請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96935完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈湯龍 | zh_TW |
| dc.contributor.advisor | Tang-Long Shen | en |
| dc.contributor.author | 高家渝 | zh_TW |
| dc.contributor.author | Chia-Yu Kao | en |
| dc.date.accessioned | 2025-02-24T16:37:45Z | - |
| dc.date.available | 2025-02-25 | - |
| dc.date.copyright | 2025-02-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-13 | - |
| dc.identifier.citation | Alicic, R. Z., Rooney, M. T., & Tuttle, K. R. (2017). Diabetic kidney disease: Challenges, progress, and possibilities. Clinical Journal of the American Society of Nephrology, 12(12), 2032-2045.
American Diabetes Association. (2020). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care, 43(1), 14-31. Atkinson, M. A., Eisenbarth, G. S., & Michels, A. W. (2014). Type 1 diabetes. The Lancet, 383(9911), 69-82. Bakris, G. L., Agarwal, R., Anker, S. D., Pitt, B., Ruilope, L. M., Rossing, P., ... & Filippatos, G. (2020). Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. New England Journal of Medicine, 383(23), 2219-2229. Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., ... & Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184, 114-134. Bülow, R. D., & Boor, P. (2019). Extracellular matrix in kidney fibrosis: more than just a scaffold. Journal of Histochemistry & Cytochemistry, 67(9), 643-661. Cerf, M. E. (2013). Beta cell dysfunction and insulin resistance. Frontiers in Endocrinology, 4, 37. Chen, J., Zhang, Q., Liu, D., & Liu, Z. (2021). Exosomes: advances, development and potential therapeutic strategies in diabetic nephropathy. Metabolism, 122, 154834. Cheng, Z., Limbu, M. H., Wang, Z., Liu, J., Liu, L., Zhang, X., ... & Liu, B. (2017). MMP-2 and 9 in chronic kidney disease. International Journal of Molecular Sciences, 18(4), 776. Cheng, Z., Liu, L., Wang, Z., Cai, Y., Xu, Q., & Chen, P. (2018). Hypoxia activates Src and promotes endocytosis which decreases MMP-2 activity and aggravates renal interstitial fibrosis. International Journal of Molecular Sciences, 19(2), 581. Cheng, Z., Zhang, X., Zhang, Y., Li, L., & Chen, P. (2022). Role of MMP-2 and CD147 in kidney fibrosis. Open Life Sciences, 17(1), 1182-1190. Chew, C., & Lennon, R. (2018). Basement membrane defects in genetic kidney diseases. Frontiers in Pediatrics, 6, 11. Cole, J. B., & Florez, J. C. (2020). Genetics of diabetes mellitus and diabetes complications. Nature Reviews Nephrology, 16(7), 377-390. Cruz-Solbes, A. S., & Youker, K. (2017). Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis. Kidney Development and Disease, 345-372. de Boer, I. H., Khunti, K., Sadusky, T., Tuttle, K. R., Neumiller, J. J., Rhee, C. M., ... & Bakris, G. (2022). Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care, 45(12), 3075-3090. DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., ... & Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1(1), 1-22. De Gregorio, V., Barua, M., & Lennon, R. (2024). Collagen formation, function and role in kidney disease. Nature Reviews Nephrology, 1-16. Duffield, J. S. (2014). Cellular and molecular mechanisms in kidney fibrosis. The Journal of Clinical Investigation, 124(6), 2299-2306. Fakhruddin, S., Alanazi, W., & Jackson, K. E. (2017). Diabetes‐induced reactive oxygen species: mechanism of their generation and role in renal injury. Journal of Diabetes Research, 2017(1), 8379327. Feng, S., Lou, K., Luo, C., Zou, J., Zou, X., & Zhang, G. (2022). Obesity-related cross-talk between prostate cancer and peripheral fat: potential role of exosomes. Cancers, 14(20), 5077. Feng, X., Zhang, L., Xu, S., & Shen, A. Z. (2020). ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review. Progress in Lipid Research, 77, 101006. Forbes, J. M., & Thorburn, D. R. (2018). Mitochondrial dysfunction in diabetic kidney disease. Nature Reviews Nephrology, 14(5), 291-312. Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., ... & Martín, C. (2020). Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(17), 6275. Garg, P. (2018). A review of podocyte biology. American Journal of Nephrology, 47(1), 3-13. Ghaderian, S. B., Hayati, F., Shayanpour, S., & Mousavi, S. S. B. (2015). Diabetes and end-stage renal disease; a review article on new concepts. Journal of Renal Injury Prevention, 4(2), 28. Greka, A., & Mundel, P. (2012). Cell biology and pathology of podocytes. Annual Review of Physiology, 74(1), 299-323. Gui, H., Chen, X., Ye, L., & Ma, H. (2023). Seven basement membrane-specific expressed genes are considered potential biomarkers for the diagnosis and treatment of diabetic nephropathy. Acta Diabetologica, 60(4), 493-505. Gurunathan, S., Kang, M. H., Jeyaraj, M., Qasim, M., & Kim, J. H. (2019). Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 8(4), 307. Hinz, B., Phan, S. H., Thannickal, V. J., Galli, A., Bochaton-Piallat, M. L., & Gabbiani, G. (2007). The myofibroblast: one function, multiple origins. The American Journal of Pathology, 170(6), 1807-1816. Huang, R., Fu, P., & Ma, L. (2023). Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduction and Targeted Therapy, 8(1), 129. Kahn, S. E., Cooper, M. E., & Del Prato, S. (2014). Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. The Lancet, 383(9922), 1068-1083. Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), 69-77. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420-1428. Kim, K. K., Wei, Y., & Szekeres, C. (2017). Epithelial-mesenchymal transition in kidney fibrosis. Kidney Research and Clinical Practice, 36(2), 86-93. Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., LeGonidec, S., ... & Nieto, L. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Research, 76(14), 4051-4057. Liu, Y. (2011). Cellular and molecular mechanisms of renal fibrosis. Nature Reviews Nephrology, 7(12), 684-696. Meng, X. M., Nikolic-Paterson, D. J., & Lan, H. Y. (2016). TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology, 12(6), 325-338. Narula, S., Tandon, C., & Tandon, S. (2018). Role of matrix metalloproteinases in degenerative kidney disorders. Current Medicinal Chemistry, 25(15), 1805-1816. Pan, W., Zhang, Q., Gong, X., Wu, W., & Zhou, Q. (2024). Identification and validation of key extracellular proteins as the potential biomarkers in diabetic nephropathy. European Journal of Medical Research, 29(1), 517. Rahman, M. S., Hossain, K. S., Das, S., Kundu, S., Adegoke, E. O., Rahman, M. A., ... & Pang, M. G. (2021). Role of insulin in health and disease: an update. International Journal of Molecular Sciences, 22(12), 6403. Ruiz-Ortega, M., & Egido, J. (2007). Angiotensin II and reactive oxygen species in renal inflammation: An update. Current Opinion in Nephrology and Hypertension, 16(1), 56-64. Santibanez, J. F., Obradović, H., Kukolj, T., & Krstić, J. (2018). Transforming growth factor‐β, matrix metalloproteinases, and urokinase‐type plasminogen activator interaction in the cancer epithelial to mesenchymal transition. Developmental Dynamics, 247(3), 382-395. Shankland, S. J., Pippin, J. W., Reiser, J., & Mundel, P. (2007). Podocytes in culture: past, present, and future. Kidney International, 72(1), 26-36. Takasu, M., Kishi, S., Nagasu, H., Kidokoro, K., Brooks, C. R., & Kashihara, N. (2024). The role of mitochondria in diabetic kidney disease and potential therapeutic targets. Kidney International Reports. Toth, M., Sohail, A., & Fridman, R. (2012). Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Metastasis research protocols, 121-135. Tuttle, K. R., Bakris, G. L., Bilous, R. W., Chiang, J. L., de Boer, I. H., Goldstein-Fuchs, J., ... & Molitch, M. E. (2014). Diabetic kidney disease: A report from an ADA consensus conference. Diabetes Care, 37(10), 2864-2883. Urano, T., Castellino, F. J., & Suzuki, Y. (2018). Regulation of plasminogen activation on cell surfaces and fibrin. Journal of Thrombosis and Haemostasis, 16(8), 1487-1497. Xu, J., & Bian, X. (2022). Epigenetic regulation in diabetic nephropathy: mechanisms and therapeutic strategies. Frontiers in Pharmacology, 13, 891437. Yao, W., Rose, J. L., Wang, W., Seth, S., Jiang, H., Taguchi, A., ... & Draetta, G. F. (2019). Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature, 568(7752), 410-414. Ying, W., Riopel, M., Bandyopadhyay, G., Dong, Y., Birmingham, A., Seo, J. B., ... & Olefsky, J. M. (2017). Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell, 171(2), 372-384. Zhang, W., Ma, L., Zhou, Q., Gu, T., Zhang, X., & Xing, H. (2024). Therapeutic targets for diabetic kidney disease: proteome-wide Mendelian randomization and colocalization analyses. Diabetes, 73(4), 618-627. Zhang, X. X., Kong, J., & Yun, K. (2020). Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in China: A meta‐analysis of observational studies. Journal of Diabetes Research, 2020(1), 2315607. Zhou, H., Yang, Z., Mu, L., & Shi, Y. (2022). Integrated Analysis of Multiple Microarray Studies to Identify Core Gene‐Expression Signatures Involved in Tubulointerstitial Injury in Diabetic Nephropathy. BioMed Research International, 2022(1), 9554658. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96935 | - |
| dc.description.abstract | 糖尿病是現代人群當中,最常見的慢性疾病之一,長期的高血糖會導致各種併發症,包括像是心臟、腦血管、周邊血管疾病和腎臟病變。我們的研究重點是糖尿病高血糖導致的腎臟併發症,因為大約 40% 的第 2 型糖尿病患者,具有糖尿病的腎臟病變,這種疾病的發生和死亡率很高。和肥胖有關的脂肪細胞功能障礙,是第 2 型糖尿病重要的危險因子。除了在儲存能量方面的作用之外,脂肪細胞還發揮內分泌細胞的作用,分泌一系列激素和細胞激素,它們是代謝和平衡的重要調節劑。最近的研究顯示,功能失調的脂肪組織會分泌病理訊號,直接損害其他組織,可能也會導致腎臟疾病的發展。近年來,外泌體已經成為,細胞之間通訊的重要介質,這些細胞外囊泡可以將許多的生物活性分子(如RNA和蛋白質)運送到遠處的目標細胞,從而影響遠端細胞和組織的功能。本研究是在探討,高糖條件下所誘導的脂肪細胞,分泌的外泌體,是否帶有影響遠端腎臟細胞的異常分子訊號,進而導致糖尿病腎臟病變的發病機制。為了去驗證我們的假設,利用模擬第 2 型糖尿病的環境,培養脂肪細胞,分別將脂肪細胞培養在低糖環境(5.5 mM)模擬正常人血糖環境和高糖環境(33 mM),並且收集培養脂肪細胞的培養液。隨後,透過差速離心從這些脂肪細胞中分離外泌體,確保外泌體的純度和質量,並使用奈米粒子追蹤分析(NTA)、電子顯微鏡(TEM)和蛋白質印跡進行表徵,以確認其大小和蛋白質的量。外泌體PKH26染色結果證實脂肪細胞來源的外泌體可被CIHP-1和HK-2細胞內化。此外,高糖條件下的外泌體處理的CIHP-1、HK-2細胞活力顯著降低。以高糖條件下來源的外泌體處理CIHP-1和HK-2細胞的形態學結果顯示,細胞形態明顯轉變為長條狀,表明HK-2已成為上皮間質轉化(EMT)類型。CIHP-1細胞經過高糖來源的外泌體處理後,鬼筆環肽F-肌動蛋白染色結果顯示細胞骨架紊亂,足突消失,白蛋白內流實驗結果顯示狹縫隔膜的完整性受到一定破壞,損害了狹縫隔膜的濾過屏障功能。為了探究外泌體糖尿病併發症的分子機制,採用蛋白質體學對外泌體蛋白進行蛋白質體學分析。研究結果表明,外泌體蛋白與 ECM 積聚、纖維化途徑密切相關,可能導致糖尿病腎臟併發症。未來的實驗將對透過蛋白質體學分析確定的目標路徑進行,以確認這些假設的準確性。 | zh_TW |
| dc.description.abstract | Diabetes is among the most prevalent chronic diseases in modern populations. Prolonged hyperglycemia can lead to various complications, including Cardiovascular diseases, cerebrovascular diseases, peripheral vascular diseases and nephropathy. Our research focuses on diabetic kidney complications, as approximately 40% of patients with type 2 diabetes (T2D) develop diabetic nephropathy, a condition associated with high morbidity and mortality rates. Obesity-related adipocyte dysfunction is a significant risk factor for T2D. Beyond their role in energy storage, adipocytes function as endocrine cells, secreting a range of hormones and cytokines collectively referred to as adipokines, which are critical regulators of metabolic homeostasis. Recent studies have demonstrated that dysfunctional adipose tissue can secrete pathological signals that directly damage other tissues, contributing to the development of kidney disease. In recent years, exosomes have emerged as key mediators of intercellular communication. These extracellular vesicles can transport bioactive molecules, such as proteins, lipids, and RNAs, to distant target cells, thereby influencing the function of remote cells and tissues. This study aims to investigate whether exosomes secreted by adipocytes under high-glucose conditions carry abnormal molecular signals that affect distal renal cells, contributing to the pathogenesis of diabetic kidney complications. To test this hypothesis, we cultured adipocytes by simulating the environment of type 2 diabetes, isolating the exosomes they secreted during the adipogenesis process of cells under both low (5.5 mM) and high (30 mM) glucose concentrations. Following this, exosomes isolated from these adipocytes through differential centrifugation, ensuring the purity and quality of the exosomes and characterized using Nanoparticle Tracking Analysis (NTA), transmission electron microscopy and western blot, which confirmed their size and protein content.
The result of exosomes PKH26 staining confirmed that adipocyte-derived exosomes could be taken up by CIHP-1 and HK-2 cell lines. In addition, CIHP-1, HK-2 cells treated with exosomes derived from high glucose conditions exhibited a significant reduction in viability. Morphology of CIHP-1 and HK-2 cells treated with exosomes derived from high glucose conditions, the results showed that the morphology obviously changed into a long strip shape, indicating that HK-2 has become an Epithelial–mesenchymal transition (EMT) type and CIHP-1 also showed an EMT type and gradually develops into renal fibrosis. After CIHP-1 cells were treated with high glucose-derived exosomes, phalloidin F-actin staining results showed cytoskeleton disorder , the loss of foot processes and the results of the albumin influx assay clearly indicate compromised slit diaphragm integrity, leading to impaired filtration barrier function in the podocyte monolayer. This disruption ultimately contributes to proteinuria and glomerulosclerosis. To find out the molecular mechanism of exosome-diabetic complication, exosome protein was performed by LC MS/MS for proteomics analysis. The result show that exosome proteins were high relative with excessive extracellular matrix (ECM) accumulation, fibrosis pathway which could lead to diabetic kidney complications. Future experiments will be conducted on the target pathways identified through proteomic analysis to confirm the accuracy of these hypotheses. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:37:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-24T16:37:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III Abstract V Contents VII Introduction 1 Diabetes 1 Diabetes complication 1 Diabetic Nephropathy 2 Adipocyte associated with diabetes 2 Exosome 3 HK-2 diabetes epithelial-to-mesenchymal transition 4 CIHP-1(podocyte) and filter barrier damaged 5 MMP-2 and collagen in kidney EMT and Fibrosis 6 Materials and Methods 8 Cell lines 8 Adipocyte differentiation 8 Transmission electron microscopy 9 Nanoparticle tracking analysis 9 Oil red O staining & Quantification 10 Exosome isolation ultracentrifugation 10 PKH26 exosome staining 11 CCK8 assay 11 Immunofluorescence 12 Albumin influx assay 12 CIHP-1 differentiation 13 Western blot analysis 13 Gelatin zymography 14 Results 15 Stem Cell differentiated to adipocyte 15 Quality control of exosomes 16 Adipocyte-derived exosomes are internalized by HK-2 and CIHP-1 16 Impacts of LGEV and HGEV on HK-2 and CIHP-1 cells viability 17 HGEV induced EMT in HK2 cells 17 Measurement of mitochondrial respiration in HGEV treated HK-2 cells by seahorse cell mito stress test 19 HGEV triggers podocyte foot process damage and barrier dysfunction 19 Proteomic analysis of adipocyte derived exosome 21 High glucose treated adipocyte exosome containing MMP-2 22 Conclusion 24 Discussion 27 References 30 Figures 36 Tables 54 List of Figures Fig. 1 Stem Cell differentiated to Adipocyte 36 Fig. 2 Quality control of exosomes 37 Fig. 3 Adipocyte derived exosomes are internalized by HK-2 39 Fig. 4 Adipocyte derived exosomes are internalized by CIHP-1 40 Fig. 5 Impacts of LGEV and HGEV on HK-2 and CIHP-1 cells viability 41 Fig. 6 HGEV causes phenotypic conversion of HK2 cells 42 Fig. 7 HGEV causes EMT in HK-2 cells 43 Fig. 8 Measurement of HK-2 cell mitochondrial aerobic respiration profile after LGEV and HGEV treatment using the Seahorse XFe analyzer 46 Fig. 9 HGEV trigger the podocyte cytoskeletal disorganization and barrier dysfunction 47 Fig. 10 Proteomic analysis of adipocyte derived exosome 50 Fig. 11 High glucose treated adipocyte exosome containing MMP-2 52 List of Tables Table 1. Primer used for qRT-PCR 54 Table 2. HGEV vs LGEV NTA result 54 Table 3. HGEV vs LGEV MA plot 55 Table 4. HGEV vs LGEV KEGG 56 | - |
| dc.language.iso | en | - |
| dc.subject | 外泌體 | zh_TW |
| dc.subject | 腎小管上皮細胞 | zh_TW |
| dc.subject | 足細胞 | zh_TW |
| dc.subject | 上皮間質轉化 | zh_TW |
| dc.subject | 腎臟併發症 | zh_TW |
| dc.subject | 第 2 型糖尿病 | zh_TW |
| dc.subject | epithelial-mesenchymal transition | en |
| dc.subject | renal complications | en |
| dc.subject | exosomes | en |
| dc.subject | type 2 diabetes | en |
| dc.subject | renal tubular epithelial cell | en |
| dc.subject | podocyte | en |
| dc.title | 高葡萄糖所誘導脂肪細胞外泌體在腎臟病變之作用機制的探討 | zh_TW |
| dc.title | Mechanistic study of kidney pathogenesis attributed to adipocyte exosomes induced by high glucose | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃舒宜;周涵怡;丁詩同 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Yi Huang;Han-Yi E. Chou;Shih-Torng Ding | en |
| dc.subject.keyword | 第 2 型糖尿病,外泌體,腎臟併發症,上皮間質轉化,足細胞,腎小管上皮細胞, | zh_TW |
| dc.subject.keyword | type 2 diabetes,exosomes,renal complications,epithelial-mesenchymal transition,podocyte,renal tubular epithelial cell, | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202500622 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| dc.date.embargo-lift | 2030-02-10 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2030-02-10 | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
