請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96886完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳恩賜 | zh_TW |
| dc.contributor.advisor | Joshua Oon Soo Goh | en |
| dc.contributor.author | 王力陞 | zh_TW |
| dc.contributor.author | Li-Sheng Wang | en |
| dc.date.accessioned | 2025-02-24T16:24:38Z | - |
| dc.date.available | 2025-02-25 | - |
| dc.date.copyright | 2025-02-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-18 | - |
| dc.identifier.citation | Abdulrahman, H., & Henson, R. N. (2016). Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis. NeuroImage, 125, 756–766. https://doi.org/10.1016/j.neuroimage.2015.11.009
Adamo, D., Briceño, E., Sindone, J., Alexander, N., & Moffat, S. (2012). Age differences in virtual environment and real world path integration. Frontiers in Aging Neuroscience, 4. https://www.frontiersin.org/articles/10.3389/fnagi.2012.00026 Alexander, A. S., & Nitz, D. A. (2015). Retrosplenial cortex maps the conjunction of internal and external spaces. Nature Neuroscience, 18(8), 1143–1151. https://doi.org/10.1038/nn.4058 Barry, C., & Burgess, N. (2014). Neural Mechanisms of Self-Location. https://www.cell.com/current-biology/abstract/S0960-9822(14)00217-6 Bellmund, J. L. S., Gärdenfors, P., Moser, E. I., & Doeller, C. F. (2018). Navigating cognition: Spatial codes for human thinking. Science, 362(6415), eaat6766. https://doi.org/10.1126/science.aat6766 Butters, N., Soeldner, C., & Fedio, P. (1972). Comparison of Parietal and Frontal Lobe Spatial Deficits in Man: Extrapersonal vs Personal (Egocentric) Space. Perceptual and Motor Skills, 34(1), 27–34. https://doi.org/10.2466/pms.1972.34.1.27 Carrozzo, M., Stratta, F., McIntyre, J., & Lacquaniti, F. (2002). Cognitive allocentric representations of visual space shape pointing errors. Experimental Brain Research, 147(4), Article 4. https://doi.org/10.1007/s00221-002-1232-4 Chen, J., & Chen, H. (2002). Wechsler adult intelligence scale. Manual]. 3rd Edn. Taipei: Chinese Behavioral Science Corp. Chen, Q., Weidner, R., Weiss, P. H., Marshall, J. C., & Fink, G. R. (2012). Neural Interaction between Spatial Domain and Spatial Reference Frame in Parietal–Occipital Junction. Journal of Cognitive Neuroscience, 24(11), 2223–2236. https://doi.org/10.1162/jocn_a_00260 Chen, X., DeAngelis, G. C., & Angelaki, D. E. (2013). Eye-Centered Representation of Optic Flow Tuning in the Ventral Intraparietal Area. Journal of Neuroscience, 33(47), 18574–18582. Committeri, G., Galati, G., Paradis, A.-L., Pizzamiglio, L., Berthoz, A., & LeBihan, D. (2004). Reference Frames for Spatial Cognition: Different Brain Areas are Involved in Viewer-, Object-, and Landmark-Centered Judgments About Object Location. Journal of Cognitive Neuroscience, 16(9), 1517–1535. https://doi.org/10.1162/0898929042568550 Dimsdale-Zucker, H. R., & Ranganath, C. (2018). Representational Similarity Analyses. In Handbook of Behavioral Neuroscience (Vol. 28, pp. 509–525). Elsevier. https://doi.org/10.1016/B978-0-12-812028-6.00027-6 Evans, G. W., & Pezdek, K. (1980). Cognitive mapping: Knowledge of real-world distance and location information. Journal of Experimental Psychology: Human Learning and Memory, 6(1), 13–24. https://doi.org/10.1037/0278-7393.6.1.13 Evensmoen, H. R., Rimol, L. M., Winkler, A. M., Betzel, R., Hansen, T. I., Nili, H., & Håberg, A. (2021). Allocentric representation in the human amygdala and ventral visual stream. https://www.cell.com/cell-reports/abstract/S2211-1247(20)31647-8 Fetsch, C. R., Wang, S., Gu, Y., DeAngelis, G. C., & Angelaki, D. E. (2007). Spatial Reference Frames of Visual, Vestibular, and Multimodal Heading Signals in the Dorsal Subdivision of the Medial Superior Temporal Area. The Journal of Neuroscience, 27(3), 700–712. https://doi.org/10.1523/JNEUROSCI.3553-06.2007 Flossmann, T., & Rochefort, N. L. (2021). Spatial navigation signals in rodent visual cortex. Current Opinion in Neurobiology, 67, 163–173. https://doi.org/10.1016/j.conb.2020.11.004 Frith, U., & de Vignemont, F. (2005). Egocentrism, allocentrism, and Asperger syndrome. Consciousness and Cognition, 14(4), 719–738. https://doi.org/10.1016/j.concog.2005.04.006 Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (2000). The neural basis of egocentric and allocentric coding of space in humans: A functional magnetic resonance study. Experimental Brain Research, 133(2), Article 2. https://doi.org/10.1007/s002210000375 Graziano, M. S. A., Yap, G. S., & Gross, C. G. (1994). Coding of Visual Space by Premotor Neurons. Science, 266(5187), 1054–1057. https://doi.org/10.1126/science.7973661 Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801–806. https://doi.org/10.1038/nature03721 Harris, M. A., & Wolbers, T. (2012). Ageing effects on path integration and landmark navigation. Hippocampus, 22(8), 1770–1780. https://doi.org/10.1002/hipo.22011 Hua, M., Chang, B., Lin, K., Yang, J., Lu, S., & Chen, S. (2005). Wechsler memory scale. Chinese Behavioral Science Corporation, Taipei. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243. https://doi.org/10.1113/jphysiol.1968.sp008455 Iaria, G., Palermo, L., Committeri, G., & Barton, J. J. S. (2009). Age differences in the formation and use of cognitive maps. Behavioural Brain Research, 196(2), 187–191. https://doi.org/10.1016/j.bbr.2008.08.040 Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 249. Lane, A. R., Ball, K., & Ellison, A. (2015). Dissociating the neural mechanisms of distance and spatial reference frames. Neuropsychologia, 74, 42–49. https://doi.org/10.1016/j.neuropsychologia.2014.12.019 Lester, A. W., Moffat, S. D., Wiener, J. M., Barnes, C. A., & Wolbers, T. (2017). The Aging Navigational System. Neuron, 95(5), 1019–1035. https://doi.org/10.1016/j.neuron.2017.06.037 Lever, C., Wills, T., Cacucci, F., Burgess, N., & O’Keefe, J. (2002). Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature, 416(6876), Article 6876. https://doi.org/10.1038/416090a Li, Z., Phillips, J., & Durgin, F. H. (2011). The underestimation of egocentric distance: Evidence from frontal matching tasks. Attention, Perception, & Psychophysics, 73(7), Article 7. https://doi.org/10.3758/s13414-011-0170-2 Luo, M., Zhang, H., & Luo, H. (2022). Cartesian coordinates scaffold stable spatial perception over time. Journal of Vision, 22(8), 13. https://doi.org/10.1167/jov.22.8.13 Mahmood, O., Adamo, D., Briceno, E., & Moffat, S. D. (2009). Age differences in visual path integration. Behavioural Brain Research, 205(1), 88–95. https://doi.org/10.1016/j.bbr.2009.08.001 Meulenbroek, O., Petersson, K. M., Voermans, N., Weber, B., & Fernández, G. (2004). Age differences in neural correlates of route encoding and route recognition. NeuroImage, 22(4), 1503–1514. https://doi.org/10.1016/j.neuroimage.2004.04.007 Moffat, S. D. (2009). Aging and Spatial Navigation: What Do We Know and Where Do We Go? Neuropsychology Review, 19(4), 478–489. https://doi.org/10.1007/s11065-009-9120-3 Moffat, S. D., Elkins, W., & Resnick, S. M. (2006). Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiology of Aging, 27(7), 965–972. https://doi.org/10.1016/j.neurobiolaging.2005.05.011 Moffat, S. D., & Resnick, S. M. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behavioral Neuroscience, 116(5), 851–859. https://doi.org/10.1037/0735-7044.116.5.851 Moser, E. I., Moser, M.-B., & McNaughton, B. L. (2017). Spatial representation in the hippocampal formation: A history. Nature Neuroscience, 20(11), 1448–1464. https://doi.org/10.1038/nn.4653 Nobre, A. (1997). Functional localization of the system for visuospatial attention using positron emission tomography. Brain, 120(3), 515–533. https://doi.org/10.1093/brain/120.3.515 O’Keefe, J., & Nadel, L. (1979). Précis of O’Keefe & Nadel’s The hippocampus as a cognitive map. Behavioral and Brain Sciences, 2(4), 487–494. https://doi.org/10.1017/S0140525X00063949 O’Shea, A., Cohen, R., Porges, E. C., Nissim, N. R., & Woods, A. J. (2016). Cognitive Aging and the Hippocampus in Older Adults. https://doi.org/10.3389/fnagi.2016.00298 Osterrieth, P. A. (1944). Osterrieth, P. A. (1944). Le test de copie d’une figure complexe; contribution a l’etude de la perception et de la memoire. Archives de psychologie. Rowland, D. C., Roudi, Y., Moser, M.-B., & Moser, E. I. (2016). Ten Years of Grid Cells. https://doi.org/10.1146/annurev-neuro-070815-013824 Ruotolo, F., Ruggiero, G., Raemaekers, M., Iachini, T., van der Ham, I. J. M., Fracasso, A., & Postma, A. (2019). Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience, 409, 235–252. https://doi.org/10.1016/j.neuroscience.2019.04.021 Sahm, C. S., Creem-Regehr, S. H., Thompson, W. B., & Willemsen, P. (2005). Throwing versus walking as indicators of distance perception in similar real and virtual environments. ACM Transactions on Applied Perception, 2(1), 35–45. https://doi.org/10.1145/1048687.1048690 Salinas, M. M., Wilken, J. M., & Dingwell, J. B. (2017). How humans use visual optic flow to regulate stepping during walking. Gait & Posture, 57, 15–20. https://doi.org/10.1016/j.gaitpost.2017.05.002 Salthouse, T. A. (1994). The aging of working memory. Neuropsychology, 8(4), 535–543. https://doi.org/10.1037/0894-4105.8.4.535 Weiss, P. H., Marshall, J. C., Zilles, K., & Fink, G. R. (2003). Are action and perception in near and far space additive or interactive factors? NeuroImage, 18(4), 837–846. https://doi.org/10.1016/S1053-8119(03)00018-1 Wilkniss, S. M., Jones, M. G., Korol, D. L., Gold, P. E., & Manning, C. A. (1997). Age-related differences in an ecologically based study of route learning. Psychology and Aging, 12(2), 372–375. https://doi.org/10.1037/0882-7974.12.2.372 Yamawaki, N., Radulovic, J., & Shepherd, G. M. G. (2016). A Corticocortical Circuit Directly Links Retrosplenial Cortex to M2 in the Mouse. The Journal of Neuroscience, 36(36), 9365–9374. https://doi.org/10.1523/JNEUROSCI.1099-16.2016 Yan, J., Zhang, Y., Roder, J., & McDonald, R. J. (2003). Aging effects on spatial tuning of hippocampal place cells in mice. Experimental Brain Research, 150(2), 184–193. https://doi.org/10.1007/s00221-003-1396-6 Yi-Hsiu Lee. (2022). Neural Representation of Age-related Distance Distortion in Human Spatial Navigation. Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Master Thesis. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96886 | - |
| dc.description.abstract | 人類估算空間距離時會使用兩種不同的參考框架:自我中心參考框架(egocentric reference frame),即物體相對於自身的空間編碼方式,此參考框架之神經編碼涉及枕葉(occipital)和頂葉(parietal)皮質;與地標中心參考框(allocentric reference frame),即空間的組成是由地標之間的位置進行編碼,其主要由神經編碼涉及枕葉和顳葉(temporal)皮質。然而,這些參考框架並非完全無誤,且在估算距離時仍會出現距離失真(distance distortion)的現象,更甚者,隨著年齡增長,其距離失真現象更加明顯。在過往研究中,關於年齡如何擴大距離失真之成因仍眾說紛紜,卻未有直接證據顯示距離失真與神經表徵之連結。有鑑於此,本研究假設距離失真與負責參考框架的神經表徵有關,包含自我中心和地標中心參考框架;若距離失真與自我中心參考框架有關,則在經歷距離失真時,與負責自我中心參考架構之腦區有神經關聯性(neural correlate);反之,則與負責地標中心參考框架之腦區有神經關聯性。在本研究中,實驗參與者在進行功能性磁振造影(fMRI)掃描時,估算在虛擬空間中兩個地標之間的距離。除了傳統功能性磁振造影分析外,我們近一步分析與距離失真和腦區之間的神經相關性,以探討距離失真的成因。行為結果顯示,參與者在遠距離時低估,在近距離時高估。此外,年長參與者比年輕參與者出現更顯著的距離失真。神經方面,透過表徵相似性分析(RSA),我們發現年齡相關的神經機制差異與距離失真有關。年輕參與者在低估距離時呈現枕頂葉皮質的神經表徵,此表徵於過往研究中較為負責自我中心參考框架。相反地,年長參與者在低估時則使用枕顳葉皮質來處理地標中心參考框架。這種模式顯示,年齡相關的距離失真增強源於地標中心參考框架的變化,此發現與先前研究結果一致。 | zh_TW |
| dc.description.abstract | Humans estimate distances using two reference frames: egocentric, which encodes locations relative to oneself involved in the occipital and parietal cortices, and allocentric, which encodes locations between landmarks through the occipital and temporal cortex. However, these reference frames are not unerring, leading to distance distortion, further amplified by aging. The underlying rationales of age-related distortions in distance estimation remain unclear. We assumed that distance distortion is associated with the neural representations of spatial reference frames, such as egocentric and allocentric information. If the egocentric reference frame is involved, the corresponding brain regions are represented while experiencing distance distortion, as they are for the allocentric frame. In our paradigms, participants were required to estimate the distance among landmarks within a virtual environment during a spatial navigation paradigm while undergoing functional magnetic resonance imaging (fMRI). In the present study, we analyzed the neural correlates with distance distortion to investigate why distance distortion occurs. As a result, participants underestimated in the far distance and overestimated in the near distance. Also, older adults exhibited more significant distortion compared to younger adults. Additionally, representation similarity analysis (RSA) revealed that age-related distinctions in neural mechanisms correlate with distance distortion. Younger adults exhibited the occipital-parietal cortex while underestimating, with such neural patterns responsible for the egocentric reference frames. In contrast, older adults recruited the occipital-temporal cortex, which processes the allocentric spatial information, for underestimation. Such patterns indicate that the age-related amplified distance distortion may stem from altering the allocentric reference frame, aligning with findings from previous studies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:24:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-24T16:24:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
Acknowledgment ii 中文摘要 iii Abstract iv Introduction 1 Methods 6 Participants 6 Neuropsychological Assessments Show Expected Age Group Differences in Basic Cognitive Abilities. 6 Visual Navigation Experimental Paradigm 7 Procedure 7 Brand-Naming Pairing 7 Cognitive-map Construction 8 Spatial Navigation Tasks 8 Map-redrawing 10 Data Analysis 10 Behavioral Analysis 10 fMRI Acquisition and Analysis 11 Brain Imaging Protocol 11 Preprocessing 11 First-level Analysis 12 Representation similarity analysis, RSA 13 Second-level 14 Results 15 Distance estimation was more distorted in older than younger adults. 15 Neural responses were observed at each navigation stage, and aging effect 15 Representation similarity analysis with overall and aging effect 17 Discussion 19 Conclusion 23 Reference 24 Figure 30 Table 38 | - |
| dc.language.iso | en | - |
| dc.subject | fMRI | zh_TW |
| dc.subject | 距離失真 | zh_TW |
| dc.subject | RSA | zh_TW |
| dc.subject | 神經關聯性 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | aging | en |
| dc.subject | distance distortion | en |
| dc.subject | RSA | en |
| dc.title | 老化擴大空間導航距離扭曲現象之神經機制 | zh_TW |
| dc.title | A Neural Mechanism Underlying the Age-related Amplification of Distance Distortion in Spatial Navigation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃植懋;謝伯讓;張智宏 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Mao Huang;Po-Jang Hsieh;Chih-Hung Chang | en |
| dc.subject.keyword | 老化,距離失真,fMRI,RSA,神經關聯性, | zh_TW |
| dc.subject.keyword | distance distortion,RSA,aging, | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202404593 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-11-18 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 腦與心智科學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 腦與心智科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 11.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
