| dc.subject | Hookean springs | en |
| dc.subject | Rotne-Prager-Yamakawa tensor | en |
| dc.subject | Polymer radius of gyration | en |
| dc.subject | End-to-end distance | en |
| dc.subject | Kirkwood diffusion coefficient | en |
| dc.subject | The temporal relaxation of the chain | en |
| dc.title | 使用布朗動力學模擬探討單鏈高分子的結構與動態特性 | zh_TW |
| dc.title | Single-Polymer Structure and Dynamics Investigated Using Brownian Dynamics Simulations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林祥泰;李旻璁 | zh_TW |
| dc.contributor.oralexamcommittee | Shiang-Tai Lin;Ming-Tsung Lee | en |
| dc.subject.keyword | 布朗運動,聚合物鏈的結構特徵和動態弛豫,Rotne-Prager-Yamakawa 張量,聚合物迴轉半徑和端對端距離的分佈函數,Kirkwood擴散係數,端對端距離的自相關函數, | zh_TW |
| dc.subject.keyword | Brownian dynamics simulations,Hookean springs,Rotne-Prager-Yamakawa tensor,Polymer radius of gyration,End-to-end distance,Kirkwood diffusion coefficient,The temporal relaxation of the chain,Autocorrelation function, | en |
| dc.relation.page | 40 | - |
| dc.identifier.doi | 10.6342/NTU202500503 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 1.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
