Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96899
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳恆良zh_TW
dc.contributor.advisorHeng-Liang Wuen
dc.contributor.author鄭婷云zh_TW
dc.contributor.authorTing-Yun Chengen
dc.date.accessioned2025-02-24T16:28:02Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2025-
dc.date.submitted2025-01-14-
dc.identifier.citation[1] X. P. Nguyen, A. T. Hoang, A. I. Ölçer, T. T. Huynh, Energy Sources Part A: Recovery Util. Environ. Eff. 2021, 1, 1.
[2] Z. Liu, Z. Deng, S. Davis, P. Ciais, Nat. Rev. Earth Environ. 2023, 4, 253.
[3] B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634.
[4] Q. N. Zhan, T. Y. Shuai, H. M. Xu, C. J. Huang, Z. J. Zhang, G. R. Li, Chin. J. Catal. 2023, 47, 32.
[5] N. Cheng, X. Sun, Chin. J. Catal. 2017, 38, 1508.
[6] J. Liu, X. Sun, Nanotechnology 2015, 26.
[7] H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. Wang, J. Li, S. Wei, J. Lu, J. Am. Chem. Soc. 2015, 137, 10484.
[8] W. Liu, H. Zhang, C. Li, X. Wang, J. Liu, X. Zhang, J. Energy Chem. 2020, 47, 333.
[9] P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng, Y. Zhang, Y. Kuang, Y. Li, Q. Ma, Z. Feng, W. Liu, X. Sun, Nat. Commun. 2019, 10, 1711.
[10] K. Mori, T. Taga, H. Yamashita, ACS Catal. 2017, 7, 3147.
[11] J. Zhang, X. Wu, W. C. Cheong, W. Chen, R. Lin, J. Li, L. Zheng, W. Yan, L. Gu, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 1002.
[12] Y. Li, J. Hu, Y. Zou, L. Lin, H. Liang, H. Lei, B. Li, X. yan Li, Chem. Eng. J. 2023, 453, 139890.
[13] J. Liu, J. Zhu, H. Xu, D. Cheng, ACS Catal. 2024, 14, 6952.
[14] Y. Pan, X. Ma, M. Wang, X. Yang, S. Liu, H. C. Chen, Z. Zhuang, Y. Zhang, W. C. Cheong, C. Zhang, X. Cao, R. Shen, Q. Xu, W. Zhu, Y. Liu, X. Wang, X. Zhang, W. Yan, J. Li, H. M. Chen, C. Chen, Y. Li, Adv. Mater. 2022, 34, 2203621.
[15] Lu, J., Elam, J. W., Stair, P. C., Surface Sci. Rep. 2016, 71, 410.
[16] Han, S.-G.; Jiang, Q.; Jin, W.; Liu, J.; Xu, Z.; Sun, X.; Hu, L. Adv. Mater. 2021, 33, 119591.
[17] M. B. Gawande, P. Fornasiero, R. Zbořil, ACS Catal. 2020, 10, 2231.
[18] M. E. Dry, Appl. Catal. A Gen. 1996, 138, 319.
[19] Z. Li, R. Wu, S. Xiao, Y. Yang, L. Lai, J. S. Chen, Y. Chen, Chem. Eng. J. 2022, 430, 132882.
[20] M. J. Cheng, E. L. Clark, H. H. Pham, A. T. Bell, M. Head-Gordon, ACS Catal. 2016, 6, 7769.
[21] W. Dong, N. Zhang, S. Li, S. Min, J. Peng, W. Liu, D. Zhan, H. Bai, J. Mater. Chem. A 2022, 10, 10892.
[22] J. Zhang, W. Cai, F. X. Hu, H. Yang, B. Liu, Chem. Sci. 2021, 12, 6800.
[23] Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2015, 54, 52.
[24] P. C. K. Vesborg, B. Seger, I. Chorkendorff, J. Phys. Chem. Lett. 2015, 6, 951.
[25] S. Alinejad, J. Quinson, Y. Li, Y. Kong, S. Reichenberger, S. Barcikowski, P. Broekmann, M. Arenz, J. Catal. 2024, 429, 115209.
[26] D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J. Feaster, D. Corral, S. A. Jaffer, A. Sarkar, M. Fontecave, E. B. Duoss, S. Baker, E. H. Sargent, T. F. Jaramillo, C. Hahn, Nat. Energy 2022, 7, 130.
[27] D. Ma, T. Jin, K. Xie, H. Huang, J. Mater. Chem. A 2021, 9, 20897.
[28] D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang, C. P. Berlinguette, Acc. Chem. Res. 2018, 51, 910.
[29] S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C. P. Berlinguette, ACS Energy Lett. 2020, 5, 1512.
[30] A. Wuttig, C. Liu, Q. Peng, M. Yaguchi, C. H. Hendon, K. Motobayashi, S. Ye, M. Osawa, Y. Surendranath, ACS Cent. Sci. 2016, 2, 522.
[31] N. J. Firet, W. A. Smith, ACS Catal. 2017, 7, 606.
[32] J. Grdadolnik, Acta Chim. Slov. 2002, 49, 631.
[33] C. Bernard, N. Homs, A. Choplin, P. Ramirez de la Piscina, L. Huang, E. Garbowski, R. Sanchez-Delgado, A. Théolier, J.-M. Basset, Inorg. Chem. 1988, 27, 4030–4033.
[34] L. Jin, A. Seifitokaldani, Catalysts 2020, 10, 481.
[35] S. Zhu, B. Jiang, W. Bin Cai, M. Shao, J. Am. Chem. Soc. 2017, 139, 15664.
[36] C. M. Gunathunge, X. Li, J. Li, R. P. Hicks, V. J. Ovalle, M. M. Waegele, J. Phys. Chem. C 2017, 121, 12337.
[37] F. A. Stevie, C. L. Donley, J. Vac. Sci. Technol. A 2020, 38, 6.
[38] S. Cherevko, K. J. J. Mayrhofer, Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Elsevier, 2018.
[39] H. Yang, L. Shang, Q. Zhang, R. Shi, G. I. Waterhouse, L. Gu, T. Zhang, Nat. Commun. 2019, 10, 4585.
[40] Q. Chang, Y. Liu, J. H. Lee, D. Ologunagba, S. Hwang, Z. Xie, S. Kattel, J. H. Lee, J. G. Chen, J. Am. Chem. Soc. 2022, 144, 16131.
[41] D. M. Koshy, M. D. Hossain, R. Masuda, Y. Yoda, L. B. Gee, K. Abiose, H. Gong, R. Davis, M. Seto, A. Gallo, C. Hahn, M. Bajdich, Z. Bao, T. F. Jaramillo, J. Am. Chem. Soc. 2022, 144, 21741.
[42] H. Su, P. Gao, M. Y. Wang, G. Y. Zhai, J. J. Zhang, T. J. Zhao, J. Su, M. Antonietti, X. H. Li, J. S. Chen, Angew. Chem. 2018, 130, 15414.
[43] Z. Qin, B. Tang, G. Zhang, C. Zhu, K. Jiang, B. Zhang, F. Z. Xuan, Nano Res. 2024, 17, 7658.
[44] M. Zhou, Y. Jiang, G. Wang, W. Wu, W. Chen, P. Yu, Y. Lin, J. Mao, L. Mao, Nat. Commun. 2020, 11, 3188.
[45] S. Chen, X. Li, C. W. Kao, T. Luo, K. Chen, J. Fu, C. Ma, H. Li, M. Li, T. S. Chan, M. Liu, Angew. Chem. Int. Ed. 2022, 61, e202206233.
[46] H. Yang, P. Zhang, X. Yi, C. Yan, D. Pang, L. Chen, S. B. Wang, C. Wang, B. Liu, G. Zhang, Z. Zhou, X. Li, Chem. Eng. J. 2022, 440, 135749.
[47] K. Li, S. Zhang, X. Zhang, S. Liu, H. Jiang, T. Jiang, C. Shen, Y. Yu, W. Chen, Nano Lett. 2022, 22, 1557.
[48] H. Zhang, W. Liu, D. Cao, D. Cheng, iScience 2022, 25, 106.
[49] S. Zhao, Y. Cheng, J. P. Veder, B. Johannessen, M. Saunders, L. Zhang, C. Liu, M. F. Chisholm, R. De Marco, J. Liu, S. Z. Yang, S. P. Jiang ACS Appl. Energy Mater. 2018, 1, 5286.
[50] Q. Wang, Y. Xiao, S. Yang, Y. Zhang, L. Wu, H. Pan, D. Rao, T. Chen, Z. Sun, G. Wang, J. Zhu, J. Zeng, S. Wei, X. Zheng, Nano Lett. 2022, 22, 10216.
[51] Y. Cheng, S. Zhao, H. Li, S. He, J. P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan, M. F. Chisholm, S. Z. Yang, C. Liu, J. G. Chen, S. P. Jiang, Appl. Catal. B 2019, 243, 294.
[52] J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang, Z. Li, W. Chen, C. Jia, T. Yao, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 17281.
[53] J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang, Z. Li, W. Chen, C. Jia, T. Yao, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 17281.
[54] H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao, Q. Liu, Y. Lin, J. Pei, Z. Li, Z. Jiang, D. Zhou, L. Zheng, Y. Wang, J. Zhou, Z. Yang, R. Cao, R. Sarangi, T. Sun, X. Yang, X. Zheng, W. Yan, Z. Zhuang, J. Li, W. Chen, D. Wang, J. Zhang, Y. Li, Nat. Commun. 2020, 11, 3049.
[55] S. Zhao, Y. Cheng, J. P. Veder, B. Johannessen, M. Saunders, L. Zhang, C. Liu, M. F. Chisholm, R. De Marco, J. Liu, S. Z. Yang, S. P. Jiang, ACS Appl. Energy Mater. 2018, 1, 5286.
[56] Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, Z. Luo, Carbon 2007, 45, 1686.
[57] K. Li, Q. Liu, H. Cheng, M. Hu, S. Zhang, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 249, 119286.
[58] W. J. Wang, C. Cao, K. Wang, T. Zhou, Inorg. Chem. Front. 2021, 8, 2542.
[59] Z. Ma, T. Zhang, L. Lin, A. Han, J. Liu, AIChE J. 2023, 69, e18161.
[60] C. Berríos, G. I. Cárdenas-Jirón, J. F. Marco, C. Gutiérrez, M. S. Ureta-Zañartu, J. Phys. Chem. A 2007, 111, 2706.
[61] L. G. Bulusheva, V. E. Arkhipov, K. M. Popov, V. I. Sysoev, A. A. Makarova, A. V. Okotrub, Materials 2020, 13, 1173.
[62] D. A. Bulushev, A. D. Nishchakova, S. V. Trubina, O. A. Stonkus, I. P. Asanov, A. V. Okotrub, L. G. Bulusheva, J. Catal. 2021, 402, 264.
[63] W. Qiu, N. Yang, D. Luo, J. Wang, L. Zheng, Y. Zhu, E. M. Akinoglu, Q. Huang, L. Shui, R. Wang, G. Zhou, X. Wang, Z. Chen, Appl. Catal. B Environ. 2021, 293, 120216.
[64] H. Zhao, L. Chen, Y. Xu, H. Wang, J. Y. Li, Y. Xie, L. Wang, Dalton Trans. 2021, 50, 13943.
[65] M. Suendorf, T. Schemme, A. Thomas, J. Wollschläger, K. Kuepper, arXiv 2015, arXiv:1501.07443.
[66] M. Liu, J. Zhang, H. Su, Y. Jiang, W. Zhou, C. Yang, S. Bo, J. Pan, Q. Liu, Nat. Commun. 2024, 15, 1675.
[67] M. Liu, J. Zhang, H. Su, Y. Jiang, W. Zhou, C. Yang, S. Bo, J. Pan, Q. Liu, Nat. Commun. 2024, 15, 1675.
[68] M. Mihaylov, K. Hadjiivanov, H. Knözinger, Catal. Lett. 2001, 76, 59.
[69] A. D. Fortes, S. F. Parker, J. Am. Chem. Soc. 2022, 144, 17376.
[70] M. Suwa, Y. Oshino, H. Watarai, H. Morita, A. Kasai, J. Šubrt, Sci. Technol. Adv. Mater. 2008, 9, 024215.
[71] S. Zhu, T. Li, W. Bin Cai, M. Shao, ACS Energy Lett. 2019, 4, 682.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96899-
dc.description.abstract在後疫情時代,隨著交通運輸和各行業的復甦,溫室氣體排放量,特別是二氧化碳(CO₂)排放量逐漸上升,並在2022年超過了疫情前的水平。電化學二氧化碳還原反應(Electrochemical CO₂ Reduction Reaction, EC CO₂RR)提供了一種有前景的途徑,提供環境友好的方法將CO₂轉化為有價值的產物。雖然已有多種金屬催化劑被報導能有效地將CO₂轉化為氣態和液態產物,但其選擇性和活性仍然無法滿足日益增長的需求。因此,單原子催化劑(Single-atom catalysts, SACs)因其卓越的選擇性、穩定性和活性而受到廣泛關注。然而,SACs在CO₂RR中關於分子層級的反應機制尚未完全理解,需進一步研究並提供相關的實驗證據。
在本研究中,我們合成了不同中心金屬原子的單原子催化劑(M-SACs),這些SACs藉由氮和碳基底穩定材料結構。使用X射線吸收光譜(XAS)、X光繞射儀(XRD)和X射線光電子能譜儀(XPS)對其在CO₂RR中的行為及電子結構進行了研究。通過臨場氣相層析技術(GC)比較在中性條件下不同M-SACs的催化活性。GC結果顯示,鎳單原子催化劑(Ni-SACs)能夠產生高達90%以上的一氧化碳的法拉第效率(FE)。相比之下,Fe-SACs、Mn-SACs 和 Cr-SACs 表現出類似的趨勢,即在較低電位下有較高的 CO 產量。
臨場傅立葉轉換紅外光譜(in-situ FTIR)結果顯示,不同M-SACs的中間產物的起始電位和位置存在差異,並且展現出獨特的行為。在Mn-SACs和Cr-SACs的結果中,光譜中未觀察到反應中間體。我們推測可能因為中間體在生成後迅速脫附。而在Ni-SACs和Fe-SACs中,觀察到中間體吸附在表面上。儘管Fe-SACs表現出較強的介面電場,但其活性仍低於Ni-SACs。我們發現反應中間體在催化劑表面的吸附強度是影響催化劑活性與介面電場關係的另一個重要因素。Ni-SACs上反應中間體的吸附強度相比於 Fe-SACs較弱,這個發現與Ni-SACs表現出更好的活性互相呼應。我們的實驗結果提供了關於介面電場與分子偶極矩之間相互作用的證據,這種相互關係可通過外加電場大小和反應中間體的分子偶極矩變化觀察得知,突顯了介面電場及表面吸附中間體的電化學行為與電子結構在催化性能中的關鍵作用。
zh_TW
dc.description.abstractIn the post-pandemic era, the transportation sector and various industries are experiencing a revival, leading to the increased greenhouse gas emissions, particularly carbon dioxide (CO2). Electrochemical CO2 reduction reaction (EC CO2RR) has been regarded as a promising approach to convert CO2 into value-added products. Although various metal-based catalysts have been used to efficiently convert the CO2 into gaseous and liquid products, the selectivity and activity remain insufficient to meet industrial requirements. As a result, single-atom catalysts (SACs) have attracted the attention, demonstrating their exceptional selectivity and stability. To develop the advanced SACs with enhanced electrochemical performance, the detailed mechanistic insights into the SACs are highly needed.
In this work, various single-atom catalysts with different metal atoms (M-SACs) including Cr-SACs, Mn-SACs, Fe-SACs and Ni-SACs stabilized by four nitrogen and carbon-based support were synthesized. X-ray absorption spectroscopy (XAS), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS) were used to investigate the geometric and electronic structure of M-SACs before and after reactions. Gas chromatography (GC) results showed the exceptional performance of Ni-SACs, maintaining a Faradaic efficiency (FE) of >90% for carbon monoxide (CO) production at -1 V (vs RHE) in 0.1 M KHCO3. In contrast, Fe-SACs, Mn-SACs and Cr-SACs exhibit a similar trend, achieving high FEs of CO production at lower over-potentials. In-situ FTIR results of M-SACs revealed the formation of surface-adsorbed intermediates during CO2RR. Unique electrochemical behavior of surface-adsorbed intermediates over Ni-SACs and Fe-SACs was observed. Although Fe-SACs exhibit a stronger interfacial electric field (IEF), the activity of Fe-SACs is lower than that of Ni-SACs. We found that the binding strength of surface-adsorbed intermediates influences the relationship between the activity and the IEF. The experimental findings provide valuable insights into the relationship between the interfacial electric field and the electrochemical behavior of surface-adsorbed intermediates. Thus, the electrochemical behavior and binding strength of surface-adsorbed intermediates play pivotal roles in the catalytic performance of M-SACs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:28:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:28:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Contents vi
List of figures ix
List of tables xiv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Single-atom catalyst (SACs) 3
1.2.1 Background of SACs 3
1.2.2 Synthesis strategies of SACs and carbon-based support 3
1.3 CO2 reduction reaction (CO2RR) 7
1.3.1 Background of CO2RR 7
1.3.2 SACs for CO2RR 8
1.4 Challenges of single-atom catalysts 10
1.5 Types of CO2RR Reactors 11
1.6 Fourier transform infrared spectroscopy -attenuated total reflectance (FTIR-ATR) 14
1.7 Motivation 17
Chapter 2 Experimental sections 19
2.1 Experiment equipment 19
2.2 Chemicals 20
2.3 Synthesis of single-atom catalysts (SACs) 22
2.4 Preparation catalyst and conductive layer 24
2.4.1 Preparation of the working electrode 24
2.4.2 Preparation of the slurry for FTIR 24
2.4.3 Electroless gold plating 24
2.5 Electrochemical cell and the Faradaic efficiency 25
2.5.1 Flow cell 25
2.5.2 H-cell 26
2.5.3 Faradaic efficiency 28
2.6 In-situ techniques 29
2.6.1 Online gas chromatography (GC) 29
2.6.2 In-situ FTIR 30
2.6.3 In-situ X-ray absorption spectroscopy (XAS) 31
2.7 Surface analyzer and elemental content analysis 35
2.7.1 X-ray diffractometer (XRD) 35
2.7.2 X-ray photoelectron spectroscopy (XPS) 36
2.7.3 Scanning electron microscope (SEM) 38
2.7.4 Inductively coupled plasma atomic emission spectroscopy (ICP-OES) 38
Chapter 3 Experimental result 40
3.1 Material characterization 40
3.1.1 XAS analysis of the K-edge for M-SACs 40
3.1.2 XAS analysis of the L-edge for M-SACs 47
3.1.3 XRD results for M-SACs 52
3.1.4 ICP-OES analysis for M-SACs 54
3.1.5 XPS characterization of M-SACs 56
3.1.6 SEM characterization of M-SACs 61
3.2 GC performance of M-SACs 63
3.2.1 Performance of M-SACs in neutral electrolyte 63
3.2.2 Electrochemical performance of Ni-SACs in alkaline electrolyte 70
3.3 In-situ XAS of M-SACs 73
3.3.1 XAS results of Ni-SACs in neutral electrolyte 73
3.3.2 XAS results of Fe-SACs in neutral electrolyte 78
3.3.2 XAS results of Ni-SACs and Fe-SACs in alkaline electrolyte 82
3.4 In-situ FTIR of M-SACs 87
3.4.1 In-situ FTIR results of Ni-SACs in neutral electrolyte 87
3.4.2 In-situ FTIR results for Fe-SACs in neutral electrolyte 93
3.4.3 In-situ FTIR results for Mn-SACs and Cr-SACs in neutral electrolyte 101
3.4.4 CO adsorption of NiPc and FePc in FTIR 103
Chapter 4 Conclusion 105
Chapter 5 Prospect 106
References 107
-
dc.language.isoen-
dc.subjectX射線吸收光譜zh_TW
dc.subject表面吸附中間體zh_TW
dc.subject傅立葉轉換紅外線光譜zh_TW
dc.subject單原子催化劑zh_TW
dc.subject電化學二氧化碳還原反應zh_TW
dc.subjectsurface-adsorbed intermediatesen
dc.subjectEC CO2RRen
dc.subjectSingle-atom catalystsen
dc.subjectFourier-transform infrared spectroscopyen
dc.subjectX-ray absorption spectroscopyen
dc.title剖析單原子催化劑在電化學二氧化碳還原下的反應機制zh_TW
dc.titleUnraveling the Mechanistic Insights into Electrochemical CO2 Reduction on Single-Atom Catalystsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee姜昌明;陳浩銘;羅世強zh_TW
dc.contributor.oralexamcommitteeChang-Ming Jiang;Hao-Ming Chen;Shyh-Chyang Luoen
dc.subject.keyword電化學二氧化碳還原反應,單原子催化劑,傅立葉轉換紅外線光譜,X射線吸收光譜,表面吸附中間體,zh_TW
dc.subject.keywordEC CO2RR,Single-atom catalysts,Fourier-transform infrared spectroscopy,X-ray absorption spectroscopy,surface-adsorbed intermediates,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU202500116-
dc.rights.note未授權-
dc.date.accepted2025-01-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-liftN/A-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
10.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved