Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96938
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世芳zh_TW
dc.contributor.advisorShih-Fang Chenen
dc.contributor.author梁凱鈞zh_TW
dc.contributor.authorKai-Chun Liangen
dc.date.accessioned2025-02-24T16:38:35Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2025-
dc.date.submitted2025-02-13-
dc.identifier.citation黃圓滿、黃瑞彰、黃秀雯、彭瑞菊、陳昇寬、鄭安秀(2016)。設施洋香瓜健康管理技術。臺南區農業改良場技術專刊(166)。
黃賢良、鄭安秀、陳文雄(1999)。隧道式香瓜栽培管理。臺南區農業改良場技術專刊(92)。
Afonso, M., Mencarelli, A., Polder, G., Wehrens, R., Lensink, D., & Faber, N. (2019). Detection of tomato flowers from greenhouse images using colorspace transformations. In P. Moura Oliveira, P. Novais, & L. P. Reis (Eds.), Progress in artificial intelligence: 19th EPIA conference on artificial intelligence (pp. 146-155). Springer.
Alipour, N., Awrangjeb, M., Tarkhaneh, O., & Tian, H. (2021). Flower image classification using deep convolutional neural network. In Proceedings of the 7th International Conference on Web Research (ICWR) (pp. 1-6). IEEE.
Alvarez-Buylla, E. R., Benítez, M., Corvera-Poiré, A., Chaos Cador, Á., de Folter, S., Gamboa de Buen, A., Garay-Arroyo, A., García-Ponce, B., Jaimes-Miranda, F., Pérez-Ruiz, R. V., Piñeyro-Nelson, A., & Sánchez-Corrales, Y. E. (2010). Flower development. The Arabidopsis Book. American Society of Plant Biologists.
Bahdanau, D. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
Bairwa, N., & Agrawal, N. K. (2014). Counting of flowers using image processing. International Journal of Engineering Research & Technology (IJERT), 3(9), 775-779.
Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
Chang, L. Y., Chi, M. H., & Huang, D. F. (2009). Modeling fruit morphological formation on muskmelon. In W. Cao, J. W. White, & E. Wang (Eds.), Crop modeling and decision support (pp. 92-98). Springer.
Chang, L. Y., Chi, M. H., & Huang, D. F. (2009). Modeling fruit morphological formation on muskmelon. In W. Cao, J. W. White, & E. Wang (Eds.), Crop modeling and decision support (pp. 92-98). Springer.
Cubuk, E. D., Zoph, B., Shlens, J., & Le, Q. V. (2020). Randaugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 702-703).
Denny, E. G., Gerst, K. L., Miller-Rushing, A. J., Tierney, G. L., Crimmins, T. M., Enquist, C. A. F., Guertin, P., Rosemartin, A. H., Schwartz, M. D., Thomas, K. A., & Weltzin, J. F. (2014). Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications. International Journal of Biometeorology, 58(4), 591-601.
Dhal, S. B., Kalafatis, S., Braga-Neto, U., Gadepally, K. C., Landivar-Scott, J. L., Zhao, L., Nowka, K., Landivar, J., Pal, P., & Bhandari, M. (2024). Testing the performance of LSTM and ARIMA models for in-season forecasting of canopy cover (CC) in cotton crops. Remote Sensing, 16(1906).
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
Jenni, S. (1996). Predicting yield and development of muskmelon (Cucumis melo L.) under mulch and rowcover mangement (Doctoral dissertation). McGill University, Montréal, Québec, Canada.
Jerca, I. O., Cîmpeanu, S. M., Teodorescu, R. I., Drăghici, E. M., Nițu, O. A., Sannan, S., & Arshad, A. (2024). A comprehensive assessment of the morphological development of inflorescence, yield potential, and growth attributes of summer-grown, greenhouse cherry tomatoes. Agronomy, 14(556).
Jocher, G., Qiu, J., & Chaurasia, A. (2023). Ultralytics YOLO (Version 9.0.0). Ultralytics. https://github.com/ultralytics/ultralytics
Kim, T., Lee, D.-H., Kim, K.-C., & Kim, Y.-J. (2023). 2D pose estimation of multiple tomato fruit-bearing systems for robotic harvesting. Computers and Electronics in Agriculture, 211, 108004.
Kurtar, E. S., & Odabas, M. S. (2010). Modelling of the yield of cucumber (Cucumis sativus L.) using light intensity, temperature, and SPAD value. Advances in Food Sciences, 32(3), 170-173.
Lwaho, J., & Ilembo, B. (2023). Unfolding the potential of the ARIMA model in forecasting maize production in Tanzania. Business Analyst Journal, 44.
Mithra, S., & Nagamalleswari, T. Y. J. (2023). Cucurbitaceous family flower inferencing using deep transfer learning approaches: CuCuFlower UAV imagery data. Soft Computing, 27, 8345-8356.
Patel, S., & Patel, I. (2019). Flower identification and classification using computer vision and machine learning techniques. International Journal of Engineering and Advanced Technology, 8(6), 225-230.
Qin, W., Cui, X., Yuan, C.-A., Qin, X., Shang, L., & Wan, S.-Z. (2019). Flower species recognition system combining object detection and attention mechanism. In D.-S. Huang et al. (Eds.), Intelligent Computing Theories and Application: 15th International Conference on Intelligent Computing (ICIC) (pp. 1-8). Springer.
Seabold, S., & Perktold, J. (2010). statsmodels: Econometric and statistical modeling with Python. In Proceedings of the 9th Python in Science Conference (pp. 57-61).
Singh, K. N., Sharma, K., Avinash, G., Kumar, R. R., Ray, M., Ramasubramanian, V., Lama, A., & Lal, S. B. (2023). LSTM-based stacked autoencoder approach for time series forecasting. Journal of the Indian Society of Agricultural Statistics, 77(1), 71-78.
Tiay, T., Benyaphaichit, P., & Riyamongkol, P. (2014). Flower recognition system based on image processing. In 2014 Third ICT International Student Project Conference (ICT-ISPC) (pp. 99-102). IEEE.
Tkachenko, M., Malyuk, M., Holmanyuk, A., & Liubimov, N. (2020). Label Studio: Data labeling software. Heartex Labs. https://github.com/heartexlabs/label-studio
Valliammal, N., & Geethalakshmi, S. N. (2011). Automatic recognition system using preferential image segmentation and curve matching for plant classification. Computer Science & Engineering: An International Journal (CSEIJ), 1(4), 13-25.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998-6008.
Wada, K. (2018). labelme: Image Polygonal Annotation with Python. GitHub. https://github.com/wkentaro/labelme
Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7464-7475).
Wang, C. Y., Yeh, I. H., & Mark Liao, H. Y. (2024). Yolov9: Learning what you want to learn using programmable gradient information. In European Conference on Computer Vision (pp. 1-21). Springer, Cham.
Xu, X., Wang, H., Miao, M., Zhang, W., Zhang, Y., Dai, H., Zheng, Z., & Zhang, X. (2023). Cucumber flower detection based on YOLOv5s-SE7 within greenhouse environments. IEEE Access, 11, 64358-64368.
Yuan, B. Z., Bie, Z. L., & Sun, J. (2021). Bibliometric analysis of global research on muskmelon (Cucumis melo L.) based on Web of Science. HortScience, 56(8), 867-874.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96938-
dc.description.abstract溫室栽植網紋洋香瓜(Cucumis melo, L. var reticulatus Naud.)需要精準的田間管理與授粉以確保果實的高品質和高產量。然而,人工授粉工作費力耗時,有限的授粉時間更進一步提高栽植管理的難度,增加人力需求。隨著智慧農業的引進,開發自動化授粉系統成為一個有潛力的解決方案。本研究旨在整合機器學習方法,解決自動化授粉任務中雄雌花識別與預測最佳授粉期間的需求,輔助溫室網紋洋香瓜自動化授粉系統之開發。
針對上述需求,本研究開發三階段流程,包括網紋洋香瓜花朵識別、花朵發育監測和開花期間預測。在第一階段,基於YOLOv9架構開發網紋洋香瓜雄雌花辨識模型和花瓣分割模型,用於辨識花朵性別並提取花瓣輪廓。辨識模型的F1-score達到0.975,而分割模型的遮罩準確度均值(mask average precision, mask AP)達到0.928。第二階段對花朵發育程度提供更精確的量化方式,提出自定義之「開花角度」與其計算演算法,其後利用計算出之開花角度建立開花曲線,用於監測並分析授粉的關鍵起始與結束時間。第三階段,進一步加入蒐集到環境感測器之數據,包括:溫度、濕度與光照度,搭配季節性自回歸整合移動平均含有外生變量(seasonal autoregressive integrated moving average with exogenous factors, SARIMAX)、長短期記憶(long short-term memory, LSTM)和自編碼器(autoencoder)等三階段時間序列模型,用以建議開花曲線的預測模式。最終模型效能比較,以自編碼器模型預測之曲線可達均方根誤差(mean squared error, MSE) 0.009為最佳,提供較為準確的開花曲線。此外,自編碼器模型在檢測開花結束時間和預測開花期間方面也顯示出卓越的性能。此模型於兩組冬季開花曲線上預測的開花期間僅有兩小時的誤差;並且能在三組測試集數據上都提供完整的開花期間預測。
本研究應用機器視覺於網紋洋香瓜花性辨識,並結合提出之開花角度演算法,監測花朵發育。進一步整合開花曲線與環境數據,利用時間序列模型預測開花期間,旨在優化最佳授粉期間的判讀。透過本研究提出之三階段流程,推動自動化授粉系統開發的進程,在未來有望減輕溫室網紋洋香瓜栽植管理的人力負擔。
zh_TW
dc.description.abstractMuskmelon (Cucumis melo, L. var reticulatus Naud.) cultivation in greenhouse environments requires precise pollination and field management to ensure high fruit quality and yield. However, manual pollination is time-consuming and labor-intensive. The limited pollination window further complicates the cultivation management, increasing the labor demands. With the introduction of smart agriculture, developing an automated pollination system has become a promising solution. This study aims to integrate machine learning methods to address the needs of identifying muskmelon flower genders and predicting the optimal pollination period, supporting the development of an automated pollination system for greenhouse cultivated muskmelon.
To meet these requirements, this study developed a three-stage system comprising muskmelon flower identification, flower development recording, and flowering period prediction. In the first stage, muskmelon flower gender identification (MFGI) model and petal segmentation (PS) model based on YOLOv9 architecture were developed to identify flower genders and extract petal contours. MFGI model achieved 0.975 F1-score, and the PS model attained a mask AP of 0.928. In the second stage, to determine flower development more accurately, a self-defined measure “flowering angle” and its calculation algorithm were proposed. The calculated flowering angle was used to establish flowering curves, analyzing the flowering start and end point for pollination. In the third stage, environmental data including temperature, humidity, and solar irradiance were integrated with flowering curves. Subsequently, time series models of seasonal autoregressive integrated moving average with exogenous factors (SARIMAX), stacked long short-term memory (LSTM), and the autoencoder model were developed and compared to suggest the most suitable method for flowering period forecasting. The model comparison revealed that the autoencoder model achieved the best performance, with a curve mean squared error (MSE) of 0.009, providing more accurate flowering curves. Additionally, the autoencoder model demonstrated excellent performance in detecting the end of the flowering period and predicting the flowering duration. For two sets of winter flowering curves, the prediction error for the flowering period was only two hours. The autoencoder was capable of providing complete predictions for the flowering period across all three datasets.
This study applied computer vision methods for muskmelon flower gender identification and flower development recording. Further integrated flowering angel with environmental data, utilized time series models to predict flowering periods, aiming to optimize the interpretation of the optimal pollination window. The proposed three-stage system advanced the development of automated pollination systems, potentially reducing the labor burden of greenhouse muskmelon cultivation management in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:38:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:38:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
ABBREVIATIONS xii
CHAPTER 1. INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 2
CHAPTER 2. LITERATURE REVIEW 3
2.1 Introduction to Greenhouse Muskmelon Plantation Management 3
2.2 Application of Flower Identification 4
2.2.1 Image Processing Methods 4
2.2.2 Object Detection 5
2.3 Flower Development Analysis 7
2.3.1 Flowering Stage Determination 7
2.3.2 Crop Growth Model 8
2.3.3 Sequence Predictive Model 9
CHAPTER 3. MATERIALS AND METHODS 10
3.1 Greenhouse Data Collection 10
3.1.1 Image Collection and Annotation 10
3.1.2 Environmental Data Collection 16
3.2 Muskmelon Flower Identification 17
3.2.1 Muskmelon Flower Identification Model 19
3.2.2 Petal Segmentation Model 21
3.2.3 Evaluation Metrics 21
3.3 Flowering Period Recording 23
3.3.1 Flowering Angle Calculation Algorithm 23
3.3.2 Flowering Curve Analysis 24
3.4 Muskmelon Flowering Prediction 28
3.4.1 SARIMAX 28
3.4.2 LSTM 31
3.4.3 Autoencoder 33
3.4.4 Dataset Preparation 35
CHAPTER 4. RESULTS AND DISCUSSION 38
4.1 Muskmelon Flower Identification 38
4.1.1 Muskmelon Flower Gender Identification Model Performance 38
4.1.2 Petal Segmentation Model Performance 41
4.2 Flowering Period Recording 42
4.2.1 Flowering Angle Calculation Algorithm Performance 42
4.3 Muskmelon Flowering Prediction 45
4.3.1 Model Development and Selection 45
4.3.2 Model Comparison of Flowering Forecasting 47
4.3.3 Evaluation of Predicted Flowering Period 49
CHAPTER 5. CONCLUSION AND FUTURE WORK 53
5.1 Conclusion 53
5.2 Future Work 54
REFERENCES 55
Appendix A. Demonstration of Time-lapse Image Sets 59
-
dc.language.isoen-
dc.subject花性辨識zh_TW
dc.subject自編碼器zh_TW
dc.subject時間序列模型zh_TW
dc.subject開花期預測zh_TW
dc.subjectYOLOv9zh_TW
dc.subject溫室網紋洋香瓜zh_TW
dc.subjectYOLOv9en
dc.subjectFlower gender identificationen
dc.subjectGreenhouse muskmelonen
dc.subjectAutoencoderen
dc.subjectTime-series modelen
dc.subjectFlowering period forecastingen
dc.title應用深度學習演算法於溫室網紋洋香瓜花朵辨識與開花期預測zh_TW
dc.titleApplication of Deep Learning Algorithms in Greenhouse Muskmelon Flower Identification and Flowering Period Predictionen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林達德;黃振康;林淑怡zh_TW
dc.contributor.oralexamcommitteeTa-Te Lin;Chen-Kang Huang;Shu-I Linen
dc.subject.keyword溫室網紋洋香瓜,花性辨識,YOLOv9,開花期預測,時間序列模型,自編碼器,zh_TW
dc.subject.keywordGreenhouse muskmelon,Flower gender identification,YOLOv9,Flowering period forecasting,Time-series model,Autoencoder,en
dc.relation.page62-
dc.identifier.doi10.6342/NTU202500688-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2030-02-14-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2030-02-14
5.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved