請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96870完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊孝友 | zh_TW |
| dc.contributor.advisor | Hsiao-Yu Yang | en |
| dc.contributor.author | 陳信傑 | zh_TW |
| dc.contributor.author | Shin-Chieh Chen | en |
| dc.date.accessioned | 2025-02-24T16:20:28Z | - |
| dc.date.available | 2025-02-25 | - |
| dc.date.copyright | 2025-02-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-10 | - |
| dc.identifier.citation | 1. IPCC. Summary for Policymakers. In: Intergovernmental Panel on Climate C, ed. Global Warming of 15°C. Cambridge University Press; 2022:1-24:chap Spm.
2. Hoegh-Guldberg O, Jacob D, Taylor M, et al. The human imperative of stabilizing global climate change at 1.5 degrees C. Science. Sep 20 2019;365(6459):1263-+. eaaw6974. doi:10.1126/science.aaw6974 3. Abbass K, Qasim MZ, Song H, Murshed M, Mahmood H, Younis I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res Int. Jun 2022;29(28):42539-42559. doi:10.1007/s11356-022-19718-6 4. Stoddard I, Anderson K, Capstick S, et al. Three Decades of Climate Mitigation: Why Haven't We Bent the Global Emissions Curve? Annual Review of Environment and Resources. 2021;46(1):653-689. doi:10.1146/annurev-environ-012220-011104 5. Shiu C-J, Liu SC, Chen J-P. Diurnally Asymmetric Trends of Temperature, Humidity, and Precipitation in Taiwan. Journal of Climate. 01 Nov. 2009 2009;22(21):5635-5649. doi:10.1175/2009jcli2514.1 6. WHO. Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. In: Organization WH, ed. 2014:128. 7. Yang HY, Lee JKW, Chio CP. Extreme temperature increases the risk of stillbirth in the third trimester of pregnancy. Sci Rep. Nov 2 2022;12(1):18474. doi:10.1038/s41598-022-23155-3 8. Chang JC, Yang HY. Epidemiology of chronic kidney disease of undetermined aetiology in Taiwanese farmers: a cross-sectional study from Changhua Community-based Integrated Screening programme. Occup Environ Med. Dec 2021;78(12):849-858. doi:10.1136/oemed-2021-107369 9. Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology. Mar 2009;20(2):205-13. doi:10.1097/EDE.0b013e318190ee08 10. Cong X, Xu X, Zhang Y, Wang Q, Xu L, Huo X. Temperature drop and the risk of asthma: a systematic review and meta-analysis. Environ Sci Pollut Res Int. Oct 2017;24(28):22535-22546. doi:10.1007/s11356-017-9914-4 11. Analitis A, Katsouyanni K, Biggeri A, et al. Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol. Dec 15 2008;168(12):1397-408. doi:10.1093/aje/kwn266 12. D'Amato M, Molino A, Calabrese G, Cecchi L, Annesi-Maesano I, D'Amato G. The impact of cold on the respiratory tract and its consequences to respiratory health. Clin Transl Allergy. 2018/05/30 2018;8(1):20. doi:10.1186/s13601-018-0208-9 13. Sangkharat K, Mahmood MA, Thornes JE, Fisher PA, Pope FD. Impact of extreme temperatures on ambulance dispatches in London, UK. Environ Res. Mar 2020;182:109100. 109100. doi:10.1016/j.envres.2019.109100 14. Anderson GB, Dominici F, Wang Y, McCormack MC, Bell ML, Peng RD. Heat-related emergency hospitalizations for respiratory diseases in the Medicare population. Am J Respir Crit Care Med. May 15 2013;187(10):1098-103. doi:10.1164/rccm.201211-1969OC 15. Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. Jul 25 2015;386(9991):369-75. doi:10.1016/S0140-6736(14)62114-0 16. Fang J, Song J, Wu R, et al. Association between ambient temperature and childhood respiratory hospital visits in Beijing, China: a time-series study (2013-2017). Environ Sci Pollut Res Int. Jun 2021;28(23):29445-29454. doi:10.1007/s11356-021-12817-w 17. Han A, Deng S, Yu J, Zhang Y, Jalaludin B, Huang C. Asthma triggered by extreme temperatures: From epidemiological evidence to biological plausibility. Environ Res. Jan 1 2023;216(Pt 2):114489. 114489. doi:10.1016/j.envres.2022.114489 18. Regnard J. Cold and the airways. Int J Sports Med. Oct 1992;13 Suppl 1:S182-4. doi:10.1055/s-2007-1024633 19. Matran R. Neural control of lower airway vasculature. Involvement of classical transmitters and neuropeptides. Acta Physiol Scand Suppl. 1991;601:1-54. 20. Fealey RD. Interoception and autonomic nervous system reflexes thermoregulation. Handbook of clinical neurology. 2013;117:79-88. doi:10.1016/B978-0-444-53491-0.00007-9 21. Kenny GP, Jay O. Thermometry, calorimetry, and mean body temperature during heat stress. Comprehensive Physiology. Oct 2013;3(4):1689-719. doi:10.1002/cphy.c130011 22. Ebi KL, Capon A, Berry P, et al. Hot weather and heat extremes: health risks. Lancet. Aug 21 2021;398(10301):698-708. doi:10.1016/S0140-6736(21)01208-3 23. Zanobetti A, O'Neill MS, Gronlund CJ, Schwartz JD. Summer temperature variability and long-term survival among elderly people with chronic disease. Proceedings of the National Academy of Sciences of the United States of America. Apr 24 2012;109(17):6608-13. doi:10.1073/pnas.1113070109 24. White MD. Components and mechanisms of thermal hyperpnea. Journal of applied physiology (Bethesda, Md : 1985). Aug 2006;101(2):655-63. doi:10.1152/japplphysiol.00210.2006 25. Bunker A, Wildenhain J, Vandenbergh A, et al. Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta-analysis of Epidemiological Evidence. EBioMedicine. Apr 2016;6:258-268. doi:10.1016/j.ebiom.2016.02.034 26. Orru H, Ebi KL, Forsberg B. The Interplay of Climate Change and Air Pollution on Health. Curr Environ Health Rep. Dec 2017;4(4):504-513. doi:10.1007/s40572-017-0168-6 27. Lin YK, Wang YC, Lin PL, Li MH, Ho TJ. Relationships between cold-temperature indices and all causes and cardiopulmonary morbidity and mortality in a subtropical island. Sci Total Environ. Sep 1 2013;461-462:627-35. doi:10.1016/j.scitotenv.2013.05.030 28. Keswani A, Akselrod H, Anenberg SC. Health and Clinical Impacts of Air Pollution and Linkages with Climate Change. NEJM Evid. Jul 2022;1(7):EVIDra2200068. doi:10.1056/EVIDra2200068 29. Hwang SL, Guo SE, Chi MC, et al. Association between Atmospheric Fine Particulate Matter and Hospital Admissions for Chronic Obstructive Pulmonary Disease in Southwestern Taiwan: A Population-Based Study. Int J Environ Res Public Health. Mar 25 2016;13(4):366. doi:10.3390/ijerph13040366 30. Chen CC, Chen PS, Yang CY. Relationship between fine particulate air pollution exposure and human adult life expectancy in Taiwan. J Toxicol Environ Health A. 2019;82(14):826-832. doi:10.1080/15287394.2019.1658386 31. Neumann JE, Anenberg SC, Weinberger KR, et al. Estimates of Present and Future Asthma Emergency Department Visits Associated With Exposure to Oak, Birch, and Grass Pollen in the United States. Geohealth. JAN 2019;3(1):11-27. doi:10.1029/2018GH000153 32. Ziska LH, Makra L, Harry SK, et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis. Lancet Planet Health. Mar 2019;3(3):e124-e131. doi:10.1016/S2542-5196(19)30015-4 33. Hashimoto M, Fukuda T, Shimizu T, et al. Influence of climate factors on emergency visits for childhood asthma attack. Pediatrics international : official journal of the Japan Pediatric Society. Feb 2004;46(1):48-52. doi:10.1111/j.1442-200X.2004.01835.x 34. Taberna A, Filatova T, Roy D, Noll B. Tracing resilience, social dynamics and behavioral change: a review of agent-based flood risk models. Socio-Environmental Systems Modelling. 12/08 2020;2:17938. doi:10.18174/sesmo.2020a17938 35. Spielman SE, Tuccillo J, Folch DC, et al. Evaluating social vulnerability indicators: criteria and their application to the Social Vulnerability Index. Natural Hazards. 2020;100(1):417-436. doi:10.1007/s11069-019-03820-z 36. Araos M, Berrang-Ford L, Ford JD, Austin SE, Biesbroek R, Lesnikowski A. Climate change adaptation planning in large cities: A systematic global assessment. Environmental Science & Policy. 07/01 2016;66:375-382. doi:10.1016/j.envsci.2016.06.009 37. Hanna EG, Tait PW. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming. Int J Environ Res Public Health. Jul 15 2015;12(7):8034-74. doi:10.3390/ijerph120708034 38. Kenny GP, Yardley J, Brown C, Sigal RJ, Jay O. Heat stress in older individuals and patients with common chronic diseases. CMAJ. Jul 13 2010;182(10):1053-60. doi:10.1503/cmaj.081050 39. Sera F, Armstrong B, Tobias A, et al. How urban characteristics affect vulnerability to heat and cold: a multi-country analysis. Int J Epidemiol. Aug 1 2019;48(4):1101-1112. doi:10.1093/ije/dyz008 40. Zanobetti A, O'Neill MS, Gronlund CJ, Schwartz JD. Susceptibility to mortality in weather extremes: effect modification by personal and small-area characteristics. Epidemiology. Nov 2013;24(6):809-19. doi:10.1097/01.ede.0000434432.06765.91 41. EPA/600/R-07/094F Assessment of the Impacts of Global Change on Regional U.S. Air Quality: A Synthesis of Climate Change Impacts on Ground-Level Ozone (An Interim Report of the U.S. EPA Global Change Research Program) (U.S. Environmental Protection Agency) (2009). 42. Bell ML, Samet JM, Dominici F. Time-series studies of particulate matter. Annu Rev Public Health. 2004;25:247-80. doi:10.1146/annurev.publhealth.25.102802.124329 43. Costa RL, Barros Gomes H, Cavalcante Pinto DD, et al. Gap Filling and Quality Control Applied to Meteorological Variables Measured in the Northeast Region of Brazil. Atmosphere-Basel. 2021;12(10). doi:10.3390/atmos12101278 44. Holt CC. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting. 2004/01/01/ 2004;20(1):5-10. doi:10.1016/j.ijforecast.2003.09.015 45. Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models. Stat Med. Sep 20 2010;29(21):2224-34. doi:10.1002/sim.3940 46. Rabl A. Air pollution mortality: harvesting and loss of life expectancy. J Toxicol Environ Health A. Jul 9-23 2005;68(13-14):1175-80. doi:10.1080/15287390590936049 47. Ordanovich D, Tobias A, Ramiro D. Temporal variation of the temperature-mortality association in Spain: a nationwide analysis. Environ Health. Jan 13 2023;22(1):5. doi:10.1186/s12940-022-00957-6 48. Zhang Y, Peng M, Wang L, Yu C. Association of diurnal temperature range with daily mortality in England and Wales: A nationwide time-series study. Sci Total Environ. Apr 1 2018;619-620:291-300. doi:10.1016/j.scitotenv.2017.11.056 49. Hajat S, Kosatky T. Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health. Sep 2010;64(9):753-60. doi:10.1136/jech.2009.087999 50. Gasparrini A, Leone M. Attributable risk from distributed lag models. BMC Med Res Methodol. Apr 23 2014;14(1):55. doi:10.1186/1471-2288-14-55 51. Goldberg MS, Burnett RT, Stieb DM, et al. Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec. Sci Total Environ. Oct 1 2013;463-464:931-42. doi:10.1016/j.scitotenv.2013.06.095 52. Gasparrini A, Armstrong B. Reducing and meta-analysing estimates from distributed lag non-linear models. BMC Med Res Methodol. Jan 9 2013;13(1):1. doi:10.1186/1471-2288-13-1 53. Tobias A, Hashizume M, Honda Y, et al. Geographical Variations of the Minimum Mortality Temperature at a Global Scale: A Multicountry Study. Environmental epidemiology (Philadelphia, Pa). Oct 2021;5(5):e169. doi:10.1097/EE9.0000000000000169 54. Honda Y, Kondo M, McGregor G, et al. Heat-related mortality risk model for climate change impact projection. Environ Health Prev Med. Jan 2014;19(1):56-63. doi:10.1007/s12199-013-0354-6 55. Lee W, Kim H, Hwang S, Zanobetti A, Schwartz JD, Chung Y. Monte Carlo simulation-based estimation for the minimum mortality temperature in temperature-mortality association study. BMC Med Res Methodol. Sep 7 2017;17(1):137. doi:10.1186/s12874-017-0412-7 56. Steenland K, Armstrong B. An overview of methods for calculating the burden of disease due to specific risk factors. Epidemiology. Sep 2006;17(5):512-9. doi:10.1097/01.ede.0000229155.05644.43 57. Zhou Y, Pan J, Xu R, et al. Asthma mortality attributable to ambient temperatures: A case-crossover study in China. Environ Res. Nov 2022;214(Pt 4):114116. 114116. doi:10.1016/j.envres.2022.114116 58. Lee H, Yoon HY. Impact of ambient temperature on respiratory disease: a case-crossover study in Seoul. Respir Res. Feb 5 2024;25(1):73. doi:10.1186/s12931-024-02699-0 59. Zhao Y, Huang Z, Wang S, et al. Morbidity burden of respiratory diseases attributable to ambient temperature: a case study in a subtropical city in China. Environ Health. Oct 24 2019;18(1):89. 89. doi:10.1186/s12940-019-0529-8 60. Green RS, Basu R, Malig B, Broadwin R, Kim JJ, Ostro B. The effect of temperature on hospital admissions in nine California counties. Int J Public Health. Apr 2010;55(2):113-21. doi:10.1007/s00038-009-0076-0 61. Guo Y, Gasparrini A, Armstrong B, et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology. Nov 2014;25(6):781-9. doi:10.1097/EDE.0000000000000165 62. Kamal-Chaoui L, Robert A. Competitive cities and climate change. 2009; 63. Tobias A, Armstrong B, Gasparrini A. Brief Report: Investigating Uncertainty in the Minimum Mortality Temperature: Methods and Application to 52 Spanish Cities. Epidemiology. Jan 2017;28(1):72-76. doi:10.1097/EDE.0000000000000567 64. Lowe D, Ebi KL, Forsberg B. Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health. Dec 2011;8(12):4623-48. doi:10.3390/ijerph8124623 65. Liu Y, Guo Y, Wang C, et al. Association between temperature change and outpatient visits for respiratory tract infections among children in Guangzhou, China. Int J Environ Res Public Health. Jan 6 2015;12(1):439-54. doi:10.3390/ijerph120100439 66. Healy JD. Excess winter mortality in Europe: a cross country analysis identifying key risk factors. J Epidemiol Community Health. Oct 2003;57(10):784-9. doi:10.1136/jech.57.10.784 67. Hutchinson EJ, Wilkinson P, Hong SH, Oreszczyn T. Can we improve the identification of cold homes for targeted home energy-efficiency improvements? Applied Energy. 2006/11/01/ 2006;83(11):1198-1209. doi:10.1016/j.apenergy.2006.01.007 68. Tan J, Zheng Y, Tang X, et al. The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology. 2010/01/01 2010;54(1):75-84. doi:10.1007/s00484-009-0256-x 69. Passananti M, Lavorgna M, Iesce MR, et al. Photochemical fate and eco-genotoxicity assessment of the drug etodolac. Science of The Total Environment. 2015/06/15/ 2015;518-519:258-265. doi:https://doi.org/10.1016/j.scitotenv.2015.03.009 70. Vicedo-Cabrera AM, Guo Y, Sera F, et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Climatic Change. 2018/10/01 2018;150(3):391-402. doi:10.1007/s10584-018-2274-3 71. Carter JG, Cavan G, Connelly A, Guy S, Handley J, Kazmierczak A. Climate change and the city: Building capacity for urban adaptation. Progress in Planning. 2015/01/01/ 2015;95:1-66. doi:10.1016/j.progress.2013.08.001 72. Mitchell R, Popham F. Effect of exposure to natural environment on health inequalities: an observational population study. Lancet. Nov 8 2008;372(9650):1655-60. doi:10.1016/s0140-6736(08)61689-x 73. Bowler DE, Buyung-Ali LM, Knight TM, Pullin AS. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health. 2010/08/04 2010;10(1):456. doi:10.1186/1471-2458-10-456 74. Kabisch N, van den Bosch M, Lafortezza R. The health benefits of nature-based solutions to urbanization challenges for children and the elderly - A systematic review. Environ Res. Nov 2017;159:362-373. doi:10.1016/j.envres.2017.08.004 75. Liddell C, Morris C. Fuel poverty and human health: A review of recent evidence. Energy Policy. 2010/06/01/ 2010;38(6):2987-2997. doi:https://doi.org/10.1016/j.enpol.2010.01.037 76. Sera F, Armstrong B, Abbott S, et al. A cross-sectional analysis of meteorological factors and SARS-CoV-2 transmission in 409 cities across 26 countries. Nat Commun. Oct 13 2021;12(1):5968. doi:10.1038/s41467-021-25914-8 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96870 | - |
| dc.description.abstract | 氣候變遷下,溫度在呼吸道疾病健康的負擔上日益顯著,地域性的差異也在其中扮演著重要的角色。本研究將整合臺灣的呼吸道疾病死亡資料、環境資料及脆弱因子指標等數據,探討縣市指標在溫度對呼吸道疾病死亡影響的調節作用。
本研究採用三階段方法進行分析:首先運用非線性遞延分配模型評估氣溫與死亡率的關係,其次推估冷、熱、極端冷與極端熱等情境下的可歸因分率,最後再以統合迴歸方法評估脆弱因子對該效應的影響。結果顯示,2008 至 2021 年間,呼吸道疾病死亡率與平均溫度均上升趨勢。溫度對臺灣呼吸道疾病約貢獻了 7.94 %(95% 信賴區間:5.71 %-10.17 %)的死亡率,其中冷相關風險高於熱相關風險,且熱相關風險主要來自極端高溫,而冷相關風險則以非極端低溫為主,並表現出明顯的地域性差異。在低溫環境下,幼年人口、都市人口與社會經濟弱勢族群的健康風險增加,但增加公共綠地與社福支出可能提供保護作用而高溫環境下的可歸因風險則主要受到都市化的影響,公共綠地的增加在高溫環境中也具有健康保護作用。 臺灣呼吸道疾病患者在不同溫度影響下的適應能力具有溫度特異性,政策應視不同溫度情境,聚焦於對弱勢群體的精準防護。 | zh_TW |
| dc.description.abstract | Under climate change, the impact of temperature on the health burden of respiratory diseases has become increasingly significant, with regional differences playing a crucial role. This study integrates mortality data on respiratory diseases in Taiwan, environmental data, and vulnerability indicators to explore how county-level indicators moderate the effect of temperature on respiratory disease mortality.
A three-stage approach was employed in the analysis. First, a distributed lag non-linear model (DLNM) was used to assess the relationship between temperature and mortality. Second, the attributable fraction (AF) was estimated under cold, hot, extreme cold, and extreme heat scenarios. Finally, meta-regression was applied to evaluate the influence of vulnerability factors on this effect. The results indicate that from 2008 to 2021, both respiratory disease mortality and average temperature exhibited an increasing trend. Temperature contributed to approximately 7.94% (95% CI: 5.71 %-10.17 %) of respiratory disease mortality in Taiwan, with cold-related risks exceeding heat-related risks. The heat-related risk was primarily driven by extreme high temperatures, while the cold-related risk was mainly associated with non-extreme low temperatures, demonstrating distinct regional disparities. In cold environments, the health risks were elevated among young children, urban populations, and socioeconomically disadvantaged groups. However, increased public green space and social welfare expenditure may provide protective effects. Conversely, in hot environments, the attributable risk was primarily influenced by urbanization, and the expansion of public green spaces also played a protective role against heat-related health risks. The adaptation capacity of respiratory disease patients in Taiwan exhibits temperature specificity. Policy interventions should be tailored to different temperature scenarios, focusing on targeted protection for vulnerable populations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:20:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-24T16:20:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
中文摘要 II 英文摘要 III 目次 V 圖次 VII 表次 IX 附表次 X 第一章 研究動機 1 第二章 背景 2 第一節 氣候變遷的挑戰與因應 2 第二節 氣候變遷對呼吸道健康的衝擊 3 第三節 脆弱因子在呼吸道健康上的角色 4 第三章 研究方法 6 第一節 研究設計與架構 6 第二節 健康資料之來源與處理 7 第三節 環境資料之來源與處理 9 第四節 脆弱因子之資料來源與處理 12 第五節 描述性統計與趨勢分析 16 (一)描述性統計 16 (二)趨勢分析 16 第六節 氣溫對呼吸道疾病死亡風險之分析 17 (一)非線性遞延分配模型的建構 17 (二)考量延遲效應的暴露健康風險 19 第七節 脆弱因子分析 22 第八節 統計軟體與應用 23 第四章 研究結果 24 第一節 健康資料與環境資料之現況與趨勢 24 (一)呼吸道疾病死亡病例數與死亡率之時空分布 24 (二)環境因子之時空分布 27 第二節 氣溫致呼吸道疾病之死亡風險 44 (一)非線性遞延分配模型的結果 44 (二)延遲累積的健康風險與最小死亡率溫度 46 (三)不同溫度情境的可歸因風險 49 第三節 脆弱因子對溫度可歸因風險的影響 54 (一)易感受性 57 (二)調適能力 57 第五章 討論與結論 62 參考文獻 67 附錄 78 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 呼吸道疾病 | zh_TW |
| dc.subject | 氣溫 | zh_TW |
| dc.subject | 最小死亡率溫度 | zh_TW |
| dc.subject | 脆弱因子 | zh_TW |
| dc.subject | 非線性遞延分配模型 | zh_TW |
| dc.subject | 統合迴歸 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | meta-regression | en |
| dc.subject | climate change | en |
| dc.subject | respiratory disease | en |
| dc.subject | temperature | en |
| dc.subject | minimal mortality temperature | en |
| dc.subject | vulnerability factors | en |
| dc.subject | distributed lag non-linear model | en |
| dc.title | 氣候變遷下溫度與脆弱因子對臺灣呼吸道疾病死亡率影響分析 | zh_TW |
| dc.title | Analyzing of the Effects of Temperature and Vulnerability Factors on Respiratory Mortality in Taiwan under Climate Change | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡玲儀;吳章甫;陳保中;蔡坤憲 | zh_TW |
| dc.contributor.oralexamcommittee | Lin-Yi Tsai;Chang-Fu Wu;Pau-Chung Chen;Kun-Hsien Tsai | en |
| dc.subject.keyword | 氣候變遷,呼吸道疾病,氣溫,最小死亡率溫度,脆弱因子,非線性遞延分配模型,統合迴歸, | zh_TW |
| dc.subject.keyword | climate change,respiratory disease,temperature,minimal mortality temperature,vulnerability factors,distributed lag non-linear model,meta-regression, | en |
| dc.relation.page | 95 | - |
| dc.identifier.doi | 10.6342/NTU202500304 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-10 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 29.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
