Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96871
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫zh_TW
dc.contributor.advisorCHANG-FU WUen
dc.contributor.author賴冠霖zh_TW
dc.contributor.authorGuan-Lin Laien
dc.date.accessioned2025-02-24T16:20:43Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2025-
dc.date.submitted2025-02-11-
dc.identifier.citationAcharya, S. R., Mohanty, S., & Palai, A. K. (2024). Flame retardant rigid polyurethane foam derived from biobased polyols and water as Co-blowing agent: Synergistic effect of expanded graphite and boron nitride. Materials Today Communications, 41, 110278. https://doi.org/https://doi.org/10.1016/j.mtcomm.2024.110278
Al-Naiema, I. M., Offenberg, J. H., Madler, C. J., Lewandowski, M., Kettler, J., Fang, T., & Stone, E. A. (2020). Secondary Organic Aerosols from Aromatic Hydrocarbons and their Contribution to Fine Particulate Matter in Atlanta, Georgia. Atmos Environ (1994), 223. https://doi.org/10.1016/j.atmosenv.2019.117227
Albinet, A., Lanzafame, G. M., Srivastava, D., Bonnaire, N., Nalin, F., & Wise, S. A. (2019a). Analysis and determination of secondary organic aerosol (SOA) tracers (markers) in particulate matter standard reference material (SRM 1649b, urban dust). Anal Bioanal Chem, 411(23), 5975-5983. https://doi.org/10.1007/s00216-019-02015-6
Albinet, A., Lanzafame, G. M., Srivastava, D., Bonnaire, N., Nalin, F., & Wise, S. A. (2019b). Analysis and determination of secondary organic aerosol (SOA) tracers (markers) in particulate matter standard reference material (SRM 1649b, urban dust) [Article]. Analytical and Bioanalytical Chemistry, 411(23), 5975-5983. https://doi.org/10.1007/s00216-019-02015-6
An, J., Zhu, B., Wang, H., Li, Y., Lin, X., & Yang, H. (2014). Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmospheric Environment, 97, 206-214. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.08.021
Ashbaugh, L. L., Malm, W. C., & Sadeh, W. Z. (1985). A residence time probability analysis of sulfur concentrations at grand Canyon National Park. Atmospheric Environment (1967), 19(8), 1263-1270. https://doi.org/https://doi.org/10.1016/0004-6981(85)90256-2
Atkinson, R., & Arey, J. (2003). Atmospheric degradation of volatile organic compounds. CHEMICAL REVIEWS, 103(12), 4605-4638. https://doi.org/10.1021/cr0206420
Brown, S. G., Eberly, S., Paatero, P., & Norris, G. A. (2015). Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of The Total Environment, 518-519, 626-635. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.01.022
Cao, J., Situ, S., Hao, Y., Xie, S., & Li, L. (2022). Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China. Atmospheric Chemistry and Physics, 22(4), 2351-2364. https://doi.org/10.5194/acp-22-2351-2022
Chen, Z. W., Ting, Y. C., Huang, C. H., & Ciou, Z. J. (2023). Sources-oriented contributions to ozone and secondary organic aerosol formation potential based on initial VOCs in an urban area of Eastern Asia. Science of The Total Environment, 892, 164392. https://doi.org/10.1016/j.scitotenv.2023.164392
Dumanoglu, Y., Kara, M., Altiok, H., Odabasi, M., Elbir, T., & Bayram, A. (2014). Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmospheric Environment, 98, 168-178. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.08.048
Edney, E. O., Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Wang, W., & Claeys, M. (2005). Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmospheric Environment, 39(29), 5281-5289. https://doi.org/10.1016/j.atmosenv.2005.05.031
Fang, H., Luo, S., Huang, X., Fu, X., Xiao, S., Zeng, J., Wang, J., Zhang, Y., & Wang, X. (2021). Ambient naphthalene and methylnaphthalenes observed at an urban site in the Pearl River Delta region: Sources and contributions to secondary organic aerosol. Atmospheric Environment, 252, 118295. https://doi.org/https://doi.org/10.1016/j.atmosenv.2021.118295
Gao, J., Zhang, J., Li, H., Li, L., Xu, L., Zhang, Y., Wang, Z., Wang, X., Zhang, W., Chen, Y., Cheng, X., Zhang, H., Peng, L., Chai, F., & Wei, Y. (2018). Comparative study of volatile organic compounds in ambient air using observed mixing ratios and initial mixing ratios taking chemical loss into account – A case study in a typical urban area in Beijing. Science of The Total Environment, 628-629, 791-804. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.01.175
Gu, Y., Liu, B., Dai, Q., Zhang, Y., Zhou, M., Feng, Y., & Hopke, P. K. (2022). Multiply improved positive matrix factorization for source apportionment of volatile organic compounds during the COVID-19 shutdown in Tianjin, China. Environment International, 158, 106979. https://doi.org/https://doi.org/10.1016/j.envint.2021.106979
Gu, Y., Liu, B., Li, Y., Zhang, Y., Bi, X., Wu, J., Song, C., Dai, Q., Han, Y., Ren, G., & Feng, Y. (2020). Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data. Environmental Pollution, 265, 115023. https://doi.org/https://doi.org/10.1016/j.envpol.2020.115023
Gu, Y., Liu, B., Meng, H., Song, S., Dai, Q., Shi, L., Feng, Y., & Hopke, P. K. (2023). Source apportionment of consumed volatile organic compounds in the atmosphere. Journal of Hazardous Materials, 459, 132138. https://doi.org/10.1016/j.jhazmat.2023.132138
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471-1492. https://doi.org/10.5194/gmd-5-1471-2012
Guo, H., Zou, S. C., Tsai, W. Y., Chan, L. Y., & Blake, D. R. (2011). Emission characteristics of nonmethane hydrocarbons from private cars and taxis at different driving speeds in Hong Kong. Atmospheric Environment, 45(16), 2711-2721. https://doi.org/https://doi.org/10.1016/j.atmosenv.2011.02.053
He, Z., Wang, X., Ling, Z., Zhao, J., Guo, H., Shao, M., & Wang, Z. (2019). Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmospheric Chemistry and Physics, 19, 8801-8816. https://doi.org/10.5194/acp-19-8801-2019
Hopke, P. K. (2016). Review of receptor modeling methods for source apportionment. Journal of the Air & Waste Management Association, 66(3), 237-259. https://doi.org/10.1080/10962247.2016.1140693
Huang, Y. S., & Hsieh, C. C. (2019). Ambient volatile organic compound presence in the highly urbanized city: source apportionment and emission position. Atmospheric Environment, 206, 45-59. https://doi.org/10.1016/j.atmosenv.2019.02.046
Huang, Y. S., & Hsieh, C. C. (2020). VOC characteristics and sources at nine photochemical assessment monitoring stations in western Taiwan. Atmospheric Environment, 240. https://doi.org/10.1016/j.atmosenv.2020.117741
Ion, A. C., Vermeylen, R., Kourtchev, I., Cafmeyer, J., Chi, X., Gelencsér, A., Maenhaut, W., & Claeys, M. (2005). Polar organic compounds in rural PM<sub>2.5</sub> aerosols from K-puszta, Hungary, during a 2003 summer field campaign:: Sources and diel variations. Atmospheric Chemistry and Physics, 5, 1805-1814. https://doi.org/10.5194/acp-5-1805-2005
Kim, E., & Hopke, P. K. (2008). Source characterization of ambient fine particles at multiple sites in the Seattle area. Atmospheric Environment, 42(24), 6047-6056. https://doi.org/10.1016/j.atmosenv.2008.03.032
Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Lewis, C. W., Bhave, P. V., & Edney, E. O. (2007). Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmospheric Environment, 41(37), 8288-8300. https://doi.org/10.1016/j.atmosenv.2007.06.045
Kong, L., Zhou, L., Chen, D., Luo, L., Xiao, K., Chen, Y., Liu, H., Tan, Q., & Yang, F. (2023). Atmospheric oxidation capacity and secondary pollutant formation potentials based on photochemical loss of VOCs in a megacity of the Sichuan Basin, China. Science of The Total Environment, 901, 166259. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.166259
Kuo, C.-P., Liao, H.-T., Chou, C. C. K., & Wu, C.-F. (2014). Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. Science of The Total Environment, 472, 880-887. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.11.114
Lai, C.-H., Chang, C.-C., Wang, C.-H., Shao, M., Zhang, Y., & Wang, J.-L. (2009). Emissions of liquefied petroleum gas (LPG) from motor vehicles. Atmospheric Environment, 43(7), 1456-1463. https://doi.org/https://doi.org/10.1016/j.atmosenv.2008.11.045
Lee, E., Chan, C. K., & Paatero, P. (1999). Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment, 33(19), 3201-3212. https://doi.org/https://doi.org/10.1016/S1352-2310(99)00113-2
Li, R. M., Yan, Y. L., Wang, C., Xu, Y., Li, Y. H., & Peng, L. (2021). Source apportionment of VOCs and its contribution to O3 production during summertime in urban area of Taiyuan. Zhongguo Huanjing Kexue/China Environmental Science, 41, 2515-2525.
Liao, H.-T., Chuang, M.-T., Tsai, P.-W., Chou, C. C. K., & Wu, C.-F. (2021). Enhanced Receptor Modeling Using Expanded Equations with Parametric Variables for Secondary Components of PM2.5. Aerosol and Air Quality Research, 21(3), 200549. https://doi.org/10.4209/aaqr.200549
Liao, H. T., Kuo, C. P., Hopke, P. K., & Wu, C. F. (2013). Evaluation of a Modified Receptor Model for Solving Multiple Time Resolution Equations: A Simulation Study [Article]. Aerosol and Air Quality Research, 13(4), 1253-U1377. https://doi.org/10.4209/aaqr.2012.11.0322
Liu, B., Gu, Y., Wu, Y., Dai, Q., Song, S., Feng, Y., & Hopke, P. K. (2024). Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources. Atmospheric Chemistry and Physics, 24(22), 12861-12879. https://doi.org/10.5194/acp-24-12861-2024
Liu, B., Yang, T., Kang, S., Wang, F., Zhang, H., Xu, M., Wang, W., Bai, J., Song, S., Dai, Q., Feng, Y., & Hopke, P. K. (2025). Changes in factor profiles deriving from photochemical losses of volatile organic compounds: Insight from daytime and nighttime positive matrix factorization analyses.Journal of Environmental Sciences (China), 151, 627-639. https://doi.org/10.1016/j.jes.2024.04.032
Liu, B., Yang, Y., Yang, T., Dai, Q., Zhang, Y., Feng, Y., & Hopke, P. K. (2023). Effect of photochemical losses of ambient volatile organic compounds on their source apportionment. Environmental International, 172, 107766. https://doi.org/10.1016/j.envint.2023.107766
Liu, P. W., Yao, Y. C., Tsai, J. H., Hsu, Y. C., Chang, L. P., & Chang, K. H. (2008). Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Science of The Total Environment, 398(1-3), 154-163. https://doi.org/10.1016/j.scitotenv.2008.02.053
Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., & Tang, D. (2008). Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmospheric Environment, 42(25), 6247-6260. https://doi.org/https://doi.org/10.1016/j.atmosenv.2008.01.070
Lyu, X. P., Chen, N., Guo, H., Zhang, W. H., Wang, N., Wang, Y., & Liu, M. (2016). Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. Science of The Total Environment, 541, 200-209. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.09.093
McKeen, S. A., & Liu, S. C. (1993). HYDROCARBON RATIOS AND PHOTOCHEMICAL HISTORY OF AIR MASSES. GEOPHYSICAL RESEARCH LETTERS, 20(21), 2363-2366. https://doi.org/10.1029/93GL02527
Monod, A., Sive, B. C., Avino, P., Chen, T., Blake, D. R., & Rowland, F. S. (2001). Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmospheric Environment, 35(1), 135-149. https://doi.org/10.1016/S1352-2310(00)00274-0
Nelson, P. F., & Quigley, S. M. (1983). THE META,PARA-XYLENES-ETHYLBENZENE RATIO - A TECHNIQUE FOR ESTIMATING HYDROCARBON AGE IN AMBIENT ATMOSPHERES. Atmospheric Environment, 17(3), 659-662. https://doi.org/10.1016/0004-6981(83)90141-5
Paatero, P., & Tapper, U. (1994). POSITIVE MATRIX FACTORIZATION - A NONNEGATIVE FACTOR MODEL WITH OPTIMAL UTILIZATION OF ERROR-ESTIMATES OF DATA VALUES. Environmetrics, 5(2), 111-126. https://doi.org/10.1002/env.3170050203
Parrish, D. D., Hahn, C. J., Williams, E. J., Norton, R. B., Fehsenfeld, F. C., Singh, H. B., Shetter, J. D., Gandrud, B. W., & Ridley, B. A. (1992). INDICATIONS OF PHOTOCHEMICAL HISTORIES OF PACIFIC AIR MASSES FROM MEASUREMENTS OF ATMOSPHERIC TRACE SPECIES AT POINT ARENA, CALIFORNIA. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 97(D14), 15883-15901. https://doi.org/10.1029/92JD01242
Polissar, A. V., Hopke, P. K., & Poirot, R. L. (2001). Atmospheric Aerosol over Vermont:  Chemical Composition and Sources. Environmental Science & Technology, 35(23), 4604-4621. https://doi.org/10.1021/es0105865
Rhew, R. C., Deventer, M. J., Turnipseed, A. A., Warneke, C., Ortega, J., Shen, S., Martinez, L., Koss, A., Lerner, B. M., Gilman, J. B., Smith, J. N., Guenther, A. B., & de Gouw, J. A. (2017). Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation. Atmospheric Chemistry and Physics, 17(21), 13417-13438. https://doi.org/10.5194/acp-17-13417-2017
Shao, M., Wang, B., Lu, S. H., Yuan, B., & Wang, M. (2011). Effects of Beijing Olympics Control Measures on Reducing Reactive Hydrocarbon Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 45(2), 514-519. https://doi.org/10.1021/es102357t
Siudek, P., & Ruczyńska, W. (2021). Simultaneous Measurements of PM2.5- and PM10-bound Benzo(a)pyrene in a Coastal Urban Atmosphere in Poland: Seasonality of Dry Deposition Fluxes and Influence of Atmospheric Transport. Aerosol and Air Quality Research, 21(10), 210044. https://doi.org/10.4209/aaqr.210044
Sun, J., Yu, X., Ling, Z., Fang, G., Ming, L., Zhao, J., Zou, S., Guan, H., Wang, H., Wang, X., Wang, Z., Gao, Y., Tham, Y. J., Guo, H., & Zhang, Y. (2024). Roles of photochemical consumption of VOCs on regional background O3 concentration and atmospheric reactivity over the pearl river estuary, Southern China. Science of The Total Environment, 928, 172321. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.172321
Tanaka, T., & Samukawa, T. (1996). The source characterization and chemical change of ambient aromatic hydrocarbons. CHEMOSPHERE, 33(1), 131-145. https://doi.org/10.1016/0045-6535(96)00155-5
Uria-Tellaetxe, I., & Carslaw, D. C. (2014). Conditional bivariate probability function for source identification. Environmental Modelling & Software, 59, 1-9. https://doi.org/https://doi.org/10.1016/j.envsoft.2014.05.002
Wang, H., Qiao, Y., Chen, C., Lu, J., Dai, H., Qiao, L., Lou, S., Huang, C., Li, L., Jing, S., & Wu, J. (2014). Source Profiles and Chemical Reactivity of Volatile Organic Compounds from Solvent Use in Shanghai, China. Aerosol and Air Quality Research, 14(1), 301-310. https://doi.org/10.4209/aaqr.2013.03.0064
Wang, H. L., Chen, C. H., Wang, Q., Huang, C., Su, L. Y., Huang, H. Y., Lou, S. R., Zhou, M., Li, L., Qiao, L. P., & Wang, Y. H. (2013). Chemical loss of volatile organic compounds and its impact on the source analysis through a two-year continuous measurement. Atmospheric Environment, 80, 488-498. https://doi.org/10.1016/j.atmosenv.2013.08.040
Wang, P., & Zhao, W. (2008). Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China. Atmospheric Research, 89(3), 289-297. https://doi.org/https://doi.org/10.1016/j.atmosres.2008.03.013
Wu, Y., Liu, B., Meng, H., Dai, Q., Shi, L., Song, S., Feng, Y., & Hopke, P. K. (2023). Changes in source apportioned VOCs during high O(3) periods using initial VOC-concentration-dispersion normalized PMF. Science of The Total Environment, 896, 165182. https://doi.org/10.1016/j.scitotenv.2023.165182
Yuan, B., Shao, M., de Gouw, J., Parrish, D. D., Lu, S., Wang, M., Zeng, L., Zhang, Q., Song, Y., Zhang, J., & Hu, M. (2012). Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis. Journal of Geophysical Research: Atmospheres, 117(D24). https://doi.org/10.1029/2012jd018236
Yuan, B., Shao, M., Lu, S., & Wang, B. (2010). Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmospheric Environment, 44(15), 1919-1926. https://doi.org/https://doi.org/10.1016/j.atmosenv.2010.02.014
Zhang, C., Liu, X., Zhang, Y., Tan, Q., Feng, M., Qu, Y., An, J., Deng, Y., Zhai, R., Wang, Z., Cheng, N., & Zha, S. (2021). Characteristics, source apportionment and chemical conversions of VOCs based on a comprehensive summer observation experiment in Beijing. Atmospheric Pollution Research, 12(3), 230-241. https://doi.org/https://doi.org/10.1016/j.apr.2020.12.010
Zhang, F., Shang, X., Chen, H., Xie, G., Fu, Y., Wu, D., Sun, W., Liu, P., Zhang, C., Mu, Y., Zeng, L., Wan, M., Wang, Y., Xiao, H., Wang, G., & Chen, J. (2020). Significant impact of coal combustion on VOCs emissions in winter in a North China rural site. Science of The Total Environment, 720, 137617. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137617
Zhang, J., Wang, T., Chameides, W. L., Cardelino, C., Blake, D. R., & Streets, D. G. (2008). Source characteristics of volatile organic compounds during high ozone episodes in Hong Kong, Southern China. Atmospheric Chemistry and Physics, 8(16), 4983-4996. https://doi.org/10.5194/acp-8-4983-2008
Zou, Y., Charlesworth, E., Wang, N., Flores, R. M., Liu, Q. Q., Li, F., Deng, T., & Deng, X. J. (2021). Characterization and ozone formation potential (OFP) of non-methane hydrocarbons under the condition of chemical loss in Guangzhou, China. Atmospheric Environment, 262, 118630. https://doi.org/https://doi.org/10.1016/j.atmosenv.2021.118630
周宗毅. (2021). 利用改良版受體模式結合連續監測與手動採樣資料探討台中都市細懸浮微粒春季污染來源 (碩士論文).國立臺灣大學.
黃于珊. (2021). 以 PMF 模式結合源解析方法探討臺灣光化測站 VOCs 來源貢獻及溯源之研究 (博士論文).國立雲林科技大學.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96871-
dc.description.abstract本研究的目的在於探討鄰近特殊工業區的揮發性有機化合物(Volatile Organic Compounds, VOCs)及其光化學損失對污染源解析的影響,以及基於推估初始濃度的結果去探討特定VOC與其衍生的二次有機氣膠(Secondary Organic Aerosols, SOA)的日夜濃度。研究資料的來源有兩種,分別為2023年4月1日至6月30日位於高雄林園特殊工業區光化學評估監測站的VOCs連續監測資料,以及2024年5月11日至6月4日與前者同址的PM2.5中有機特徵成分手動採樣。首先使用正矩陣因子法(Positive Matrix Factorization, PMF)對VOCs的量測濃度與初始濃度進行來源解析,並結合風玫瑰圖及機率密度函數,分析污染源的空間分佈特徵。後續並進一步基於量測濃度的受體模式源解析結果,應用光化學年齡參數方法(Photochemical-age-base parameterization method)估算VOCs的初始濃度,修正揮發性有機物的光化學損失。最後針對PM2.5中的二次有機特徵物種及其VOCs前驅物,進行日夜間變化趨勢分析,探討二次氣膠生成與前驅物的關聯性。
本研究在使用新的光化學年齡參數方法執行架構後,能夠推估出與文獻相似的結果。光化學損失濃度最高物種為異戊二烯(isoprene)和丙烯(propylene),其光化學損失分別為0.91 μg/m3及0.83 μg/m3,佔初始濃度的71%及21%。VOCs量測濃度的PMF源解析結果為5個來源,分別是交通排放與老化氣團、石化業、汽油蒸發及液化石油氣、溶劑使用及生物源及工業來源。而VOCs初始濃度的PMF來源解析結果為7個來源,將量測濃度PMF源解析結果中汽油蒸發及液化石油氣、生物源及工業來源分別獨立出來。本研究發現VOC(異戊二烯及甲苯)與其PM2.5中的衍生物(二甲基赤藻糖醇及2,3-二羥基-4-氧基戊酸)日夜趨勢不一致,可能原因與來源特性、反映條件及稀釋效應有關。
本研究提出結合光化學年齡參數方法與受體模式的新架構,改善光化學損失對VOCs來源辨識的影響,進一步提升模型對VOCs的解析能力,能夠更準確地探討污染來源以改善空氣品質。
zh_TW
dc.description.abstractThis study investigates the volatile organic compounds (VOCs) near a petrochemical industrial park and the impact of their photochemical losses on source apportionment. It further examines diurnal variations in specific VOCs and their derived secondary organic aerosols (SOAs) based on the estimated initial concentrations. Two data sources were employed: continuous VOC monitoring from a photochemical assessment station in the Linyuan industrial area of Kaohsiung from April 1 to June 30, 2023, and manual sampling of organic constituents in PM2.5 from May 11 to June 4, 2024, at the same location. Positive Matrix Factorization (PMF) was applied to both observed and initial VOC concentrations to identify source contributions, complemented by wind rose diagrams and probability density functions to analyze the spatial distribution characteristics of pollution sources. Diurnal variations in PM2.5 tracers and VOC precursors were explored to link secondary aerosol formation with its precursors.
After implementing the new photochemical-age-based parameterization framework, this study was able to estimate results comparable to those reported in the literature. The photochemical losses were most pronounced for isoprene (0.91 μg/m³, 71% of the initial concentration) and propylene (0.83 μg/m³, 21% of the initial concentration). PMF source apportionment of observed VOC concentrations identified five sources: traffic emissions and aged air masses, petrochemical industries, gasoline evaporation and liquefied petroleum gas, solvent usage, and biogenic/industrial sources. In contrast, apportionment of initial VOC concentrations revealed seven sources, separating gasoline evaporation, liquefied petroleum gas, biogenic, and industrial emissions into distinct categories.The study identified discrepancies in diurnal trends between VOCs (such as isoprene and toluene) and their PM2.5-derived secondary products (including dimethyl erythritol and 2,3-dihydroxy-4-oxopentanoic acid), potentially due to source characteristics, reaction conditions, and dilution effects.
By integrating the photochemical-age-based parameterization method with receptor models, this research improves the identification of VOC sources and enhances model resolution, providing a more accurate basis for air quality management.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:20:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:20:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
第一章 緒論 1
1.1研究背景 1
1.2研究動機 3
1.3研究目的 4
第二章 研究方法 5
2.1 研究地點 5
2.2 研究資料 5
2.2.1光化學前驅物評估測站 5
2.2.2有機特徵物種 6
2.3 受體模式 7
2.3.1受體模式原理及假設 7
2.3.2正矩陣因子法 8
2.3.3污染源數量 9
2.4初始揮發性有機氣體 10
2.5機率密度函數 11
第三章 結果與討論 13
3.1 描述性統計 13
3.1.1氣象資訊 13
3.1.2 揮發性有機氣體 14
3.1.3 PM2.5中的二次有機特徵物種 15
3.2 揮發性有機氣體(量測濃度)污染源辨識 15
3.2.1 模式前處理 15
3.2.2 污染源因子數 15
3.2.3 污染源指紋解析 16
3.2.4 污染源貢獻 18
3.3 揮發性有機氣體(初始濃度)污染源辨識 18
3.3.1 推估初始揮發性有機氣體濃度 18
3.3.2 模式前處理 21
3.3.3 污染源因子數 21
3.3.4 污染源指紋解析 21
3.3.5 污染源貢獻 24
3.3.6 與量測濃度源解析之比較 24
3.4 PM2.5中的有機特徵物種與前驅物之日夜趨勢 25
3.4.1前驅物日夜趨勢 25
3.4.2特徵物種前驅物的日夜趨勢(初始濃度源解析) 26
3.4.3探討二次有機特徵物種與前驅物日夜趨勢 27
第四章 結論與建議 28
4.1 結論 28
4.2 研究限制與建議 29
參考文獻 58
附錄 70
-
dc.language.isozh_TW-
dc.subject揮發性有機物zh_TW
dc.subject光化學年齡參數方法zh_TW
dc.subject空氣污染zh_TW
dc.subject源解析zh_TW
dc.subject正矩陣因子法zh_TW
dc.subject有機特徵物種zh_TW
dc.subjectPhotochemical-age-base parameterization methoden
dc.subjectair pollutionen
dc.subjectsource apportionmenten
dc.subjectPositive Matrix Factorizationen
dc.subjectorganic tracersen
dc.subjectvolatile organic compoundsen
dc.title以揮發性有機化合物及其光化學損失探討鄰近特殊工業區污染源:受體模式及PM2.5有機特徵物種zh_TW
dc.titleExploring Air Pollution Sources Near a Petrochemical Industrial Park through Measurements of Volatile Organic Compounds and Photochemical Loss: Receptor Model and PM2.5 Organic Tracersen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊禮豪;陳家揚zh_TW
dc.contributor.oralexamcommitteeLi-Hao Young;CHIA-YANG CHENen
dc.subject.keyword空氣污染,源解析,正矩陣因子法,有機特徵物種,揮發性有機物,光化學年齡參數方法,zh_TW
dc.subject.keywordair pollution,source apportionment,Positive Matrix Factorization,organic tracers,volatile organic compounds,Photochemical-age-base parameterization method,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202500601-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-11-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-lift2030-02-10-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
3.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved