Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖泰慶zh_TW
dc.contributor.advisorTai-Ching Liaoen
dc.contributor.author郭建均zh_TW
dc.contributor.authorChien-Chun Kuoen
dc.date.accessioned2025-02-24T16:23:20Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2025-
dc.date.submitted2025-01-07-
dc.identifier.citation1. Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. Mar 2001;69(3):89-95. doi:10.1067/mcp.2001.113989
2. Group F-NBW. BEST (Biomarkers, EndpointS, and other Tools) Resource. Food and Drug Administration (US); 2016.
3. Myers MJ, Smith ER, Turfle PG. Biomarkers in Veterinary Medicine. Annu Rev Anim Biosci. Feb 8 2017;5(1):65-87. doi:10.1146/annurev-animal-021815-111431
4. Appelbaum FR, Sale GE, Storb R, et al. Phenotyping of canine lymphoma with monoclonal antibodies directed at cell surface antigens: classification, morphology, clinical presentation and response to chemotherapy. Hematol Oncol. Apr-Jun 1984;2(2):151-68. doi:10.1002/hon.2900020205
5. Mochizuki H, Kennedy K, Shapiro SG, Breen M. BRAF Mutations in Canine Cancers. PLoS ONE. 2015/06/08/ 2015;10(6):e0129534. doi:10.1371/journal.pone.0129534
6. Mochizuki H, Shapiro SG, Breen M. Detection of BRAF Mutation in Urine DNA as a Molecular Diagnostic for Canine Urothelial and Prostatic Carcinoma. PLoS ONE. 2015/12/09/ 2015;10(12):e0144170. doi:10.1371/journal.pone.0144170
7. Kuo CC, Yang SY, Liu RM, et al. Diagnostic Value of Conventional Polymerase Chain Reaction for Detecting BRAF V595E Mutation in Liquid and Tissue Specimens of Canine Urothelial and Prostate Carcinomas. Animals (Basel). Aug 31 2024;14(17):2535. doi:10.3390/ani14172535
8. Thompson I, Thrasher JB, Aus G, et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J Urol. Jun 2007;177(6):2106-31. doi:10.1016/j.juro.2007.03.003
9. Tagawa M, Tambo N, Maezawa M, et al. Quantitative analysis of the BRAF V595E mutation in plasma cell-free DNA from dogs with urothelial carcinoma. PLoS ONE. 2020/04/24/ 2020;15(4):e0232365. doi:10.1371/journal.pone.0232365
10. Sharif H, von Euler H, Westberg S, He E, Wang L, Eriksson S. A sensitive and kinetically defined radiochemical assay for canine and human serum thymidine kinase 1 (TK1) to monitor canine malignant lymphoma. Vet J. Oct 2012;194(1):40-7. doi:10.1016/j.tvjl.2012.03.006
11. Morschhauser F, Machiels JP, Salles G, et al. On-Target Pharmacodynamic Activity of the PI3K Inhibitor Copanlisib in Paired Biopsies from Patients with Malignant Lymphoma and Advanced Solid Tumors. Mol Cancer Ther. Feb 2020;19(2):468-478. doi:10.1158/1535-7163.MCT-19-0466
12. London CA, Hannah AL, Zadovoskaya R, et al. Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clin Cancer Res. Jul 2003;9(7):2755-68.
13. London CA, Malpas PB, Wood-Follis SL, et al. Multi-center, placebo-controlled, double-blind, randomized study of oral toceranib phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the treatment of dogs with recurrent (either local or distant) mast cell tumor following surgical excision. Clin Cancer Res. Jun 1 2009;15(11):3856-65. doi:10.1158/1078-0432.CCR-08-1860
14. Gedon J, Kehl A, Aupperle-Lellbach H, von Bomhard W, Schmidt JM. BRAF mutation status and its prognostic significance in 79 canine urothelial carcinomas: A retrospective study (2006-2019). Vet Comp Oncol. Jun 2022;20(2):449-457. doi:10.1111/vco.12790
15. Rossman P, Zabka TS, Ruple A, et al. Phase I/II Trial of Vemurafenib in Dogs with Naturally Occurring, BRAF-mutated Urothelial Carcinoma. Mol Cancer Ther. Nov 2021;20(11):2177-2188. doi:10.1158/1535-7163.MCT-20-0893
16. Brocks BAW, Bertram CA, Bartel A, et al. Internal Tandem Duplication of Exon 8 of c-kit Is Associated With Longer Total Survival in Canine Cutaneous Mast Cell Tumors. Vet Pathol. Mar 2021;58(2):315-324. doi:10.1177/0300985820973463
17. Wasung ME, Chawla LS, Madero M. Biomarkers of renal function, which and when? Clin Chim Acta. Jan 1 2015;438:350-7. doi:10.1016/j.cca.2014.08.039
18. Shearin AL, Hedan B, Cadieu E, et al. The MTAP-CDKN2A locus confers susceptibility to a naturally occurring canine cancer. Cancer Epidemiol Biomarkers Prev. Jul 2012;21(7):1019-27. doi:10.1158/1055-9965.EPI-12-0190-T
19. Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. Jun 2015;4(3):256-269. doi:10.3978/j.issn.2218-676X.2015.06.04
20. Hayes DF. Biomarker validation and testing. Mol Oncol. May 2015;9(5):960-6. doi:10.1016/j.molonc.2014.10.004
21. Gaines PJ, Powell TD, Walmsley SJ, et al. Identification of serum biomarkers for canine B-cell lymphoma by use of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry. Am J Vet Res. Apr 2007;68(4):405-10. doi:10.2460/ajvr.68.4.405
22. Merrick BA, London RE, Bushel PR, Grissom SF, Paules RS. Platforms for biomarker analysis using high-throughput approaches in genomics, transcriptomics, proteomics, metabolomics, and bioinformatics. IARC Sci Publ. 2011;(163):121-42.
23. Classen S, Staratschek-Jox A, Schultze JL. Use of genome-wide high-throughput technologies in biomarker development. Biomark Med. Oct 2008;2(5):509-24. doi:10.2217/17520363.2.5.509
24. Cui M, Cheng C, Zhang L. High-throughput proteomics: a methodological mini-review. Lab Invest. Nov 2022;102(11):1170-1181. doi:10.1038/s41374-022-00830-7
25. Brooks JD. Translational genomics: the challenge of developing cancer biomarkers. Genome Res. Feb 2012;22(2):183-7. doi:10.1101/gr.124347.111
26. Yang X, Kui L, Tang M, et al. High-Throughput Transcriptome Profiling in Drug and Biomarker Discovery. Front Genet. 2020/02/05/ 2020;11:19. doi:10.3389/fgene.2020.00019
27. Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res. Jan 2009;37(Database issue):D885-90. doi:10.1093/nar/gkn764
28. Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci. May 2 2024;11(5):199. doi:10.3390/vetsci11050199
29. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. Aug 2013;10(8):472-84. doi:10.1038/nrclinonc.2013.110
30. Hernandez B, Parnell A, Pennington SR. Why have so few proteomic biomarkers "survived" validation? (Sample size and independent validation considerations). Proteomics. Jul 2014;14(13-14):1587-92. doi:10.1002/pmic.201300377
31. Parkinson DR, McCormack RT, Keating SM, et al. Evidence of clinical utility: an unmet need in molecular diagnostics for patients with cancer. Clin Cancer Res. Mar 15 2014;20(6):1428-44. doi:10.1158/1078-0432.CCR-13-2961
32. Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst. Nov 4 2009;101(21):1446-52. doi:10.1093/jnci/djp335
33. Johansen JS, Williamson MK, Rice JS, Price PA. Identification of proteins secreted by human osteoblastic cells in culture. J Bone Miner Res. May 1992;7(5):501-12. doi:10.1002/jbmr.5650070506
34. Rehli M, Krause SW, Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. Jul 15 1997;43(2):221-5. doi:10.1006/geno.1997.4778
35. Hakala BE, White C, Recklies AD. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem. 1993;268(34):25803 - 25810.
36. Johansen JS. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull. May 2006;53(2):172-209.
37. Renkema GH, Boot RG, Au FL, et al. Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur J Biochem. Jan 15 1998;251(1-2):504-9. doi:10.1046/j.1432-1327.1998.2510504.x
38. Fusetti F, Pijning T, Kalk KH, Bos E, Dijkstra BW. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J Biol Chem. Sep 26 2003;278(39):37753-60. doi:10.1074/jbc.M303137200
39. Shackelton LM, Mann DM, Millis AJ. Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J Biol Chem. Jun 2 1995;270(22):13076-83. doi:10.1074/jbc.270.22.13076
40. Kognole AA, Payne CM. Inhibition of Mammalian Glycoprotein YKL-40: IDENTIFICATION OF THE PHYSIOLOGICAL LIGAND. J Biol Chem. Feb 17 2017;292(7):2624-2636. doi:10.1074/jbc.M116.764985
41. Bigg HF, Wait R, Rowan AD, Cawston TE. The mammalian chitinase-like lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation. J Biol Chem. Jul 28 2006;281(30):21082-21095. doi:10.1074/jbc.M601153200
42. Cohen N, Shani O, Raz Y, et al. Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene. Aug 2017;36(31):4457-4468. doi:10.1038/onc.2017.65
43. Schultz NA, Johansen JS. YKL-40-A Protein in the Field of Translational Medicine: A Role as a Biomarker in Cancer Patients? Cancers (Basel). Jul 12 2010;2(3):1453-91. doi:10.3390/cancers2031453
44. Volck B, Price PA, Johansen JS, et al. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. P Assoc Am Physician. 1998;110(4):351-60.
45. Richter B, Roslind A, Hesse U, et al. YKL-40 and mast cells are associated with detrusor fibrosis in patients diagnosed with bladder pain syndrome/interstitial cystitis according to the 2008 criteria of the European Society for the Study of Interstitial Cystitis. Histopathology. Sep 2010;57(3):371-83. doi:10.1111/j.1365-2559.2010.03640.x
46. Ringsholt M, Hogdall EV, Johansen JS, Price PA, Christensen LH. YKL-40 protein expression in normal adult human tissues--an immunohistochemical study. J Mol Histol. Mar 2007;38(1):33-43. doi:10.1007/s10735-006-9075-0
47. Di Rosa M, Tibullo D, Saccone S, et al. CHI3L1 nuclear localization in monocyte derived dendritic cells. Immunobiology. Feb 2016;221(2):347-56. doi:10.1016/j.imbio.2015.09.023
48. Pelloski CE, Mahajan A, Maor M, et al. YKL-40 Expression is Associated with Poorer Response to Radiation and Shorter Overall Survival in Glioblastoma. Clin Cancer Res. 2005;11(9):3326-3334. doi:10.1158/1078-0432.ccr-04-1765 PMID - 15867231
49. Shao R, Cao QJ, Arenas RB, Bigelow C, Bentley B, Yan W. Breast cancer expression of YKL-40 correlates with tumour grade, poor differentiation, and other cancer markers. Br J Cancer. Oct 11 2011;105(8):1203-9. doi:10.1038/bjc.2011.347
50. Roslind A, Johansen JS, Junker N, et al. YKL-40 expression in benign and malignant lesions of the breast: a methodologic study. Appl Immunohistochem Mol Morphol. Dec 2007;15(4):371-81. doi:10.1097/01.pai.0000213146.77772.6a
51. Salomon J, Piotrowska A, Matusiak L, Dziegiel P, Szepietowski JC. Chitinase-3-like Protein 1 (YKL-40) Expression in Squamous Cell Skin Cancer. Anticancer Res. Aug 2018;38(8):4753-4758. doi:10.21873/anticanres.12783
52. Krogh M, Christensen I, Bouwhuis M, et al. Prognostic and predictive value of YKL-40 in stage IIB-III melanoma. Melanoma Res. Aug 2016;26(4):367-76. doi:10.1097/CMR.0000000000000237
53. Bockelmann LC, Felix T, Calabro S, Schumacher U. YKL-40 protein expression in human tumor samples and human tumor cell line xenografts: implications for its use in tumor models. Cell Oncol. Oct 2021;44(5):1183-1195. doi:10.1007/s13402-021-00630-z
54. Yang X, Fang D, Li M, Chen J, Cheng Y, Luo J. Knockdown of Chitinase 3-Like-1 Inhibits Cell Proliferation, Promotes Apoptosis, and Enhances Effect of Anti-Programmed Death Ligand 1 (PD-L1) in Diffuse Large B Cell Lymphoma Cells. Med Sci Monit. Mar 25 2021;27:e929431. doi:10.12659/MSM.929431
55. Elbedewy T, Mabrouk M, AbdElfattah O, Aziz D, Bedeer A. Prognostic role of tissue expression and serum level of YKL-40 in patients with diffuse large B-cell lymphoma. Egypt J Haematol. 2017;42(3):99. doi:10.4103/ejh.ejh_27_17
56. Neinaa YME, Elsayed HTI, Alshenawy HA, Gamei MM. YKL-40 immunoexpression as a prognosticator of mycosis fungoides. Int J Dermatol. Sep 2023;62(9):1147-1153. doi:10.1111/ijd.16758
57. Suzuki H, Boki H, Kamijo H, et al. YKL-40 Promotes Proliferation of Cutaneous T-Cell Lymphoma Tumor Cells through Extracellular Signal-Regulated Kinase Pathways. J Invest Dermatol. Apr 2020;140(4):860-868 e3. doi:10.1016/j.jid.2019.09.007
58. Bhardwaj R, Yester JW, Singh SK, et al. RelB/p50 complexes regulate cytokine-induced YKL-40 expression. J Immunol. Mar 15 2015;194(6):2862-70. doi:10.4049/jimmunol.1400874
59. Johansen JS, Olee T, Price PA, Hashimoto S, Ochs RL, Lotz M. Regulation of YKL-40 production by human articular chondrocytes. Arthritis Rheum. Apr 2001;44(4):826-37. doi:10.1002/1529-0131(200104)44:4<826::AID-ANR139>3.0.CO;2-U
60. Park JA, Drazen JM, Tschumperlin DJ. The chitinase-like protein YKL-40 is secreted by airway epithelial cells at base line and in response to compressive mechanical stress. J Biol Chem. Sep 24 2010;285(39):29817-25. doi:10.1074/jbc.M110.103416
61. Letuve S, Kozhich A, Arouche N, et al. YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages. J Immunol. Oct 1 2008;181(7):5167-73. doi:10.4049/jimmunol.181.7.5167
62. Hashimoto S, Suzuki T, Dong HY, Yamazaki N, Matsushima K. Serial analysis of gene expression in human monocytes and macrophages. Blood. Aug 1 1999;94(3):837-44.
63. He CH, Lee CG, Dela Cruz CS, et al. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor alpha2. Cell Rep. Aug 29 2013;4(4):830-41. doi:10.1016/j.celrep.2013.07.032
64. Lee CM, He CH, Nour AM, et al. IL-13Ralpha2 uses TMEM219 in chitinase 3-like-1-induced signalling and effector responses. Nat Commun. Sep 15 2016;7:12752. doi:10.1038/ncomms12752
65. Shao R, Hamel K, Petersen L, et al. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene. Dec 17 2009;28(50):4456-68. doi:10.1038/onc.2009.292
66. Low D, Subramaniam R, Lin L, et al. Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget. Nov 3 2015;6(34):36535-50. doi:10.18632/oncotarget.5440
67. Recklies AD, White C, Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem J. 2002;365(Pt 1):119 - 126. doi:10.1042/bj20020075 PMID - 12071845
68. Faibish M, Francescone R, Bentley B, Yan W, Shao R. A YKL-40-neutralizing antibody blocks tumor angiogenesis and progression: a potential therapeutic agent in cancers. Mol Cancer Ther. May 2011;10(5):742-51. doi:10.1158/1535-7163.MCT-10-0868
69. Francescone RA, Scully S, Faibish M, et al. Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J Biol Chem. Apr 29 2011;286(17):15332-43. doi:10.1074/jbc.M110.212514
70. Pouyafar A, Heydarabad MZ, Mahboob S, Mokhtarzadeh A, Rahbarghazi R. Angiogenic potential of YKL-40 in the dynamics of tumor niche. Biomed Pharmacother. Apr 2018;100:478-485. doi:10.1016/j.biopha.2018.02.050
71. Shao R. YKL-40 acts as an angiogenic factor to promote tumor angiogenesis. Front Physiol. 2013;4:122. doi:10.3389/fphys.2013.00122 PMID - 23755018
72. Zhao T, Su Z, Li Y, Zhang X, You Q. Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct Target Ther. Sep 14 2020;5(1):201. doi:10.1038/s41392-020-00303-7
73. Kim DH, Park HJ, Lim S, et al. Regulation of chitinase-3-like-1 in T cell elicits Th1 and cytotoxic responses to inhibit lung metastasis. Nat Commun. Feb 5 2018;9(1):503. doi:10.1038/s41467-017-02731-6
74. Su CW, Chen MK, Hung WC, Yang SF, Chuang CY, Lin CW. Functional variant of CHI3L1 gene is associated with neck metastasis in oral cancer. Clin Oral Investig. Jun 2019;23(6):2685-2694. doi:10.1007/s00784-018-2683-8
75. Yu JE, Yeo IJ, Son DJ, Yun J, Han SB, Hong JT. Anti‐Chi3L1 antibody suppresses lung tumor growth and metastasis through inhibition of M2 polarization. Mol Oncol. 2022;16(11):2214-2234. doi:10.1002/1878-0261.13152 PMID - 34861103
76. Lee YS, Yu JE, Kim KC, et al. A small molecule targeting CHI3L1 inhibits lung metastasis by blocking IL-13Ralpha2-mediated JNK-AP-1 signals. Mol Oncol. Jan 2022;16(2):508-526. doi:10.1002/1878-0261.13138
77. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. Aug 2017;17(8):457-474. doi:10.1038/nrc.2017.51
78. Zhang W, Kawanishi M, Miyake K, et al. Association between YKL-40 and adult primary astrocytoma. Cancer. Jun 1 2010;116(11):2688-97. doi:10.1002/cncr.25084
79. Lee CG, Hartl D, Lee GR, et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Exp Med. May 11 2009;206(5):1149-66. doi:10.1084/jem.20081271
80. Ku BM, Lee YK, Ryu J, et al. CHI3L1 (YKL-40) is expressed in human gliomas and regulates the invasion, growth and survival of glioma cells. Int J Cancer. Mar 15 2011;128(6):1316-26. doi:10.1002/ijc.25466
81. Kawada M, Seno H, Kanda K, et al. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene. Jun 28 2012;31(26):3111-23. doi:10.1038/onc.2011.498
82. Saidi A, Javerzat S, Bellahcene A, et al. Experimental anti-angiogenesis causes upregulation of genes associated with poor survival in glioblastoma. Int J Cancer. May 15 2008;122(10):2187-98. doi:10.1002/ijc.23313
83. Jefri M, Huang YN, Huang WC, Tai CS, Chen WL. YKL-40 regulated epithelial-mesenchymal transition and migration/invasion enhancement in non-small cell lung cancer. Bmc Cancer. Aug 15 2015;15(1):590. doi:10.1186/s12885-015-1592-3
84. Iwata T, Kuwajima M, Sukeno A, et al. YKL-40 secreted from adipose tissue inhibits degradation of type I collagen. Biochem Biophys Res Commun. Oct 23 2009;388(3):511-6. doi:10.1016/j.bbrc.2009.08.024
85. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. Jan 7 2000;100(1):57-70. doi:10.1016/s0092-8674(00)81683-9
86. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. Mar 4 2011;144(5):646-74. doi:10.1016/j.cell.2011.02.013
87. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. Jan 2022;12(1):31-46. doi:10.1158/2159-8290.CD-21-1059
88. Yu JE, Yeo IJ, Han SB, et al. Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp Mol Med. Feb 2024;56(1):1-18. doi:10.1038/s12276-023-01131-9
89. Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev. Feb 2006;15(2):194-202. doi:10.1158/1055-9965.EPI-05-0011
90. Jensen BV, Johansen JS, Price PA. High levels of serum HER-2/neu and YKL-40 independently reflect aggressiveness of metastatic breast cancer. Clin Cancer Res. Oct 1 2003;9(12):4423-34.
91. Johansen JS, Christensen IJ, Riisbro R, et al. High serum YKL-40 levels in patients with primary breast cancer is related to short recurrence free survival. Breast Cancer Res Treat. Jul 2003;80(1):15-21. doi:10.1023/A:1024431000710
92. Hogdall EV, Ringsholt M, Hogdall CK, et al. YKL-40 tissue expression and plasma levels in patients with ovarian cancer. Bmc Cancer. Jan 9 2009;9(1):8. doi:10.1186/1471-2407-9-8
93. Zhu CB, Chen LL, Tian JJ, et al. Elevated serum YKL-40 level predicts poor prognosis in hepatocellular carcinoma after surgery. Ann Surg Oncol. Mar 2012;19(3):817-25. doi:10.1245/s10434-011-2026-3
94. Chen IM, Johansen AZ, Dehlendorff C, et al. Prognostic Value of Combined Detection of Serum IL6, YKL-40, and C-reactive Protein in Patients with Unresectable Pancreatic Cancer. Cancer Epidemiol Biomarkers Prev. Jan 2020;29(1):176-184. doi:10.1158/1055-9965.EPI-19-0672
95. Hermunen K, Soveri LM, Boisen MK, et al. Postoperative serum CA19-9, YKL-40, CRP and IL-6 in combination with CEA as prognostic markers for recurrence and survival in colorectal cancer. Acta Oncol. Dec 2020;59(12):1416-1423. doi:10.1080/0284186X.2020.1800086
96. Tschirdewahn S, Reis H, Niedworok C, et al. Prognostic effect of serum and tissue YKL-40 levels in bladder cancer. Urol Oncol. Jul 2014;32(5):663-9. doi:10.1016/j.urolonc.2014.02.004
97. Lee Y-E, Chan T-C, Tian Y-F, et al. High expression of Chitinase 3-like-1 is an unfavorable prognostic factor in urothelial carcinoma of upper urinary tract and urinary bladder. Urol Oncol. May 2019;37(5):299.e7 - 299.e18. doi:10.1016/j.urolonc.2019.01.001 PMID - 30660494
98. Bi J, Lau SH, Lv ZL, et al. Overexpression of YKL-40 is an independent prognostic marker in gastric cancer. Hum Pathol. Dec 2009;40(12):1790-7. doi:10.1016/j.humpath.2009.07.005
99. Dorp Fv, Tschirdewahn S, Niedworok C, et al. Circulating and Tissue Expression Levels of YKL-40 in Renal Cell Cancer. J Urology. 2016;195(4):1120-1125. doi:10.1016/j.juro.2015.09.084 PMID - 26454102
100. Roslind A, Knoop AS, Jensen MB, et al. YKL-40 protein expression is not a prognostic marker in patients with primary breast cancer. Breast Cancer Res Treat. Nov 2008;112(2):275-85. doi:10.1007/s10549-007-9870-7
101. Oh IH, Pyo JS, Son BK. Prognostic Impact of YKL-40 Immunohistochemical Expression in Patients with Colorectal Cancer. Curr Oncol. Aug 19 2021;28(4):3139-3149. doi:10.3390/curroncol28040274
102. Jatczak-Pawlik I, Ewiak-Paszynska A, Domowicz M, Jurewicz A, Stasiolek M. Intracellular Accumulation and Secretion of YKL-40 (CHI3L1) in the Course of DMSO-Induced HL-60 Cell Differentiation. Pharmaceuticals (Basel). Mar 29 2024;17(4):443. doi:10.3390/ph17040443
103. Hottinger AF, Iwamoto FM, Karimi S, et al. YKL-40 and MMP-9 as serum markers for patients with primary central nervous system lymphoma. Ann Neurol. Jul 2011;70(1):163-9. doi:10.1002/ana.22360
104. El-Galaly TC, Bilgrau AE, Gaarsdal E, et al. Circulating tumor necrosis factor-alpha and YKL-40 level is associated with remission status following salvage therapy in relapsed non-Hodgkin lymphoma. Leuk Lymphoma. 2015;56(8):2476-8. doi:10.3109/10428194.2014.1001984
105. Biggar RJ, Johansen JS, Smedby KE, et al. Serum YKL-40 and interleukin 6 levels in Hodgkin lymphoma. Clin Cancer Res. Nov 1 2008;14(21):6974-8. doi:10.1158/1078-0432.CCR-08-1026
106. Bergmann OJ, Johansen JS, Klausen TW, et al. High serum concentration of YKL-40 is associated with short survival in patients with acute myeloid leukemia. Clin Cancer Res. Dec 15 2005;11(24 Pt 1):8644-52. doi:10.1158/1078-0432.CCR-05-1317
107. Cheng KC, Lee JJ, Wang SL, et al. Elevated plasma YKL-40 level is found in the dogs with cancer and is related to poor prognosis. J Vet Sci. Sep 2019;20(5):e53. doi:10.4142/jvs.2019.20.e53
108. Huang WH, Liao AT, Chu PY, Zhai SH, Yen IF, Liu CH. A 3-year surveillance on causes of death or reasons for euthanasia of domesticated dogs in Taiwan. Prev Vet Med. Nov 1 2017;147:1-10. doi:10.1016/j.prevetmed.2017.08.015
109. Bronden LB, Nielsen SS, Toft N, Kristensen AT. Data from the Danish veterinary cancer registry on the occurrence and distribution of neoplasms in dogs in Denmark. Vet Rec. May 8 2010;166(19):586-90. doi:10.1136/vr.b4808
110. Merlo DF, Rossi L, Pellegrino C, et al. Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy. J Vet Intern Med. Jul-Aug 2008;22(4):976-84. doi:10.1111/j.1939-1676.2008.0133.x
111. Gruntzig K, Graf R, Hassig M, et al. The Swiss Canine Cancer Registry: a retrospective study on the occurrence of tumours in dogs in Switzerland from 1955 to 2008. J Comp Pathol. Feb-Apr 2015;152(2-3):161-71. doi:10.1016/j.jcpa.2015.02.005
112. Baioni E, Scanziani E, Vincenti MC, et al. Estimating canine cancer incidence: findings from a population-based tumour registry in northwestern Italy. BMC Vet Res. Jun 28 2017;13(1):203. doi:10.1186/s12917-017-1126-0
113. Dobson JM, Samuel S, Milstein H, Rogers K, Wood JL. Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs. J Small Anim Pract. Jun 2002;43(6):240-6. doi:10.1111/j.1748-5827.2002.tb00066.x
114. Mizuno T. Spontaneously occurring canine cancer as a relevant animal model for developing novel treatments for human cancers. Translational and regulatory sciences. 2021 2021;3(2):51-59. doi:10.33611/trs.2021-007
115. Gillard M, Cadieu E, De Brito C, et al. Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas. Pigment Cell Melanoma Res. Jan 2014;27(1):90-102. doi:10.1111/pcmr.12170
116. Knapp DW, Ramos-Vara JA, Moore GE, Dhawan D, Bonney PL, Young KE. Urinary bladder cancer in dogs, a naturally occurring model for cancer biology and drug development. ILAR J. 2014/01/01/ 2014;55(1):100-18. doi:10.1093/ilar/ilu018
117. Tonomura N, Elvers I, Thomas R, et al. Genome-wide association study identifies shared risk loci common to two malignancies in golden retrievers. PLoS Genet. Feb 2015;11(2):e1004922. doi:10.1371/journal.pgen.1004922
118. Pittaway C, Schofield I, Dobson J, O'Neill DG, Brodbelt DC. Incidence and risk factors for the diagnosis of lymphoma in dogs in UK primary-care practice. J Small Anim Pract. Oct 2019;60(10):581-588. doi:10.1111/jsap.13054
119. Shoop SJ, Marlow S, Church DB, et al. Prevalence and risk factors for mast cell tumours in dogs in England. Canine Genet Epidemiol. 2015/01/26/ 2015;2(1):1. doi:10.1186/2052-6687-2-1
120. Vail DM, Thamm DH, Liptak JM. 33 - Hematopoietic Tumors. In: Vail DM, Thamm DH, Liptak JM, eds. Withrow and MacEwen's Small Animal Clinical Oncology (Sixth Edition). Sixth Edition ed. W.B. Saunders; 2019:688-772.
121. Edwards DS, Henley WE, Harding EF, Dobson JM, Wood JL. Breed incidence of lymphoma in a UK population of insured dogs. Vet Comp Oncol. Dec 2003;1(4):200-6. doi:10.1111/j.1476-5810.2003.00025.x
122. Purzycka K, Peters LM, Desmas I, Davies O, Chang YM, Lara-Garcia A. Clinicopathological characteristics and prognostic factors for canine multicentric non-indolent T-cell lymphoma: 107 cases. Vet Comp Oncol. Dec 2020;18(4):656-663. doi:10.1111/vco.12589
123. Elvers I, Turner-Maier J, Swofford R, et al. Exome sequencing of lymphomas from three dog breeds reveals somatic mutation patterns reflecting genetic background. Genome Res. Nov 2015;25(11):1634-45. doi:10.1101/gr.194449.115
124. Ernst T, Kessler M, Lautscham E, Willimzig L, Neiger R. [Multicentric lymphoma in 411 dogs - an epidemiological study]. Tierarztl Prax Ausg K Kleintiere Heimtiere. Aug 17 2016;44(4):245-51. Das multizentrische Lymphom bei 411 Hunden - eine epidemiologische Studie. doi:10.15654/TPK-150338
125. Thalheim L, Williams LE, Borst LB, Fogle JE, Suter SE. Lymphoma immunophenotype of dogs determined by immunohistochemistry, flow cytometry, and polymerase chain reaction for antigen receptor rearrangements. J Vet Intern Med. Nov-Dec 2013;27(6):1509-16. doi:10.1111/jvim.12185
126. Ku CK, Kass PH, Christopher MM. Cytologic-histologic concordance in the diagnosis of neoplasia in canine and feline lymph nodes: a retrospective study of 367 cases. Vet Comp Oncol. Dec 2017;15(4):1206-1217. doi:10.1111/vco.12256
127. Seelig DM, Avery AC, Ehrhart EJ, Linden MA. The Comparative Diagnostic Features of Canine and Human Lymphoma. Vet Sci. Jun 2016;3(2):11. doi:10.3390/vetsci3020011
128. Harris LJ, Hughes KL, Ehrhart EJ, Labadie JD, Yoshimoto J, Avery AC. Canine CD4+ T-cell lymphoma identified by flow cytometry exhibits a consistent histomorphology and gene expression profile. Vet Comp Oncol. Sep 2019;17(3):253-264. doi:10.1111/vco.12460
129. Harris LJ, Rout ED, Labadie JD, et al. Clinical features of canine nodal T-cell lymphomas classified as CD8+ or CD4-CD8- by flow cytometry. Vet Comp Oncol. Sep 2020;18(3):416-427. doi:10.1111/vco.12568
130. Ehrhart EJ, Wong S, Richter K, et al. Polymerase chain reaction for antigen receptor rearrangement: Benchmarking performance of a lymphoid clonality assay in diverse canine sample types. J Vet Intern Med. May 2019;33(3):1392-1402. doi:10.1111/jvim.15485
131. Waugh EM, Gallagher A, Haining H, et al. Optimisation and validation of a PCR for antigen receptor rearrangement (PARR) assay to detect clonality in canine lymphoid malignancies. Vet Immunol Immunopathol. Dec 2016;182:115-124. doi:10.1016/j.vetimm.2016.10.008
132. Burnett RC, Vernau W, Modiano JF, Olver CS, Moore PF, Avery AC. Diagnosis of canine lymphoid neoplasia using clonal rearrangements of antigen receptor genes. Vet Pathol. Jan 2003;40(1):32-41. doi:10.1354/vp.40-1-32
133. Heinrich DA, Avery AC, Henson MS, et al. Cytology and the cell block method in diagnostic characterization of canine lymphadenopathy and in the immunophenotyping of nodal lymphoma. Vet Comp Oncol. Sep 2019;17(3):365-375. doi:10.1111/vco.12484
134. Valli VE, Kass PH, San Myint M, Scott F. Canine lymphomas: association of classification type, disease stage, tumor subtype, mitotic rate, and treatment with survival. Vet Pathol. Sep 2013;50(5):738-48. doi:10.1177/0300985813478210
135. Valli VE, San Myint M, Barthel A, et al. Classification of canine malignant lymphomas according to the World Health Organization criteria. Vet Pathol. Jan 2011;48(1):198-211. doi:10.1177/0300985810379428
136. Vezzali E, Parodi AL, Marcato PS, Bettini G. Histopathologic classification of 171 cases of canine and feline non-Hodgkin lymphoma according to the WHO. Vet Comp Oncol. Mar 2010;8(1):38-49. doi:10.1111/j.1476-5829.2009.00201.x
137. Owen LN, World Health Organization. Veterinary Public Health U, Oncology WHOCCfC. TNM Classification of Tumours in Domestic Animals/ edited by L.N. Owen. Geneva: World Health Organization; 1980.
138. Barber LG, Weishaar KM. Criteria for designation of clinical substage in canine lymphoma: a survey of veterinary oncologists. Vet Comp Oncol. Aug 2016;14 Suppl 1(S1):32-9. doi:10.1111/vco.12086
139. Jagielski D, Lechowski R, Hoffmann-Jagielska M, Winiarczyk S. A retrospective study of the incidence and prognostic factors of multicentric lymphoma in dogs (1998-2000). J Vet Med A Physiol Pathol Clin Med. Oct 2002;49(8):419-24. doi:10.1046/j.1439-0442.2002.00458.x
140. Siewert JM, Gustafson DL, Weishaar KM, Galloway AM, Thamm DH. Individualized chemotherapy drug dose escalation in dogs with multicentric lymphoma. J Vet Intern Med. Nov-Dec 2023;37(6):2402-2409. doi:10.1111/jvim.16875
141. Zaidi B, Mukhopadhyay A, Ramos-Vara JA, Dhawan D, Ruple A, Childress MO. Serum thymidine kinase 1 activity as a prognostic biomarker in dogs with chemotherapy-treated diffuse large B-cell lymphoma. Vet Comp Oncol. Jun 2023;21(2):200-207. doi:10.1111/vco.12876
142. Davies O, Szladovits B, Polton G, Garden OA, Leo C, Lara-Garcia A. Prognostic significance of clinical presentation, induction and rescue treatment in 42 cases of canine centroblastic diffuse large B-cell multicentric lymphoma in the United Kingdom. Vet Comp Oncol. Jun 2018;16(2):276-287. doi:10.1111/vco.12378
143. Benjamin SE, Sorenmo KU, Krick EL, et al. Response-based modification of CHOP chemotherapy for canine B-cell lymphoma. Vet Comp Oncol. Sep 2021;19(3):541-550. doi:10.1111/vco.12693
144. Blaxill J, Buzzacott P, Finlay J. Prognostic indicators for naive canine non-indolent T-cell lymphoma treated with combination lomustine, vincristine, procarbazine and prednisolone chemotherapy. Vet Comp Oncol. Mar 2022;20(1):215-226. doi:10.1111/vco.12768
145. Elliott J, Baines S. A Retrospective Study of Multi-agent Chemotherapy including either Cyclophosphamide or Lomustine as Initial Therapy for Canine High-grade T-cell Lymphoma (2011-2017). Aust Vet J. Sep 2019;97(9):308-315. doi:10.1111/avj.12847
146. Morgan E, O'Connell K, Thomson M, Griffin A. Canine T cell lymphoma treated with lomustine, vincristine, procarbazine, and prednisolone chemotherapy in 35 dogs. Vet Comp Oncol. Dec 2018;16(4):622-629. doi:10.1111/vco.12430
147. Brown PM, Tzannes S, Nguyen S, White J, Langova V. LOPP chemotherapy as a first-line treatment for dogs with T-cell lymphoma. Vet Comp Oncol. Mar 2018;16(1):108-113. doi:10.1111/vco.12318
148. Tanis JB, Mason SL, Maddox TW, et al. Evaluation of a multi-agent chemotherapy protocol combining lomustine, procarbazine and prednisolone (LPP) for the treatment of relapsed canine non-Hodgkin high-grade lymphomas. Vet Comp Oncol. Sep 2018;16(3):361-369. doi:10.1111/vco.12387
149. Saba CF, Vickery KR, Clifford CA, et al. Rabacfosadine for relapsed canine B-cell lymphoma: Efficacy and adverse event profiles of 2 different doses. Vet Comp Oncol. Mar 2018;16(1):E76-E82. doi:10.1111/vco.12337
150. Teske E, van Heerde P, Rutteman GR, Kurzman ID, Moore PF, MacEwen EG. Prognostic factors for treatment of malignant lymphoma in dogs. J Am Vet Med Assoc. Dec 15 1994;205(12):1722-8.
151. Kiupel M, Teske E, Bostock D. Prognostic factors for treated canine malignant lymphoma. Vet Pathol. Jul 1999;36(4):292-300. doi:10.1354/vp.36-4-292
152. Romano FR, Heinze CR, Barber LG, Mason JB, Freeman LM. Association between Body Condition Score and Cancer Prognosis in Dogs with Lymphoma and Osteosarcoma. J Vet Intern Med. Jul 2016;30(4):1179-86. doi:10.1111/jvim.13965
153. Miller AG, Morley PS, Rao S, Avery AC, Lana SE, Olver CS. Anemia Is Associated with Decreased Survival Time in Dogs with Lymphoma. Journal of Veterinary Internal Medicine. 2009;23(1):116-122. doi:10.1111/j.1939-1676.2008.0210.x
154. Sierra Matiz OR, Santilli J, Anai LA, et al. Prognostic significance of Ki67 and its correlation with mitotic index in dogs with diffuse large B-cell lymphoma treated with 19-week CHOP-based protocol. J VET Diagn Invest. Mar 2018;30(2):263-267. doi:10.1177/1040638717743280
155. von Euler H, Einarsson R, Olsson U, Lagerstedt AS, Eriksson S. Serum thymidine kinase activity in dogs with malignant lymphoma: a potent marker for prognosis and monitoring the disease. J Vet Intern Med. Sep-Oct 2004;18(5):696-702. doi:10.1892/0891-6640(2004)18<696:stkaid>2.0.co;2
156. Selting KA, Ringold R, Husbands B, Pithua PO. Thymidine Kinase Type 1 and C-Reactive Protein Concentrations in Dogs with Spontaneously Occurring Cancer. J Vet Intern Med. Jul 2016;30(4):1159-66. doi:10.1111/jvim.13954
157. Saellstrom S, Sharif H, Jagarlamudi KK, Ronnberg H, Wang L, Eriksson S. Serum TK1 protein and C-reactive protein correlate to treatment response and predict survival in dogs with hematologic malignancies. Res Vet Sci. Jul 2022;145:213-221. doi:10.1016/j.rvsc.2022.02.019
158. Sharif H, Saellstrom S, Kolli B, et al. A monoclonal antibody-based sandwich ELISA for measuring canine Thymidine kinase 1 protein and its role as biomarker in canine lymphoma. Front Vet Sci. 2023;10:1243853. doi:10.3389/fvets.2023.1243853
159. Nielsen L, Toft N, Eckersall PD, Mellor DJ, Morris JS. Serum C-reactive protein concentration as an indicator of remission status in dogs with multicentric lymphoma. J Vet Intern Med. Nov-Dec 2007;21(6):1231-6. doi:10.1892/07-058.1
160. Merlo A, Rezende BC, Franchini ML, Simoes DM, Lucas SR. Serum C-reactive protein concentrations in dogs with multicentric lymphoma undergoing chemotherapy. J Am Vet Med Assoc. Feb 15 2007;230(4):522-6. doi:10.2460/javma.230.4.522
161. Manachai N, Umnuayyonvaree D, Punyathi P, Rungsipipat A, Rattanapinyopituk K. Impact of serum C-reactive protein level as a biomarker of cancer dissemination in canine lymphoid neoplasia. Vet World. Dec 2022;15(12):2810-2815. doi:10.14202/vetworld.2022.2810-2815
162. Calvalido J, Wood GA, Mutsaers AJ, Wood D, Sears W, Woods JP. Comparison of serum cytokine levels between dogs with multicentric lymphoma and healthy dogs. Vet Immunol Immunopathol. Dec 2016;182:106-114. doi:10.1016/j.vetimm.2016.10.009
163. Mischke R, Waterston M, Eckersall PD. Changes in C-reactive protein and haptoglobin in dogs with lymphatic neoplasia. Vet J. Jul 2007;174(1):188-92. doi:10.1016/j.tvjl.2006.05.018
164. Alexandrakis I, Tuli R, Ractliffe SC, et al. Utility of a multiple serum biomarker test to monitor remission status and relapse in dogs with lymphoma undergoing treatment with chemotherapy. Vet Comp Oncol. Mar 2017;15(1):6-17. doi:10.1111/vco.12123
165. Perry JA, Thamm DH, Eickhoff J, Avery AC, Dow SW. Increased monocyte chemotactic protein-1 concentration and monocyte count independently associate with a poor prognosis in dogs with lymphoma. Vet Comp Oncol. Mar 2011;9(1):55-64. doi:10.1111/j.1476-5829.2010.00235.x
166. Aresu L, Arico A, Comazzi S, et al. VEGF and MMP-9: biomarkers for canine lymphoma. Vet Comp Oncol. Mar 2014;12(1):29-36. doi:10.1111/j.1476-5829.2012.00328.x
167. Elliott JW, Cripps P, Blackwood L. Thymidine kinase assay in canine lymphoma. Vet Comp Oncol. Mar 2013;11(1):1-13. doi:10.1111/j.1476-5829.2011.00296.x
168. Marconato L, Crispino G, Finotello R, Mazzotti S, Zini E. Clinical relevance of serial determinations of lactate dehydrogenase activity used to predict recurrence in dogs with lymphoma. J Am Vet Med Assoc. May 1 2010;236(9):969-74. doi:10.2460/javma.236.9.969
169. Lin TY, Rush LJ, London CA. Generation and characterization of bone marrow-derived cultured canine mast cells. Vet Immunol Immunopathol. Sep 15 2006;113(1-2):37-52. doi:10.1016/j.vetimm.2006.03.024
170. Takahashi T, Kadosawa T, Nagase M, et al. Visceral mast cell tumors in dogs: 10 cases (1982-1997). J Am Vet Med Assoc. Jan 15 2000;216(2):222-6. doi:10.2460/javma.2000.216.222
171. White CR, Hohenhaus AE, Kelsey J, Procter-Gray E. Cutaneous MCTs: associations with spay/neuter status, breed, body size, and phylogenetic cluster. J Am Anim Hosp Assoc. May-Jun 2011;47(3):210-6. doi:10.5326/JAAHA-MS-5621
172. Kiupel M, Camus M. Diagnosis and Prognosis of Canine Cutaneous Mast Cell Tumors. Vet Clin North Am Small Anim Pract. Sep 2019;49(5):819-836. doi:10.1016/j.cvsm.2019.04.002
173. de Nardi AB, Dos Santos Horta R, Fonseca-Alves CE, et al. Diagnosis, Prognosis and Treatment of Canine Cutaneous and Subcutaneous Mast Cell Tumors. Cells. Feb 10 2022;11(4):618. doi:10.3390/cells11040618
174. Patnaik AK, Ehler WJ, MacEwen EG. Canine cutaneous mast cell tumor: morphologic grading and survival time in 83 dogs. Vet Pathol. Sep 1984;21(5):469-74. doi:10.1177/030098588402100503
175. Kiupel M, Webster JD, Bailey KL, et al. Proposal of a 2-tier histologic grading system for canine cutaneous mast cell tumors to more accurately predict biological behavior. Vet Pathol. Jan 2011;48(1):147-55. doi:10.1177/0300985810386469
176. London CA, Thamm DH. 21 - Mast Cell Tumors. In: Vail DM, Thamm DH, Liptak JM, eds. Withrow and MacEwen's Small Animal Clinical Oncology (Sixth Edition). W.B. Saunders; 2019:382-403.
177. Pryer NK, Lee LB, Zadovaskaya R, et al. Proof of target for SU11654: inhibition of KIT phosphorylation in canine mast cell tumors. Clin Cancer Res. Nov 15 2003;9(15):5729-34.
178. Horta RS, Lavalle GE, Monteiro LN, Souza MCC, Cassali GD, Araujo RB. Assessment of Canine Mast Cell Tumor Mortality Risk Based on Clinical, Histologic, Immunohistochemical, and Molecular Features. Vet Pathol. Mar 2018;55(2):212-223. doi:10.1177/0300985817747325
179. Ozaki K, Yamagami T, Nomura K, Narama I. Prognostic significance of surgical margin, Ki-67 and cyclin D1 protein expression in grade II canine cutaneous mast cell tumor. J Vet Med Sci. Nov 2007;69(11):1117-21. doi:10.1292/jvms.69.1117
180. Abadie JJ, Amardeilh MA, Delverdier ME. Immunohistochemical detection of proliferating cell nuclear antigen and Ki-67 in mast cell tumors from dogs. J Am Vet Med Assoc. Dec 1 1999;215(11):1629-34.
181. Vascellari M, Giantin M, Capello K, et al. Expression of Ki67, BCL-2, and COX-2 in canine cutaneous mast cell tumors: association with grading and prognosis. Vet Pathol. Jan 2013;50(1):110-21. doi:10.1177/0300985812447829
182. Berlato D, Murphy S, Monti P, et al. Comparison of mitotic index and Ki67 index in the prognostication of canine cutaneous mast cell tumours. Vet Comp Oncol. Jun 2015;13(2):143-50. doi:10.1111/vco.12029
183. Maglennon GA, Murphy S, Adams V, et al. Association of Ki67 index with prognosis for intermediate-grade canine cutaneous mast cell tumours. Vet Comp Oncol. Dec 2008;6(4):268-74. doi:10.1111/j.1476-5829.2008.00168.x
184. Scase TJ, Edwards D, Miller J, et al. Canine mast cell tumors: correlation of apoptosis and proliferation markers with prognosis. J Vet Intern Med. Jan-Feb 2006;20(1):151-8. doi:10.1892/0891-6640(2006)20[151:cmctco]2.0.co;2
185. Webster JD, Yuzbasiyan-Gurkan V, Miller RA, Kaneene JB, Kiupel M. Cellular proliferation in canine cutaneous mast cell tumors: associations with c-KIT and its role in prognostication. Vet Pathol. May 2007;44(3):298-308. doi:10.1354/vp.44-3-298
186. Bostock DE, Crocker J, Harris K, Smith P. Nucleolar organiser regions as indicators of post-surgical prognosis in canine spontaneous mast cell tumours. Br J Cancer. Jun 1989;59(6):915-8. doi:10.1038/bjc.1989.193
187. Zemke D, Yamini B, Yuzbasiyan-Gurkan V. Mutations in the juxtamembrane domain of c-KIT are associated with higher grade mast cell tumors in dogs. Vet Pathol. Sep 2002;39(5):529-35. doi:10.1354/vp.39-5-529
188. Webster JD, Yuzbasiyan-Gurkan V, Kaneene JB, Miller R, Resau JH, Kiupel M. The role of c-KIT in tumorigenesis: evaluation in canine cutaneous mast cell tumors. Neoplasia. Feb 2006;8(2):104-11. doi:10.1593/neo.05622
189. Takeuchi Y, Fujino Y, Watanabe M, et al. Validation of the prognostic value of histopathological grading or c-kit mutation in canine cutaneous mast cell tumours: a retrospective cohort study. Vet J. Jun 2013;196(3):492-8. doi:10.1016/j.tvjl.2012.11.018
190. Kiupel M, Webster JD, Kaneene JB, Miller R, Yuzbasiyan-Gurkan V. The Use of KIT and Tryptase Expression Patterns as Prognostic Tools for Canine Cutaneous Mast Cell Tumors. Vet Pathology Online. 2004;41(4):371-377. doi:10.1354/vp.41-4-371 PMID - 15232137
191. Preziosi R, Morini M, Sarli G. Expression of the KIT protein (CD117) in primary cutaneous mast cell tumors of the dog. J VET Diagn Invest. Nov 2004;16(6):554-61. doi:10.1177/104063870401600610
192. Halsey CHC, Thamm DH, Weishaar KM, et al. Expression of Phosphorylated KIT in Canine Mast Cell Tumor. Vet Pathol. May 2017;54(3):387-394. doi:10.1177/0300985816688943
193. Cruz VS, Borges JCA, Nepomuceno LL, et al. Histological classification and expression of markers of canine mast cell tumors. Vet World. Aug 2020;13(8):1627-1634. doi:10.14202/vetworld.2020.1627-1634
194. Weishaar KM, Ehrhart EJ, Avery AC, et al. c-Kit Mutation and Localization Status as Response Predictors in Mast Cell Tumors in Dogs Treated with Prednisone and Toceranib or Vinblastine. J Vet Intern Med. Jan 2018;32(1):394-405. doi:10.1111/jvim.14889
195. Thamm DH, Weishaar KM, Charles JB, Ehrhart EJ, 3rd. Phosphorylated KIT as a predictor of outcome in canine mast cell tumours treated with toceranib phosphate or vinblastine. Vet Comp Oncol. Jun 2020;18(2):169-175. doi:10.1111/vco.12525
196. De Biase D, De Leo M, Piegari G, et al. Investigation of the Theragnostic Role of KIT Expression for the Treatment of Canine Mast Cell Tumors with Tyrosine Kinase Inhibitors. Vet Sci. Oct 10 2024;11(10):492. doi:10.3390/vetsci11100492
197. Giantin M, Aresu L, Benali S, et al. Expression of matrix metalloproteinases, tissue inhibitors of metalloproteinases and vascular endothelial growth factor in canine mast cell tumours. J Comp Pathol. Nov 2012;147(4):419-29. doi:10.1016/j.jcpa.2012.01.011
198. Melo SR, Januario EV, Zanuto E, et al. Immunohistochemical Expression of Vascular Endothelial Growth Factor as a Prognostic Marker for Canine Mast Cell Tumors. Top Companion Anim Med. Mar 2021;42:100506. doi:10.1016/j.tcam.2020.100506
199. Gregorio H, Raposo T, Queiroga FL, Pires I, Pena L, Prada J. High COX-2 expression in canine mast cell tumours is associated with proliferation, angiogenesis and decreased overall survival. Vet Comp Oncol. Dec 2017;15(4):1382-1392. doi:10.1111/vco.12280
200. Prada J, Queiroga FL, Gregorio H, Pires I. Evaluation of cyclooxygenase-2 expression in canine mast cell tumours. J Comp Pathol. Jul 2012;147(1):31-6. doi:10.1016/j.jcpa.2011.09.007
201. Knight BJ, Wood GA, Foster RA, Coomber BL. Beclin-1 is a novel predictive biomarker for canine cutaneous and subcutaneous mast cell tumors. Vet Pathol. Jan 2022;59(1):46-56. doi:10.1177/03009858211042578
202. Jaffe MH, Hosgood G, Taylor HW, et al. Immunohistochemical and clinical evaluation of p53 in canine cutaneous mast cell tumors. Vet Pathol. Jan 2000;37(1):40-6. doi:10.1354/vp.37-1-40
203. Zamarian V, Ferrari R, Stefanello D, et al. miRNA profiles of canine cutaneous mast cell tumours with early nodal metastasis and evaluation as potential biomarkers. Sci Rep. Nov 3 2020;10(1):18918. doi:10.1038/s41598-020-75877-x
204. Zamarian V, Stefanello D, Ferrari R, et al. Salivary miR-21 is a potential biomarker for canine mast cell tumors. Vet Pathol. Jan 2023;60(1):47-51. doi:10.1177/03009858221128922
205. Freytag JO, Queiroz MR, Govoni VM, et al. Prognostic value of immunohistochemical markers in canine cutaneous mast cell tumours: A systematic review and meta-analysis. Vet Comp Oncol. Sep 2021;19(3):529-540. doi:10.1111/vco.12692
206. Bara I, Ozier A, Girodet PO, et al. Role of YKL-40 in bronchial smooth muscle remodeling in asthma. Am J Respir Crit Care Med. Apr 1 2012;185(7):715-22. doi:10.1164/rccm.201105-0915OC
207. Specht E, Kaemmerer D, Sanger J, Wirtz RM, Schulz S, Lupp A. Comparison of immunoreactive score, HER2/neu score and H score for the immunohistochemical evaluation of somatostatin receptors in bronchopulmonary neuroendocrine neoplasms. Histopathology. Sep 2015;67(3):368-77. doi:10.1111/his.12662
208. Roslind A, Balslev E, Kruse H, Staergaard B, Horn T. Subcellular localization of YKL-40 in normal and malignant epithelial cells of the breast. Ultrastruct Pathol. May-Jun 2008;32(3):101-6. doi:10.1080/01913120801937673
209. Johansen JS, Stoltenberg M, Hansen M, et al. Serum YKL-40 concentrations in patients with rheumatoid arthritis: relation to disease activity. Rheumatology (Oxford). Jul 1999;38(7):618-26. doi:10.1093/rheumatology/38.7.618
210. Linde KJ, Stockdale SL, Mison MB, Perry JA. The effect of prednisone on histologic and gross characteristics in canine mast cell tumors. Can Vet J. Jan 2021;62(1):45-50.
211. Preziosi R, Sarli G, Paltrinieri M. Prognostic value of intratumoral vessel density in cutaneous mast cell tumors of the dog. J Comp Pathol. Feb-Apr 2004;130(2-3):143-51. doi:10.1016/j.jcpa.2003.10.003
212. Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagn Pathol. Nov 29 2014;9(1):221. doi:10.1186/s13000-014-0221-9
213. Xie R, Chung JY, Ylaya K, et al. Factors influencing the degradation of archival formalin-fixed paraffin-embedded tissue sections. J Histochem Cytochem. Apr 2011;59(4):356-65. doi:10.1369/0022155411398488
214. Rehli M, Niller HH, Ammon C, et al. Transcriptional regulation of CHI3L1, a marker gene for late stages of macrophage differentiation. J Biol Chem. Nov 7 2003;278(45):44058-67. doi:10.1074/jbc.M306792200
215. Vail DM, Michels GM, Khanna C, Selting KA, London CA, Veterinary Cooperative Oncology G. Response evaluation criteria for peripheral nodal lymphoma in dogs (v1.0)--a Veterinary Cooperative Oncology Group (VCOG) consensus document. Vet Comp Oncol. Mar 2010;8(1):28-37. doi:10.1111/j.1476-5829.2009.00200.x
216. Videmark AN, Christensen IJ, Feltoft CL, et al. Combined plasma C-reactive protein, interleukin 6 and YKL-40 for detection of cancer and prognosis in patients with serious nonspecific symptoms and signs of cancer. Cancer Med-us. Mar 2023;12(6):6675-6688. doi:10.1002/cam4.5455
217. Yeo IJ, Lee CK, Han SB, Yun J, Hong JT. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol Ther. Nov 2019;203:107394. doi:10.1016/j.pharmthera.2019.107394
218. Kzhyshkowska J, Yin S, Liu T, Riabov V, Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem. Mar 2016;397(3):231-47. doi:10.1515/hsz-2015-0269
219. Huang WS, Lin HY, Yeh CB, et al. Correlation of Chitinase 3-Like 1 Single Nucleotide Polymorphisms with Hepatocellular Carcinoma in Taiwan. Int J Med Sci. 2017 2017;14(2):136-142. doi:10.7150/ijms.17754
220. Makii R, Cook H, Louke D, et al. Characterization of WWOX expression and function in canine mast cell tumors and malignant mast cell lines. BMC Vet Res. Oct 31 2020;16(1):415. doi:10.1186/s12917-020-02638-3
221. Blaxill JE, Bennett PF. Evaluation of clinical response and prognostic factors in canine multicentric lymphoma treated with first rescue therapy. Vet Comp Oncol. Jun 2024;22(2):265-277. doi:10.1111/vco.12974
222. Kim TH, Song WJ, Ryu MO, Kim HT, Nam A, Youn HY. Clinical Outcome of Multicentric Lymphoma Treated with Cyclophosphamide, Doxorubicin, Vincristine, and Prednisolone (CHOP) in Small Breed Dogs. Animals (Basel). Oct 17 2024;14(20)doi:10.3390/ani14202994
223. Cizkova K, Foltynkova T, Gachechiladze M, Tauber Z. Comparative Analysis of Immunohistochemical Staining Intensity Determined by Light Microscopy, ImageJ and QuPath in Placental Hofbauer Cells. Acta Histochem Cytochem. Feb 25 2021;54(1):21-29. doi:10.1267/ahc.20-00032
224. Terato K, Do C, Chang J, Waritani T. Preventing further misuse of the ELISA technique and misinterpretation of serological antibody assay data. Vaccine. Sep 7 2016;34(39):4643-4644. doi:10.1016/j.vaccine.2016.08.007
225. Burton JH, Garrett-Mayer E, Thamm DH. Evaluation of a 15-week CHOP protocol for the treatment of canine multicentric lymphoma. Vet Comp Oncol. Dec 2013;11(4):306-15. doi:10.1111/j.1476-5829.2012.00324.x
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96881-
dc.description.abstract生物標記的開發是一個從發現、驗證到臨床應用的複雜過程。根據美國食品藥物管理局與國家衛生院生物標記工作小組的定義,生物標記是可用於評估生理過程、疾病狀態或治療反應的指標物。其中,預後生物標記與監測生物標記在臨床腫瘤治療策略中扮演重要角色,探索新的生物標記具有重要意義。YKL-40是一種分泌型醣蛋白,在人類癌症中參與腫瘤細胞增殖、轉移及血管新生。研究顯示,YKL-40的高表現量與較高的臨床分期及不良預後相關。在獸醫學領域,罹患癌症的犬血中YKL-40水平也有升高的現象,但其作為生物標記的潛力尚未被深入探討。由於犬類血液腫瘤的生物標記研究仍在進發展階段,開發新的生物標記具有迫切需求。本研究目的為探討YKL-40在犬造血腫瘤疾病中的生物標記潛力,分析YKL-40的表現量與腫瘤的臨床特徵、病理特徵、治療與生存時間的相關性。
在組織表現量的研究中,我們以皮膚型肥大細胞瘤作為目標,收集40例罹患皮膚型肥大細胞瘤犬的組織,包含20例低病理分級與20例高病理分級的樣本,透過免疫反應性評分進行YKL-40的半定量分析。結果顯示,低分級MCT組織的YKL-40表現顯著高於高分級腫瘤(p < .01)。而YKL-40表現水平與腫瘤直徑、分裂指數及血管密度呈負相關。在患犬生存分析中,YKL-40弱表現的犬(n = 15)中位生存時間為219天,而中等表現(n = 19)及強表現(n = 6)的犬中位生存時間顯著較長(p < .01)。此外,在低分級患犬組別中,YKL-40弱表現與較差的預後相關,而中至強表現則與較長的生存時間相關(p < .01)。
在血液表現量的研究中,我們以多中心淋巴瘤為目標,收集來自30隻犬的血液檢體,分析時間點包含治療前、治療過程中、治療後與疾病復發時的樣本,並使用酶聯免疫吸附測定定量血清YKL-40的濃度。結果顯示,治療前多中心淋巴瘤犬血清的YKL-40水平(394.0 pg/mL, n = 30)顯著高於健康犬對照組(218.6 pg/mL, n = 11; p = 0.012),其中臨床分期第五期的犬YKL-40水平最高(p = 0.027)。治療完成後,YKL-40水平顯著下降(p = 0.030),然而治療過程中,YKL-40的變化與治療反應未呈顯著相關性。在患犬生存分析中,治療前YKL-40水平與無疾病進展生存期(p = 0.830)及總生存期(p = 0.267)之間無顯著相關性。
總結來說,YKL-40在不同犬腫瘤類型中的表現量的意義具有差異性。在皮膚型肥大細胞瘤中,中等至強YKL-40表現與良好預後相關,而弱表現則與較差的預後相關,顯示YKL-40具有作為肥大細胞瘤患犬的預後生物標記的潛力。在犬多中心淋巴瘤中,血清YKL-40水平可能與疾病嚴重程度相關,並隨著疾病進展而變化,然而,其作為預後與監控生物標記的角色仍需進一步驗證。未來需要進行大樣本數的前瞻性研究,以確認YKL-40在犬造血腫瘤中作為生物標記的臨床應用價值,這些資訊將有助於提升犬臨床腫瘤學中的治療決策。
zh_TW
dc.description.abstractThe development of biomarkers is a complex process involving biomarker discovery, validation, and clinical application. According to the FDA-NIH Biomarker Working Group, biomarkers serve as indicators of physiological processes, disease states, or treatment responses. Prognostic and monitoring biomarkers play crucial roles in clinical oncology, emphasizing the importance of exploring novel biomarkers. YKL-40, a secretory glycoprotein, is involved in tumor cell proliferation, metastasis, and angiogenesis in human cancers. Studies have demonstrated that elevated YKL-40 expression is associated with advanced clinical stages and poor prognosis. In veterinary medicine, elevated blood YKL-40 levels have been observed in dogs with cancers; however, its potential as a biomarker remains underexplored. As the development of biomarkers for canine hematopoietic tumors is still in the early stages, identifying novel biomarkers is critically important. This study aims to investigate the potential of YKL-40 as a biomarker for canine hematopoietic tumors by evaluating its association with clinical characteristics, pathological features, treatment response, and survival.
For tissue expression analysis, cutaneous mast cell tumors (MCTs) were studied. Tissue samples from 40 dogs, including 20 low-grade and 20 high-grade cMCTs, were collected, and YKL-40 expression was semi-quantified using the immunoreactivity score. The results showed that YKL-40 expression was significantly higher in low-grade tumors than in high-grade tumors (p < .01). YKL-40 expression levels were inversely correlated with tumor diameter, mitotic count, and vessel density. Survival analysis demonstrated that dogs with mild YKL-40 expression (n = 15) had a median survival time (MST) of 219 days, whereas those with moderate (n = 19) or strong expression (n = 6) exhibited significantly longer MSTs (p < .01). In low-grade cMCTs, mild YKL-40 expression was associated with poorer prognosis (MST: 319 days), while moderate to strong expression was correlated with longer survival time (p < .01).
For blood level analysis, serum samples were collected from 30 dogs with multicentric lymphoma at different time points, including pre-treatment, during-treatment, post-treatment, and disease relapse. Serum YKL-40 levels were measured using an enzyme-linked immunosorbent assay. Pre-treatment serum YKL-40 levels in dogs with lymphoma (394.0 pg/mL, n = 30) were significantly higher than in those in healthy controls (218.6 pg/mL, n = 11; p = 0.012), with the highest levels observed in dogs at clinical stage V (p = 0.027). Post-treatment YKL-40 levels significantly decreased (p = 0.030). However, the change in YKL-40 levels during treatment was not significantly associated with treatment responses. Survival analysis revealed no significant association between pre-treatment YKL-40 levels and progression-free survival (PFS, p = 0.830) or overall survival (OS, p = 0.267).
In conclusion, the significance of YKL-40 expression could vary across canine tumor types. In cMCTs, moderate to strong YKL-40 expression could be associated with a favorable prognosis, while mild expression could be correlated with poorer outcomes, supporting its potential as a prognostic biomarker. In canine multicentric lymphoma, serum YKL-40 levels may be correlated with disease severity and could change as the disease progresses. However, its role as a prognostic and monitoring biomarker requires further validation. Future prospective studies with larger sample sizes are necessary to confirm the clinical utility of YKL-40 as a biomarker in canine hematopoietic tumors. This information could aid decision-making in canine clinical oncology.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:23:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:23:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract v
Table of Contents viii
List of Figures xiii
List of Tables xv
Chapter 1 Literature Review 1
1.1 Cancer Biomarker 1
1.1.1 The definitions and types of biomarkers 1
1.1.2 Development of cancer biomarker 5
1.2 YKL-40, Chitinase 3-like protein 1 7
1.2.1 The features of YKL-40 in cancer 7
1.2.2 The biological processes of YKL-40 in cancer disease 10
1.2.3 YKL-40 as a potential biomarker in cancers 14
1.2.4 YKL-40 in human hematologic cancers 16
1.2.5 YKL-40 in canine cancers 17
1.3 Canine Hematopoietic Tumors 19
1.4 Canine Multicentric Lymphoma 20
1.4.1 The clinical and pathological features of canine lymphoma 20
1.4.2 The features of canine multicentric lymphoma 23
1.4.3 Treatments and prognosis of canine multicentric lymphoma 24
1.4.4 Current biomarkers for canine multicentric lymphoma 26
1.5 Canine Mast Cell Tumor 28
1.5.1 The clinical and pathological features of canine mast cell tumor 28
1.5.2 Treatment and prognosis of canine cutaneous mast cell tumor 29
1.5.3 Current biomarkers for canine cutaneous mast cell Tumor 30
1.6 Study Purposes 33
Chapter 2 Prognostic Significance of YKL-40 Expression in Canine Cutaneous Mast Cell Tumors 35
2.1 Abstract 36
2.2 Introduction 38
2.3 Materials and Methods 40
2.3.1 Case selection 40
2.3.2 Western blot 41
2.3.3 Immunohistochemical staining 42
2.3.4 YKL-40 expression analysis 43
2.3.5 Clinical outcomes 43
2.3.6 Statistical analysis 44
2.4 Results 45
2.4.1 Identification of antibody specificity 45
2.4.2 Characteristics of the included cases 48
2.4.3 YKL-40 expression levels in low- and high-grade canine cMCTs 52
2.4.4 The correlation between YKL-40 expression levels and prognostic indicators of canine cMCTs 55
2.4.5 The correlation between survival time and tumor grading of canine cMCTs 58
2.4.6 The correlation between survival time and YKL-40 expression levels of canine cMCTs 61
2.4.7 The correlation among survival time, tumor grading, and YKL-40 expression levels of canine cMCTs 61
2.5 Discussion 65
2.6 Conclusion 70
2.7 List of abbreviations 70
Chapter 3 Evaluation of Serum YKL-40 in Canine Multicentric Lymphoma: Clinical and Diagnostic Implications 72
3.1 Abstract 73
3.2 Introduction 74
3.3 Materials and Methods 76
3.3.1 Patients 76
3.3.2 Treatment, outcome, and data collection 78
3.3.3 Canine YKL-40 immunoassays 80
3.3.4 Statistical analysis 81
3.4 Results 82
3.4.1 Patients 82
3.4.2 Survival analysis and treatment outcomes in dogs with multicentric lymphoma 85
3.4.3 Elevated serum YKL-40 in dogs with multicentric lymphoma is not correlated with survival 89
3.4.4 In the longitudinal study, serum YKL-40 showed reduction after chemotherapy but did not clearly predict treatment outcomes in multicentric lymphoma 96
3.4.5 Univariate analysis revealed potential prognostic factors in canine lymphoma, but multivariate analysis showed limited predictive significance 100
3.5 Discussion 101
3.6 Conclusions 107
Chapter 4 Discussion and Future Prospectives 116
4.1 Discussion 116
4.2 Future Prospectives 121
References 123
-
dc.language.isoen-
dc.subject預後生物標記zh_TW
dc.subjectYKL-40zh_TW
dc.subject犬皮膚型肥大細胞瘤zh_TW
dc.subject監測生物標記zh_TW
dc.subject犬多中心淋巴瘤zh_TW
dc.subjectcanine multicentric lymphomaen
dc.subjectprognostic biomarkeren
dc.subjectmonitoring biomarkeren
dc.subjectYKL-40en
dc.subjectcanine cutaneous mast cell tumoren
dc.titleYKL-40蛋白在犬隻造血系腫瘤中作為預後生物標記的角色zh_TW
dc.titleRole of YKL-40 as the Prognostic Biomarker in Canine Hematopoietic Tumorsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.coadvisor李繼忠zh_TW
dc.contributor.coadvisorJih-Jong Leeen
dc.contributor.oralexamcommittee王汎熒;林辰栖;王尚麟;詹昆衛zh_TW
dc.contributor.oralexamcommitteeFun-In Wang;Chen-Si Lin;Shang-Lin Wang;Kun-Wei Chanen
dc.subject.keywordYKL-40,犬皮膚型肥大細胞瘤,犬多中心淋巴瘤,預後生物標記,監測生物標記,zh_TW
dc.subject.keywordYKL-40,canine cutaneous mast cell tumor,canine multicentric lymphoma,prognostic biomarker,monitoring biomarker,en
dc.relation.page143-
dc.identifier.doi10.6342/NTU202500042-
dc.rights.note未授權-
dc.date.accepted2025-01-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-liftN/A-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
6.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved