Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96869
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃耀輝zh_TW
dc.contributor.advisorYaw-Huei Hwangen
dc.contributor.author季宜臻zh_TW
dc.contributor.authorYiZhen Jien
dc.date.accessioned2025-02-24T16:20:12Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2024-
dc.date.submitted2024-09-23-
dc.identifier.citation1. OSHA. (2021). Permissible Exposure Limits- Occupational Safety and Health Administration Annotated Table. https://www.osha.gov/annotated-pels/table-z-1#
2. Ahamed, M., Siddiqui, M. K. (2007). Environmental lead toxicity and nutritional factors. Clinical Nutrition, 26(4), 400-408. https://doi.org/10.1016/j.clnu.2007.03.010
3. Alkhalidi, F. (2023). A comparative study to assess the use of chromium in type 2 diabetes mellitus. Journal of Medical Life, 16(8), 1178-1182. https://doi.org/10.25122/jml-2023-0081
4. Anderson, R. A. (1997). Chromium as an essential nutrient for humans. Regulatory Toxicology and Pharmacology, 26(1 Pt 2), S35-41. https://doi.org/10.1006/rtph.1997.1136
5. Bargagli, R., Barghigiani, C., Siegel, B., Siegel, S. (1991). Trace metal anomalies in surface soils and vegetation on two active island volcanoes: Stromboli and Vulcano (Italy). Science of the Total Environment, 102, 209-222.
6. Baum, B. (1979). Drinking water chlorination and the regulation of organics. Harvard Environmental Law Review., 3, 399.
7. Bellinger, D. C. (2016). Lead contamination in flint--An abject failure to protect public health. New England Journal of Medicine, 374(12), 1101-1103. https://doi.org/10.1056/NEJMp1601013
8. Bilińska, M., Antonowicz-Juchniewicz, J., Koszewicz, M., Kaczmarek-Wdowiak, B., Kreczyńska, B. (2005). [Distribution of conduction velocity in the ulnar nerve among lead exposed workers]. Medycyna Pracy, 56(2), 139-146.
9. Bowen, H. J. M. (1979). Environmental chemistry of the elements. University of Reading, UK
10. CDC. (2004). Lead poisoning associated with ayurvedic medications--five states, 2000-2003. Morbidity and Mortality Weekly Report, 53(26), 582-584.
11. Chakraborty, M., Mukherjee, A., Ahmed, K. M. (2015). A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: from source to sink. Current Pollution Reports, 1, 220-247.
12. Chao, L., Ting, Z., Shengqian, L. (2024). Analysis of cadmium resources status and trade pattern in global. China Mining Magazine, 33(4), 89-98.
13. Chen, L., Fang, L., Yang, X., Luo, X., Qiu, T., Zeng, Y., Huang, F., Dong, F., White, J. C., Bolan, N., Rinklebe, J. (2024). Sources and human health risks associated with potentially toxic elements (PTEs) in urban dust: A global perspective. Environment International, 187, 108708. https://doi.org/10.1016/j.envint.2024.108708
14. Chi, Y. W., Chen, S. L., Yang, M. H., Hwang, R. C., Chu, M. L. (1993). [Heavy metals in traditional Chinese medicine: ba-pao-neu-hwang-san]. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi, 34(3), 181-190.
15. Chowdhury, T. N., Hasan, M. M., Munna, G. M., Alam, M. J. B., Nury, A. H., Islam, S., Naher, T. (2024). Hazard-mapping and health risk analysis of iron and arsenic contamination in the groundwater of Sylhet district. Journal of Water and Health, 22(4), 757-772. https://doi.org/10.2166/wh.2024.018
16. Delang, C. (2018). Soil pollution prevention and control measures in China. Forum Geografi. 17(1): 5-13.
17. Ding, Y. (2019). Heavy metal pollution and transboundary issues in ASEAN countries. Water Policy, 21(5), 1096-1106.
18. Elmarsafawy, S. F., Tsaih, S. W., Korrick, S., Dickey, J. H., Sparrow, D., Aro, A., & Hu, H. (2002). Occupational determinants of bone and blood lead levels in middle aged and elderly men from the general community: the Normative Aging Study. American Journal of Industrial Medicine, 42(1), 38-49. https://doi.org/10.1002/ajim.10078
19. Ewers, U., Krause, C., Schulz, C., Wilhelm, M. (1999). Reference values and human biological monitoring values for environmental toxins: Report on the work and recommendations of the Commission on Human Biological Monitoring of the German Federal Environmental Agency. International Archives of Occupational and Environmental Health, 72, 255-260.
20. Ezaki, T., Tsukahara, T., Moriguchi, J., Furuki, K., Fukui, Y., Ukai, H., Okamoto, S., Sakurai, H., Honda, S., Ikeda, M. (2003). No clear-cut evidence for cadmium-induced renal tubular dysfunction among over 10,000 women in the Japanese general population: a nationwide large-scale survey. International Archives of Occupational and Environmental Health, 76, 186-196.
21. Flegal, A. R., Smith, D. R. (1992). Lead levels in preindustrial humans. The New England Journal of Medicine, 326(19), 1293-1294.
22. Gabby, P. (2006). Lead: in mineral commodity summaries. Reston, VA: US, Geological Survey.
23. Gall, J. E., Boyd, R. S., Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring And Assessment, 187(4), 201. https://doi.org/10.1007/s10661-015-4436-3
24. Gworek, B., Bemowska-Kałabun, O., Kijeńska, M., Wrzosek-Jakubowska, J. (2016). Mercury in marine and oceanic waters—a review. Water, Air, & Soil Pollution, 227(10), 371. https://doi.org/10.1007/s11270-016-3060-3
25. Gworek, B., Dmuchowski, W., Baczewska, A. H., Brągoszewska, P., Bemowska-Kałabun, O., Wrzosek-Jakubowska, J. (2017). Air contamination by mercury, emissions and transformations—a review. Water, Air, & Soil Pollution, 228(4), 123. https://doi.org/10.1007/s11270-017-3311-y
26. Hayat, M. T., Nauman, M., Nazir, N., Ali, S., Bangash, N. (2019). Environmental hazards of cadmium: past, present, and future. Cadmium toxicity and tolerance in plants (pp. 163-183). Elsevier.
27. Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research International, 20(9), 6150-6159. https://doi.org/10.1007/s11356-013-1668-z
28. Huang, C., Gou, Z., Ma, X., Liao, G., Deng, O., Yang, Y. (2024). Quantification of sources and potential risks of cadmium, chromium, lead, mercury and arsenic in agricultural soils in a rapidly urbanizing region of southwest China: the case of Chengdu. Front Public Health, 12, 1400921. https://doi.org/10.3389/fpubh.2024.1400921
29. Huo, X., Peng, L., Xu, X., Zheng, L., Qiu, B., Qi, Z., Zhang, B., Han, D., Piao, Z. (2007). Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environmental Health Perspectives, 115(7), 1113-1117. https://doi.org/10.1289/ehp.9697
30. Hwang, Y. H., Lin, Y. S., Lin, C. Y., Wang, I. J. (2014). Incense burning at home and the blood lead level of preschoolers in Taiwan. Environmental Science and Pollution Research International, 21(23), 13480-13487. https://doi.org/10.1007/s11356-014-3273-1
31. Ikeda, M., Zhang, Z. W., Shimbo, S., Watanabe, T., Nakatsuka, H., Moon, C. S., Matsuda-Inoguchi, N., Higashikawa, K. (2000). Urban population exposure to lead and cadmium in east and south-east Asia. The Science of the Total Environment, 249(1-3), 373-384. https://doi.org/10.1016/s0048-9697(99)00527-6
32. Jacobs, J. A., Avakian, C. P. (2005). Chromium (VI) handbook. CRC press, Taylor & Francis.
33. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72.
34. Jeong, S. W., Lee, C. K., Suh, C. H., Kim, K. H., Son, B. C., Kim, J. H., Lee, J. T., Lee, S. W., Park, Y. B., Lee, J. W., Yu, S. D., Moon, C. S., Kim, D. H., Lee, S. Y. (2014). Blood lead concentration and related factors in Korea from the 2008 National Survey for Environmental Pollutants in the Human Body. International Journal of Hygiene and Environmental Health, 217(8), 871-877. https://doi.org/10.1016/j.ijheh.2014.06.006
35. Ji, A., Wang, F., Luo, W., Yang, R., Chen, J., Cai, T. (2011). Lead poisoning in China: a nightmare from industrialisation. Lancet, 377(9776), 1474-1476. https://doi.org/10.1016/s0140-6736(10)60623-x
36. Ji, J. S., Schwartz, J., Sparrow, D., Hu, H., Weisskopf, M. G. (2014). Occupational determinants of cumulative lead exposure: analysis of bone lead among men in the VA normative aging study. Journal of Occupational and Environmental Medicine, 56(4), 435-440. https://doi.org/10.1097/jom.0000000000000127
37. Kawada, T., Tri-Tugaswati, A., Yasuo, K., Suzuki, S. (1994). Relationships between mean lead levels in the atmosphere and in blood from data published since 1977. Asia-Pacific Journal of Public Health, 7(4), 233-235.
38. Khaliquzzman, M. (1997). Trace element composition of size fractionated airborne particulate matter in urban and rural areas in Bangladesh—report. Dhaka, Accelerator Facilities Division and Chemistry Division. Atomic Energy Centre.
39. Kim, S. H., Lim, Y. W., Park, K. S., Yang, J. Y. (2017). Relation of rice intake and biomarkers of cadmium for general population in Korea. Journal of Trace Elements in Medicine And Biology, 43, 209-216. https://doi.org/10.1016/j.jtemb.2017.04.010
40. Kim, S. W., Han, S. J., Kim, Y., Jun, J. W., Giri, S. S., Chi, C., Yun, S., Kim, H. J., Kim, S. G., Kang, J. W., Kwon, J., Oh, W. T., Cha, J., Han, S., Lee, B. C., Park, T., Kim, B. Y., Park, S. C. (2019). Heavy metal accumulation in and food safety of shark meat from Jeju island, Republic of Korea. Public Library of Science ONE, 14(3), e0212410. https://doi.org/10.1371/journal.pone.0212410
41. Klaassen, C. D., Amdur, M. O. (2013). Casarett and Doull's toxicology: the basic science of poisons (Vol. 1236). McGraw-Hill New York.
42. Kubier, A., Wilkin, R. T., Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 1-16. https://doi.org/10.1016/j.apgeochem.2019.104388
43. Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q. V., Kamyab, H., Khan, S. A., Yadav, S., Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environmental Research, 179(Pt A), 108792. https://doi.org/10.1016/j.envres.2019.108792
44. Levin, R., Brown, M. J., Kashtock, M. E., Jacobs, D. E., Whelan, E. A., Rodman, J., Schock, M. R., Padilla, A., Sinks, T. (2008). Lead exposures in U.S. Children, 2008: implications for prevention. Environmental Health Perspectives, 116(10), 1285-1293. https://doi.org/10.1289/ehp.11241
45. Lin, T. C., Yang, C. R., Chang, F. H. (2007). Burning characteristics and emission products related to metallic content in incense. Journal of Hazardous Materials, 140(1-2), 165-172. https://doi.org/10.1016/j.jhazmat.2006.06.052
46. Liu, S., Wang, X., Guo, G., Yan, Z. (2021). Status and environmental management of soil mercury pollution in China: A review. Journal of Environmental Management, 277, 111442. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.111442
47. Lu, X., Zhang, X. (2005). Environmental geochemistry study of arsenic in Western Hunan mining area, P.R. China. Environmental Geochemistry and Health, 27(4), 313-320. https://doi.org/10.1007/s10653-004-5735-8
48. Madrigal, J. M., Flory, A., Fisher, J. A., Sharp, E., Graubard, B. I., Ward, M. H., Jones, R. R. (2024). Sociodemographic inequities in the burden of carcinogenic industrial air emissions in the United States. Journal of the National Cancer Institute, 116(5), 737-744. https://doi.org/10.1093/jnci/djae001
49. Malcoe, L. H., Lynch, R. A., Keger, M. C., Skaggs, V. J. (2002). Lead sources, behaviors, and socioeconomic factors in relation to blood lead of native american and white children: a community-based assessment of a former mining area. Environmental Health Perspectives, 110 Suppl 2(Suppl 2), 221-231. https://doi.org/10.1289/ehp.02110s2221
50. Mannino, D. M., Albalak, R., Grosse, S., Repace, J. (2003). Second-hand smoke exposure and blood lead levels in U.S. children. Epidemiology, 14(6), 719-727. https://doi.org/10.1097/01.Ede.0000081998.02432.53
51. Mielke, H. W., Reagan, P. L. (1998). Soil is an important pathway of human lead exposure. Environmental Health Perspectives, 106(Suppl 1), 217-229. https://doi.org/10.1289/ehp.98106s1217
52. Mitra, P., Sharma, S., Purohit, P., Sharma, P. (2017). Clinical and molecular aspects of lead toxicity: An update. Critical Reviews in Clinical Laboratory Sciences, 54(7-8), 506-528. https://doi.org/10.1080/10408363.2017.1408562
53. Mouttoucomarassamy, S., Virk, H. S., Dharmalingam, S. N. (2024). Evaluation and health risk assessment of arsenic and potentially toxic elements pollution in groundwater of Majha Belt, Punjab, India. Environmental Geochemistry and Health, 46(6), 208. https://doi.org/10.1007/s10653-024-02002-6
54. Naranjo, V. I., Hendricks, M., Jones, K. S. (2020). Lead Toxicity in Children: An Unremitting Public Health Problem. Pediatric Neurology, 113, 51-55. https://doi.org/10.1016/j.pediatrneurol.2020.08.005
55. Nazir, R., Shah, M. H. (2023). Evaluation of air quality and health risks associated with trace elements in respirable particulates (PM2.5) from Islamabad, Pakistan. Environmental Monitoring And Assessment, 195(10), 1182. https://doi.org/10.1007/s10661-023-11824-3
56. Needleman, H. (2004). Lead poisoning. Annual Review of Medicine, 55, 209-222. https://doi.org/10.1146/annurev.med.55.091902.103653
57. Nriagu, J. O., Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134-139. https://doi.org/10.1038/333134a0
58. O'Connor, D., Hou, D., Ye, J., Zhang, Y., Ok, Y. S., Song, Y., Coulon, F., Peng, T., Tian, L. (2018). Lead-based paint remains a major public health concern: A critical review of global production, trade, use, exposure, health risk, and implications. Environment International, 121(Pt 1), 85-101. https://doi.org/10.1016/j.envint.2018.08.052
59. Obeng-Gyasi, E. (2019). Sources of lead exposure in various countries. Reviews on Environmental Health, 34(1), 25-34. https://doi.org/10.1515/reveh-2018-0037
60. Oleko, A., Saoudi, A., Zeghnoun, A., Pecheux, M., Cirimele, V., Mihai Cirtiu, C., Berail, G., Szego, E., Denys, S., Fillol, C. (2024). Exposure of the general French population to metals and metalloids in 2014-2016: Results from the Esteban study. Environmental Research, 252(Pt 2), 118744. https://doi.org/10.1016/j.envres.2024.118744
61. Padilla-Reyes, D. A., Dueñas-Moreno, J., Mahlknecht, J., Mora, A., Kumar, M., Ornelas-Soto, N., Mejía-Avendaño, S., Navarro-Gómez, C. J., Bhattacharya, P. (2024). Arsenic and fluoride in groundwater triggering a high risk: Probabilistic results using Monte Carlo simulation and species sensitivity distribution. Chemosphere, 359, 142305. https://doi.org/10.1016/j.chemosphere.2024.142305
62. Panda, R., Selvasekhar, S., Murugan, D., Sivakumar, V., Narayani, T., Sreepradha, C. (2016). Cleaner production of basic chromium sulfate–with a review of sustainable green production options. Journal of Cleaner Production, 112, 4854-4862.
63. Pellerin, C., Booker, S. M. (2000). Reflections on hexavalent chromium: health hazards of an industrial heavyweight. Environmental Health Perspectives, 108(9), A402-A407.
64. Pirkle, J. L., Brody, D. J., Gunter, E. W., Kramer, R. A., Paschal, D. C., Flegal, K. M., Matte, T. D. (1994). The decline in blood lead levels in the United States: the National Health and Nutrition Examination Surveys (NHANES). The Journal of the American Medical Association, 272(4), 284-291.
65. Pirkle, J. L., Kaufmann, R. B., Brody, D. J., Hickman, T., Gunter, E. W., Paschal, D. C. (1998). Exposure of the US population to lead, 1991-1994. Environmental Health Perspectives, 106(11), 745-750.
66. Rahman, Z., Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring And Assessment, 191(7), 419. https://doi.org/10.1007/s10661-019-7528-7
67. Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 79(933), 391-396. https://doi.org/10.1136/pmj.79.933.391
68. Safi, J., Fischbein, A., El Haj, S., Sansour, R., Jaghabir, M., Hashish, M. A., Suleiman, H., Safi, N., Abu-Hamda, A., Witt, J. K., Platkov, E., Reingold, S., Alayyan, A., Berman, T., Bercovitch, M., Choudhri, Y., Richter, E. D. (2006). Childhood lead exposure in the palestinian authority, Israel, and Jordan: results from the Middle Eastern regional cooperation project, 1996-2000. Environmental Health Perspectives, 114(6), 917-922. https://doi.org/10.1289/ehp.8339
69. Schrauzer, G. N., White, D. A., Schneider, C. J. (1977). Cancer mortality correlation studies--IV: associations with dietary intakes and blood levels of certain trace elements, notably Se-antagonists. Bioinorganic Chemistry, 7(1), 35-56. https://doi.org/10.1016/s0006-3061(00)80127-1
70. Shacklette, H., Boerngen, J., Cahill, J., Rahill, R. (1990). I. Geochemical studies of the broadest scale (Fig. 43.1). US Geological Survey Circular, 1033, 183.
71. Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., Antunes, P. M. C. (2017). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Reviews of Environmental Contamination and Toxicology 241, 73-137. https://doi.org/10.1007/398_2016_8
72. Shen, Z., Hou, D., Zhang, P., Wang, Y., Zhang, Y., Shi, P., O'Connor, D. (2018). Lead-based paint in children's toys sold on China's major online shopping platforms. Environmental Pollution, 241, 311-318. https://doi.org/10.1016/j.envpol.2018.05.078
73. Shi, T., Ma, J., Zhang, Y., Liu, C., Hu, Y., Gong, Y., Wu, X., Ju, T., Hou, H., Zhao, L. (2019). Status of lead accumulation in agricultural soils across China (1979-2016). Environment International, 129, 35-41. https://doi.org/10.1016/j.envint.2019.05.025
74. Shi, X., Wang, X., Zhang, J., Dang, Y., Ouyang, C., Pan, J., Yang, A., Hu, X. (2024). Associations of mixed metal exposure with chronic kidney disease from NHANES 2011-2018. Scientific Reports, 14(1), 13062. https://doi.org/10.1038/s41598-024-63858-3
75. Siegel, R. L., Giaquinto, A. N., Jemal, A. (2024). Cancer statistics, 2024. CA: A Cancer Journal for Clinicians, 74(1), 12-49. https://doi.org/10.3322/caac.21820
76. Simou, A., Mrabet, A., Abdelfattah, B., Bougrine, O., Khaddor, M., Allali, N. (2024). Distribution, ecological, and health risk assessment of trace elements in the surface seawater along the littoral of Tangier Bay (Southwestern Mediterranean Sea). Marine Pollution Bulletin, 202, 116362. https://doi.org/10.1016/j.marpolbul.2024.116362
77. Son, B. C., Lee, C. K., Suh, C. H., Kim, K. H., Kim, J. H., Jeong, S. U., Kim, D. H., Ryu, J. Y., Lee, S. W., Kim, S. J., Kwon, Y. M., Park, Y. B. (2019). Blood lead concentration and exposure related factors in Korea from the National Environmental Health Survey (KoNEHS) II (2012-2014). Journal of Occupational and Environmental Hygiene, 16(12), 763-774. https://doi.org/10.1080/15459624.2019.1668000
78. Son, J. Y., Lee, J., Paek, D., Lee, J. T. (2009). Blood levels of lead, cadmium, and mercury in the Korean population: results from the Second Korean National Human Exposure and Bio-monitoring Examination. Environmental Research, 109(6), 738-744. https://doi.org/10.1016/j.envres.2009.03.012
79. Sophie, T. (2024). 关于汞的水俣公约. https://www.encyclopedie-environnement.org/zh/societe-zh/the-minamata-convention-on-mercury/
80. Survey, U. S. G. (2021). Mercury in 2019, tables-only release. https://www.usgs.gov/media/files/mercury-2019-tables-only-release
81. Tang, S., Yang, K., Liu, F., Peng, M., Li, K., Yang, Z., Liu, X., Guo, F., Ma, H. (2022). Overview of heavy metal pollution and health risk assessment of urban soils in Yangtze River Economic Belt, China. Environmental Geochemistry and Health, 44(12), 4455-4497. https://doi.org/10.1007/s10653-022-01210-2
82. Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., & Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology, 18(3), 149-175.
83. Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology, 18(3), 149-175. https://doi.org/10.1002/tox.10116
84. Tchounwou, P. B., Centeno, J. A., Patlolla, A. K. (2004). Arsenic toxicity, mutagenesis, and carcinogenesis–a health risk assessment and management approach. Molecular and Cellular Biochemistry, 255, 47-55.
85. Tchounwou, P. B., Patlolla, A. K., Centeno, J. A. (2003). Invited reviews: carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicologic Pathology, 31(6), 575-588.
86. Teng, D., Mao, K., Ali, W., Xu, G., Huang, G., Niazi, N. K., Feng, X., Zhang, H. (2020). Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. Royal Society of Chemistry Advances, 10(39), 23221-23232. https://doi.org/10.1039/d0ra01507e
87. Vergara-Gerónimo, C. A., León Del Río, A., Rodríguez-Dorantes, M., Ostrosky-Wegman, P., Salazar, A. M. (2021). Arsenic-protein interactions as a mechanism of arsenic toxicity. Toxicology and Applied Pharmacology, 431, 115738. https://doi.org/10.1016/j.taap.2021.115738
88. Waalkes, M. P. (2003). Cadmium carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 533(1-2), 107-120.
89. Wang, M., Chen, Z., Song, W., Hong, D., Huang, L., Li, Y. (2021). A review on cadmium exposure in the population and intervention strategies against cadmium toxicity. Bulletin of Environmental Contamination and Toxicology 106(1), 65-74. https://doi.org/10.1007/s00128-020-03088-1
90. WHO. (1981). Arsenic. World Health Organization. Geneva, Switzerland. https://www.who.int/publications/i/item/9241540788
91. WHO. (1992). Cadmium: environmental aspects. World Health Organization. Geneva, Switzerland.
92. WHO. (2001). Environmental health criteria 224. World Health Organization. Geneva, Switzerland, 512.
93. WHO. (2020). Air Quality Guidelines for Europe(91).World Health Organization. Geneva, Switzerland.
94. Wu, T. N., Shen, C. Y., Liou, S. H., Yang, G. Y., Ko, K. N., Chao, S. L., Hsu, C. C., Chang, P. Y. (1997). The epidemiology and surveillance of blood lead in Taiwan (ROC): a report on the PRESS-BLL project. International Archives of Occupational and Environmental Health, 69(6), 386-391. https://doi.org/10.1007/s004200050165
95. Xiao, X. C., T.; Liao, X.; Wu, B.; Yan, X.; Zhai, L.; Xie, H.; Wang, L. (2008). Regional distribution of arsenic contained minerals and arsenic pollution in China. Geographical Research, 27(1), 201-212.
96. Xiong, T., Dumat, C., Pierart, A., Shahid, M., Kang, Y., Li, N., Bertoni, G., Laplanche, C. (2016). Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas, South China. Environmental Geochemistry and Health, 38, 1283-1301.
97. Yan, H., Zhai, B., Feng, R., Wang, P., Yang, F., Zhou, Y. (2024). Distribution of blood lead and cadmium levels in healthy children aged 0 to 18 years and analysis of related influencing factors in Henan, China: data findings from 2017 to 2022. Italian Journal of Pediatrics, 50(1), 43. https://doi.org/10.1186/s13052-024-01614-z
98. Yang, Y., Gu, Y., Zhang, Y., Zhou, Q., Zhang, S., Wang, P., Yao, Y. (2024). Spatial - temporal mapping of urine cadmium levels in China during 1980 - 2040: Dietary improvements lower exposure amid rising pollution. Journal of Hazardous Materials, 473, 134693. https://doi.org/10.1016/j.jhazmat.2024.134693
99. Yang, Y., Zhang, Y., Zhou, Q., Gu, Y., Yao, Y. (2024). Urinary cadmium levels in China (1982–2021): Regional trends and influential factors. Environmental Research, 251, 118618.
100. Yaşar Korkanç, S., Korkanç, M., Amiri, A. F. (2024). Effects of land use/cover change on heavy metal distribution of soils in wetlands and ecological risk assessment. Science of the Total Environment, 923, 171603. https://doi.org/10.1016/j.scitotenv.2024.171603
101. Zhang, X., Yang, L., Li, Y., Li, H., Wang, W., Ye, B. (2012). Impacts of lead/zinc mining and smelting on the environment and human health in China. Environmental Monitoring And Assessment, 184(4), 2261-2273. https://doi.org/10.1007/s10661-011-2115-6
102. Zhang, Y., Hou, D., O’Connor, D., Shen, Z., Shi, P., Ok, Y. S., Tsang, D. C., Wen, Y., Luo, M. (2019). Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Critical Reviews in Environmental Science and Technology, 49(15), 1386-1423.
103. Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z., McGrath, S. P. (2015). Soil contamination in China: current status and mitigation strategies. Environmental Science & Technology, 49(2), 750-759. https://doi.org/10.1021/es5047099
104. Zhu, H., Tang, X., Gu, C., Chen, R., Liu, Y., Chu, H., Zhang, Z. (2024). Assessment of human exposure to cadmium and its nephrotoxicity in the Chinese population. The Science of the Total Environment, 918, 170488. https://doi.org/10.1016/j.scitotenv.2024.170488
105. 環境省総合環境政策局. (2013). 水俁病的教訓和日本的汞對策. 環境省環境保健部環境安全課,日本https://books.google.com.tw/books?id=ct2doAEACAAJ
106. 李婷, 胡敏駿, 徐君, 蔣玉根, 閆慧莉, 虞軼俊, 何振豔. (2021). 镉低积累水稻品种选育研究进展. Journal of Agricultural Science & Technology (1008-0864), 23(11). 中國農業科學院,北京.
107. 劉增俊, 劉紅敏, 夏旭, 張旭, 李廣賀, 張丹, 姜林. (2016). 连二亚硫酸钠对铬污染土壤修复条件优化及生物有效性研究. 土壤, 48(3), 523-528. 中國科學院南京土壤研究所,南京.
108. 宋玉婷, 雷濘菲. (2018). 我国土壤镉污染的现状及修复措施. 西昌學院學報 (自然科學版)(3), 79-83. 西昌.
109. 行政院環境保護署廢管處. (2004). 7月1日起,水銀體溫計限制輸入及販賣. 臺灣行政院環境保護署,臺北https://enews.moenv.gov.tw/Page/3B3C62C78849F32F/d5504c25-2076-4537-965f-f92872e3a741
110. 中國疾病預防控制中心. (2012). 痛痛病. 中國疾病預防控制中心,北京https://www.phsciencedata.cn/Share/wiki/wikiView?id=e62dfc63-98c3-4e8e-a97b-5bf1a94fdb9c
111. 中華人民共和國衛生部. (2006). 卫生部:三类儿童将定期检测血铅.中華人民共和國衛生部,北京. https://www.gov.cn/ztzl/fwzk17/content_217159.htm
112. 中華人民共和國國家標準化管理委員會. (2016a). GB 17930-2016 中華人民共和國國家標準-車用汽油. 中華人民共和國國家標準化管理委員會,北京. https://zh.wikisource.org/zh-hant/GB_17930-2016_%E8%BD%A6%E7%94%A8%E6%B1%BD%E6%B2%B9
113. 中華人民共和國國務院. (2016b). 国务院关于印发土壤污染防治行动计划的通知. 中華人民共和國國務院,北京. https://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm
114. 中華人民共和國生態環境部. (1999). 国务院办公厅关于限期停止生产销售使用车用含铅汽油的通知. 國務院辦公廳,北京. https://www.mee.gov.cn/zcwj/gwywj/201811/t20181129_676365.shtml
115. 中華人民共和國生態環境部. (2010). 铅、锌工业污染物排放标准 GB 25466 —2010.中華人民共和國生態環境部(原環境保護部),北京https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/201010/t20101009_195340.shtml
116. 周國梅, 張國. (2020). 政研中心代表性文章(1989-2019)之十二:重金属污染防治的国际经验与政策建议. 環境科學研究院,北京http://www.prcee.org/yjcg/zzwz_70/wenzhang/202001/t20200119_760226.html
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96869-
dc.description.abstract重金屬被定義為密度大於5 g/cm3的無機元素。常見的重金屬有鉻(Cr)、鉛(Pb)、鎘(Cd)、汞(Hg) 和砷(As)等。人類通過吸入、攝入或與皮膚接觸而暴露于重金屬。雖然重金屬是整個地殼中天然存在的元素,但人為活動產生的重金屬釋出會造成空氣、土壤、水的污染,並可在植物、農作物、海產品和肉類中積累而間接影響人類。另有研究顯示亞洲地區空氣中鉛、鎘和汞的濃度很高。不同時期暴露重金屬的程度不同,可能表現在人體內重金屬含量的變化上。
本研究使用PubMed醫學文獻資料庫進行檢索,選取了東亞和東南亞國家一般人群的重金屬生物監測研究資料,收集 1980 年至 2022 年採樣時間範圍內的人體重金屬暴露生物偵測的研究論文,根據預先設定的納入標準篩選合格論文進行進一步分析。目的是在於瞭解1980年至2022年間東亞和東南亞人類重金屬水準的變化趨勢以及各國之間的差異。
本研究一共收集到271篇文獻。研究結果顯示,1980年至2022年間,東亞及東南亞人體內鉻、鉛、砷、鎘和汞的含量呈現顯著變化。鉛在人體中的含量呈現出顯著下降的趨勢。日本一般人群血鉛濃度從1981年的60 μg/L下降至2017年的8.3 μg/L。臺灣的血鉛濃度從1983年的201.4 μg/L下降至2017年的15 μg/L。中國的血鉛濃度從1986年的127.9 μg/L下降到2017年的17.8 μg/L,仍高於其他國家同年的血鉛濃度。鎘在一些國家下降趨勢顯著,日本的血鎘濃度從1983年的3.6 μg/L下降到2017年的1.0 μg/L。在另外一些國家變化不大,中國的血鎘甚至有上升的情況。人體內砷、鉻和汞濃度的相關文獻資料較少,只有少部分國家有足夠的資料能夠看到時間上的變化趨勢,在某些地區人體中的含量呈現逐漸下降的趨勢。
不同國家和地區一般人群體內的重金屬濃度存在差異,與當地的工業活動、自然環境和社會經濟條件密切相關。工業化進程和環境保護政策對重金屬含量的影響顯著。工業活動是重金屬污染的主要來源,而嚴格的環境保護政策和措施在控制污染方面起到關鍵作用。例如,日本的鎘暴露較嚴重,與該國的飲食結構和環境歷史有關;而中國則因快速工業化導致存在鉻、鉛、汞污染問題。在不同的年份中,重金屬含量的波動反映了環境政策、工業活動以及經濟發展的影響。
本研究結果為理解東亞及東南亞重金屬污染的變化提供了資料,並為該地區相關政府部門以及環境保護組織的環境管理提供科學依據。
zh_TW
dc.description.abstractHeavy metals are defined as inorganic elements with a density greater than 5 g/cm3. Examples of common heavy metals are chromium (Cr), lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As). Humans are exposed to heavy metals through inhalation, ingestion or skin contact. Although heavy metals are naturally occurring elements throughout the earth's crust, the release of heavy metals from human activities can cause air, soil, and water pollution, and can accumulate in plants, crops, seafood, and meat, indirectly affecting humans. Other studies have shown high concentrations of lead, cadmium and mercury in the air in Asia. The degree of exposure to heavy metals varies over time, which may be manifested in changes in the content of heavy metals in the human body.
This study used the PubMed medical literature database to search, select heavy metal biomonitoring research data on populations in East and Southeast Asia, and collected research papers on biomonitoring of human heavy metal exposure within the sampling time range from 1980 to 2022. Eligible papers were selected according to the specified inclusion criteria for further analysis. The purpose is to understand the changing trends of human heavy metal levels in East and Southeast Asia from 1980 to 2022 and the differences between countries.
A total of 271 literatures were collected in this study. The results showed significant changes in the levels of chromium, lead, arsenic, cadmium and mercury in people in East and Southeast Asia between 1980 and 2022. The content of lead in the human body showed a significant decreasing trend. Blood lead concentrations in the general population of Japan decreased from 60 μg/L in 1981 to 8.3 μg/L in 2017. The blood lead concentration in Taiwan dropped from 201.4 μg/L in 1983 to 15 μg/L in 2017. The blood lead concentration in China dropped from 127.9 μg/L in 1986 to 17.8μg/L in 2017, still higher than the blood lead concentration in other countries in the same year. Cadmium declined significantly in some countries, with the blood cadmium concentration in Japan falling from 3.6 μg/L in 1983 to 1 μg/L in 2017. In other countries, little has changed, with blood cadmium even rising in China. There is little relevant literature on arsenic, chromium and mercury concentrations in the human body, and only a small number of countries have sufficient data to see the changing trend over time, with the content in the human body showing a gradually decreasing trend in some regions.
Differences exist in the concentration of heavy metals within the general population in different countries and regions, closely related to local industrial activities, natural environment, and socioeconomic conditions. The impact of industrialization and environmental protection policies on heavy metal content is significant. Industrial activities are a major source of heavy metal pollution, and strict environmental protection policies and measures play a key role in pollution control. For example, Japan’s more severe cadmium exposure is related to the country’s dietary structure and environmental history, while China’s rapid industrialization has led to the existence of chromium, lead, and mercury pollution problems. Fluctuations in heavy metal content in different years reflect the impact of environmental policies, industrial activities as well as economic development.
The results of this study provide information for understanding changes in heavy metal pollution in East and Southeast Asia and provide a scientific basis for environmental management by relevant government departments as well as environmental protection organizations in the region.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:20:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:20:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目 次
中文摘要 i
英文摘要 iii
一、 引言 1
1.1 研究背景 1
1.2 研究目的 2
二、 文獻探討 4
2.1 鉻、鉛、砷、鎘和汞五種重金屬的概述 4
2.2 人體中鉻、鉛、砷、鎘和汞五種重金屬含量的影響因素 14
2.3 東亞及東南亞國家鉻、鉛、砷、鎘和汞五種重金屬污染狀況 16
三、 研究方法 20
3.1 研究設計 20
3.2 資料來源 21
3.3 資料分析方法 23
四、 研究結果 25
4.1 文獻收集結果 25
4.2 1980年到2022年東亞及東南亞國家人體中鉛含量的變化趨勢 27
4.3 1980年到2022年東亞及東南亞國家人體中鎘含量的變化趨勢 32
4.4 1980年到2022年東亞及東南亞國家人體中汞含量的變化趨勢 37
4.5 1980年到2022年東亞及東南亞國家人體中砷含量的總體趨勢 39
4.6 1980年到2022年東亞及東南亞國家人體中鉻含量的總體趨勢 40
五、討論 42
5.1國家發展程度和研究文獻數量關係 43
5.2鉛相關時間軸變化趨勢的影響因素 43
5.3 鎘相關時間軸變化趨勢的影響因素 47
5.4 汞相關時間軸變化趨勢的影響因素 50
5.5 砷和鉻在一般人群中濃度變化可能的影響因素 52
六、結論 55
七、參考文獻 56
-
dc.language.isozh_TW-
dc.subject鉛zh_TW
dc.subject時間變化趨勢zh_TW
dc.subject東亞/東南亞zh_TW
dc.subject尿zh_TW
dc.subject血zh_TW
dc.subject汞zh_TW
dc.subject鎘zh_TW
dc.subject砷zh_TW
dc.subject鉻zh_TW
dc.subjecttemporal trenden
dc.subjectchromiumen
dc.subjectleaden
dc.subjectarsenicen
dc.subjectcadmiumen
dc.subjectmercuryen
dc.subjectblooden
dc.subjecturineen
dc.subjectEastern and Southern Asiaen
dc.title1980年到2022年東亞及東南亞國家鉻、鉛、砷、鎘和汞五種重金屬在人體中含量的時間變化趨勢zh_TW
dc.titleTemporal Variations of Chromium, Lead, Arsenic, Cadmium and Mercury Levels in Humans in East and Southeast Asia (1980–2022)en
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林靖愉;李婉甄;魏嘉徵zh_TW
dc.contributor.oralexamcommitteeChing-Yu Lin;Wan-Chen Lee;Chia-Cheng Weien
dc.subject.keyword鉻,鉛,砷,鎘,汞,血,尿,東亞/東南亞,時間變化趨勢,zh_TW
dc.subject.keywordchromium,lead,arsenic,cadmium,mercury,blood,urine,Eastern and Southern Asia,temporal trend,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202404397-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-09-24-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-lift2025-02-25-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf2.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved