請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96861完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧子彬 | zh_TW |
| dc.contributor.advisor | Tzu-Pin Lu | en |
| dc.contributor.author | 蔡有倫 | zh_TW |
| dc.contributor.author | Yu-Lun Tsai | en |
| dc.date.accessioned | 2025-02-24T16:18:04Z | - |
| dc.date.available | 2025-02-25 | - |
| dc.date.copyright | 2025-02-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-20 | - |
| dc.identifier.citation | 1.Kalra A, Yetiskul E, Wehrle CJ, et al. Physiology, Liver. Treasure Island: StatPearls Publishing; 2024.
2.Ruhl CE, Everhart JE. Elevated serum alanine aminotransferase and gamma-glutamyltransferase and mortality in the United States population. Gastroenterology. 2009;136:477-485.e411. 3.Lee TH, Kim WR, Benson JT, et al. Serum aminotransferase activity and mortality risk in a United States community. Hepatology. 2008;47:880-7. 4.Celsa C, Cabibbo G, Fulgenzi CAM, et al. Hepatic decompensation is the major driver of mortality in hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: The impact of successful antiviral treatment. Hepatology. 2024. 5.Son SH, Jang HS, Jo IY, et al. Significance of an increase in the Child-Pugh score after radiotherapy in patients with unresectable hepatocellular carcinoma. Radiat Oncol. 2014;9:101. 6.Munoz-Schuffenegger P, Ng S, Dawson LA. Radiation-induced liver toxicity. Semin Radiat Oncol. 2017;27:350-7. 7.Kwo PY, Cohen SM, Lim JK. ACG clinical guideline: evaluation of abnormal liver chemistries. Am J Gastroenterol. 2017;112:18-35. 8.Imamura H, Sano K, Sugawara Y, et al. Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test. J Hepatobiliary Pancreat Surg. 2005;12:16-22. 9.Cuneo KC, Devasia T, Sun Y, et al. Serum Levels of Hepatocyte Growth Factor and CD40 Ligand Predict Radiation-Induced Liver Injury. Transl Oncol. 2019;12:889-94. 10.Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. Cmaj. 2005;172:367-79. 11.Shamseddeen H, Vilar-Gomez E, Chalasani N, et al. Spontaneous Fluctuations in Liver Biochemistries in Patients with Compensated NASH Cirrhosis: Implications for Drug Hepatotoxicity Monitoring. Drug Saf. 2020;43:281-90. 12.Liang SX, Zhu XD, Xu ZY, et al. Radiation-induced liver disease in threedimensional conformal radiation therapy for primary liver carcinoma: the risk factors and hepatic radiation tolerance. Int J Radiat Oncol Biol Phys. 2006;65:426-34. 13.Cheng JC, Wu JK, Lee PC, et al. Biologic susceptibility of hepatocellular carcinoma patients treated with radiotherapy to radiation-induced liver disease. Int J Radiat Oncol Biol Phys. 2004;60:1502-9. 14.Dawson LA, Ten Haken RK. Partial volume tolerance of the liver to radiation. Semin Radiat Oncol. 2005;15:279-83. 15.Cheng JC, Wu JK, Huang CM, et al. Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: dosimetric analysis and implication. Int J Radiat Oncol Biol Phys. 2002;54:156-62. 16.Kasarinaite A, Sinton M, Saunders PTK, et al. The influence of sex hormones in liver function and disease. Cells. 2023;12:1604. 17.Ismail A, Kennedy L, Francis H. Sex-dependent differences in cholestasis: why estrogen signaling may be a key pathophysiological driver. Am J Pathol. 2023;193:1355-62. 18.Lala V, Zubair M, Minter DA. Liver function tests. Treasure Island: StatPearls Publishing; 2023. 19.Kim HC, Nam CM, Jee SH, et al. Normal serum aminotransferase concentration and risk of mortality from liver diseases: prospective cohort study. BMJ. 2004;328:983. 20.Arndt V, Brenner H, Rothenbacher D, et al. Elevated liver enzyme activity in construction workers: prevalence and impact on early retirement and all-cause mortality. Int Arch Occup Environ Health. 1998;71:405–12. 21.Bialecki ES, Di Bisceglie AM. Clinical presentation and natural course of hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2005;17:485–9. 22.Altekruse SF, McGlynn KA, Dickie LA, et al. Hepatocellular carcinoma confirmation, treatment, and survival in surveillance, epidemiology, and end results registries, 1992–2008. Hepatology. 2012;55:476–82. 23.Abdel-Rahman O, Elsayed Z. External beam radiotherapy for unresectable hepatocellular carcinoma. Cochrane Database Syst Rev. 2017;3:Cd011314. 24.Hoffe SE, Finkelstein SE, Russell MS, et al. Nonsurgical options for hepatocellular carcinoma: evolving role of external beam radiotherapy. Cancer Control. 2010;17:100–10. 25.Hawkins MA, Dawson LA. Radiation therapy for hepatocellular carcinoma: from palliation to cure. Cancer. 2006;106:1653–63. 26.Yoon SM, Ryoo BY, Lee SJ, et al. Efficacy and safety of transarterial chemoembolization plus external beam radiotherapy vs sorafenib in hepatocellular carcinoma with macroscopic vascular invasion: a randomized clinical trial. JAMA Oncol. 2018;4:661–9. 27.Koay EJ, Owen D, Das P. Radiation-induced liver disease and modern radiotherapy. Semin Radiat Oncol. 2018;28:321–31. 28.Pan CC, Kavanagh BD, Dawson LA, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76:S94-100. 29.Kim TH, Kim DY, Park JW, et al. Dose-volumetric parameters predicting radiation-induced hepatic toxicity in unresectable hepatocellular carcinoma patients treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67:225–31. 30.Yamada K, Soejima T, Sugimoto K, et al. Pilot study of local radiotherapy for portal vein tumor thrombus in patients with unresectable hepatocellular carcinoma. Jpn J Clin Oncol. 2001;31:147–52. 31.Gunvén P, Jonas E, Blomgren H, et al. Undetectable late hepatic sequelae after hypofractionated stereotactic radiotherapy for liver tumors. Med Oncol. 2011;28:958–65. 32.Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the american association for the study of liver diseases. Hepatology. 2018;68:723–50. 33.EASL Clinical Practice Guidelines. Management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236. 34.Tsoris A, Marlar CA. Use Of The Child Pugh Score In Liver Disease. Treasure Island: StatPearls Publishing; 2022. 35.Common Terminology Criteria for Adverse Events (CTCAE), v5.0. U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute. 2017. 36.Tsai YL, Wu CJ, Shaw S, et al. Quantitative analysis of respiration-induced motion of each liver segment with helical computed tomography and 4-dimensional computed tomography. Radiat Oncol. 2018;13:59. 37.Kleinbaum DG, Klein M. Survival analysis, a self-learning text. 3rd ed. Berlin: Springer; 2012. 38.Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81:515–26. 39.Lash TL, VanderWeele TJ, Haneuse S, et al. Modern epidemiology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2021. 40.Cai X, Thorand B, Hohenester S, et al. Association of sex hormones and sex hormone-binding globulin with liver fat in men and women: an observational and Mendelian randomization study. Front Endocrinol. 2023;14:1223162. 41.Cherubini A, Ostadreza M, Jamialahmadi O, et al. Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women. Nat Med. 2023;29:2643–55. 42.Isola JVV, Ko S, Ocañas SR, et al. Role of estrogen receptor α in aging and chronic disease. Adv Geriatr Med Res. 2023;5: e230005. 43.Zuo Q, Park NH, Lee JK, et al. Navigating nonalcoholic fatty liver disease (NAFLD) Exploring the roles of estrogens, pharmacological and medical interventions, and life style. Steroids. 2024;203:109330. 44.Huang Y, Chen SW, Fan CC, et al. Clinical parameters for predicting radiation-induced liver disease after intrahepatic reirradiation for hepatocellular carcinoma. Radiat Oncol. 2016;11:89. 45.Okazaki E, Yamamoto A, Nishida N, et al. Three-dimensional conformal radiotherapy for locally advanced hepatocellular carcinoma with portal vein tumour thrombosis: evaluating effectiveness of the model for endstage liver disease (MELD) score compared with the Child-Pugh classification. Br J Radiol. 2016;89:20150945. 46.Murray LJ, Sykes J, Brierley J, et al. Baseline albumin-bilirubin (ALBI) score in Western patients with hepatocellular carcinoma treated with stereotactic body radiation therapy (SBRT). Int J Radiat Oncol Biol Phys. 2018;101:900–9. 47.Nabavizadeh N, Waller JG, Fain R 3rd, et al. Safety and Efficacy of Accelerated Hypofractionation and Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma Patients With Varying Degrees of Hepatic Impairment. Int J Radiat Oncol Biol Phys. 2018;100:577–85. 48.Lo CH, Liu MY, Lee MS, et al. Comparison between Child-Turcotte-pugh and albumin-bilirubin scores in assessing the prognosis of hepatocellular carcinoma after stereotactic ablative radiation therapy. Int J Radiat Oncol Biol Phys. 2017;99:145–52. 49.Huang W, Zhang W, Fan M, et al. Risk factors for hepatitis B virus reactivation after conformal radiotherapy in patients with hepatocellular carcinoma. Cancer Sci. 2014;105:697–703. 50.Chou CH, Chen PJ, Lee PH, et al. Radiation-induced hepatitis B virus reactivation in liver mediated by the bystander effect from irradiated endothelial cells. Clin Cancer Res. 2007;13:851–7. 51.Toesca DAS, Ibragimov B, Koong AJ, et al. Strategies for prediction and mitigation of radiation-induced liver toxicity. J Radiat Res. 2018;59:i40–9. 52.Stenmark MH, Cao Y, Wang H, et al. Estimating functional liver reserve following hepatic irradiation: adaptive normal tissue response models. Radiother Oncol. 2014;111:418–23. 53.Schaub SK, Apisarnthanarax S, Price RG, et al. Functional liver imaging and dosimetry to predict hepatotoxicity risk in cirrhotic patients with primary liver cancer. Int J Radiat Oncol Biol Phys. 2018;102:1339–48. 54.Takami T, Yamasaki T, Saeki I, et al. Supportive therapies for prevention of hepatocellular carcinoma recurrence and preservation of liver function. World J Gastroenterol. 2016;22:7252–63. 55.Seidensticker M, Seidensticker R, Damm R, et al. Prospective randomized trial of enoxaparin, pentoxifylline and ursodeoxycholic acid for prevention of radiation-induced liver toxicity. PLoS ONE. 2014;9: e112731. 56.Wang H, Feng M, Jackson A, et al. Local and global function model of the Liver. Int J Radiat Oncol Biol Phys. 2016;94:181–8. 57.de Vos BD, Wolterink JM, de Jong PA, et al. ConvNet-based localization of anatomical Structures in 3-D medical images. IEEE Trans Med Imaging. 2017;36:1470–81. 58.Dou Q, Yu L, Chen H, et al. 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal. 2017;41:40–54. 59.Kang J, Schwartz R, Flickinger J, et al. Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective. Int J Radiat Oncol Biol Phys. 2015;93:1127–35. 60.Klein J, Dawson LA. Hepatocellular carcinoma radiation therapy: review of evidence and future opportunities. Int J Radiat Oncol Biol Phys. 2013;87:22-32. 61.Apisarnthanarax S, Barry A, Cao M, et al. External Beam Radiation Therapy for Primary Liver Cancers: An ASTRO Clinical Practice Guideline. Pract Radiat Oncol. 2022;12:28-51. 62.Rim CH, Kim CY, Yang DS, et al. External beam radiation therapy to hepatocellular carcinoma involving inferior vena cava and/or right atrium: A meta-analysis and systemic review. Radiother Oncol. 2018;129:123-9. 63.Lee HA, Park S, Seo YS, et al. Surgery versus external beam radiotherapy for hepatocellular carcinoma involving the inferior vena cava or right atrium: A systematic review and meta-analysis. J Hepatobiliary Pancreat Sci. 2021;28:1031-46. 64.Lee HA, Seo YS, Shin IS, et al. Efficacy and feasibility of surgery and external radiotherapy for hepatocellular carcinoma with portal invasion: A meta-analysis. Int J Surg. 2022;104:106753. 65.Tsai YL, Yu PC, Nien HH, et al. Time variation of high-risk groups for liver function deteriorations within fluctuating long-term liver function after hepatic radiotherapy in patients with hepatocellular carcinoma. Eur J Med Res. 2024;29:104. 66.Sanford NN, Pursley J, Noe B, et al. Protons versus Photons for Unresectable Hepatocellular Carcinoma: Liver Decompensation and Overall Survival. Int J Radiat Oncol Biol Phys. 2019;105:64-72. 67.Mizumoto M, Okumura T, Hashimoto T, et al. Evaluation of liver function after proton beam therapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2012;82:e529-35. 68.Johnson PJ, Berhane S, Kagebayashi C, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33:550-8. 69.Knox JJ. Addressing the interplay of liver disease and hepatocellular carcinoma on patient survival: the ALBI scoring model. J Clin Oncol. 2015;33:529-31. 70.Demirtas CO, D'Alessio A, Rimassa L, et al. ALBI grade: Evidence for an improved model for liver functional estimation in patients with hepatocellular carcinoma. JHEP Rep. 2021;3:100347. 71.Gkika E, Bettinger D, Krafft L, et al. The role of albumin-bilirubin grade and inflammation-based index in patients with hepatocellular carcinoma treated with stereotactic body radiotherapy. Strahlenther Onkol. 2018;194:403-13. 72.Su TS, Yang HM, Zhou Y, et al. Albumin - bilirubin (ALBI) versus Child-Turcotte-Pugh (CTP) in prognosis of HCC after stereotactic body radiation therapy. Radiat Oncol. 2019;14:50. 73.Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. Am J Public Health. 1998;88:15-9. 74.Mansournia MA, Altman DG. Population attributable fraction. Bmj. 2018;360:k757. 75.von Cube M, Schumacher M, Bailly S, et al. The population-attributable fraction for time-dependent exposures and competing risks-A discussion on estimands. Stat Med. 2019;38:3880-95. 76.Steen J, Morzywołek P, Van Biesen W, et al. Dealing with time-dependent exposures and confounding when defining and estimating attributable fractions-Revisiting estimands and estimators. Stat Med. 2024;43:912-34. 77.von Cube M, Schumacher M, Timsit JF, et al. The population-attributable fraction for time-to-event data. Int J Epidemiol. 2023;52:837-45. 78.American Joint Committee on Cancer. AJCC Cancer Staging Manual. 8th ed. New York: Springer; 2017. 79.Zhang J, Chen G, Zhang P, et al. The threshold of alpha-fetoprotein (AFP) for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. PLoS One. 2020;15:e0228857. 80.Zhu AX, Finn RS, Kang YK, et al. Serum alpha-fetoprotein and clinical outcomes in patients with advanced hepatocellular carcinoma treated with ramucirumab. Br J Cancer. 2021;124:1388-97. 81.Jearth V, Patil PS, Mehta S, et al. Correlation of Clinicopathological Profile, Prognostic Factors, and Survival Outcomes with Baseline Alfa-Fetoprotein Levels in Patients With Hepatocellular Carcinoma: A Biomarker that is Bruised but Not Broken. J Clin Exp Hepatol. 2022;12:841-52. 82.Chesnaye NC, Stel VS, Tripepi G, et al. An introduction to inverse probability of treatment weighting in observational research. Clin Kidney J. 2022;15:14-20. 83.Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550-60. 84.Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008;168:656-64. 85.Xiao Y, Abrahamowicz M, Moodie EE. Accuracy of conventional and marginal structural Cox model estimators: a simulation study. Int J Biostat. 2010;6:Article 13. 86.Lambert PC. The estimation and modelling of cause-specific cumulative incidence functions using time-dependent weights. Stata J. 2017;17:181-207. 87.DiCiccio TJ, Efron B. Bootstrap confidence intervals. Statist Sci. 1996;11:189-228. 88.Wojcieszynski AP, Ben-Josef E. First Do No Harm; How to Prevent Liver Decompensation After Radiation Therapy for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys. 2019;105:87-9. 89.Wang YY, Zhong JH, Su ZY, et al. Albumin-bilirubin versus Child-Pugh score as a predictor of outcome after liver resection for hepatocellular carcinoma. Br J Surg. 2016;103:725-34. 90.Ho SY, Hsu CY, Liu PH, et al. Albumin-bilirubin (ALBI) grade-based nomogram to predict tumor recurrence in patients with hepatocellular carcinoma. Eur J Surg Oncol. 2019;45:776-81. 91.Fagenson AM, Gleeson EM, Pitt HA, et al. Albumin-Bilirubin Score vs Model for End-Stage Liver Disease in Predicting Post-Hepatectomy Outcomes. J Am Coll Surg. 2020;230:637-45. 92.Kornberg A, Witt U, Schernhammer M, et al. The role of preoperative albumin-bilirubin grade for oncological risk stratification in liver transplant patients with hepatocellular carcinoma. J Surg Oncol. 2019;120:1126-36. 93.Tai K, Kuramitsu K, Kido M, et al. Impact of Albumin-Bilirubin Score on Short- and Long-Term Survival After Living-Donor Liver Transplantation: A Retrospective Study. Transplant Proc. 2020;52:910-9. 94.Kao WY, Su CW, Chiou YY, et al. Hepatocellular Carcinoma: Nomograms Based on the Albumin-Bilirubin Grade to Assess the Outcomes of Radiofrequency Ablation. Radiology. 2017;285:670-80. 95.Oh IS, Sinn DH, Kang TW, et al. Liver Function Assessment Using Albumin-Bilirubin Grade for Patients with Very Early-Stage Hepatocellular Carcinoma Treated with Radiofrequency Ablation. Dig Dis Sci. 2017;62:3235-42. 96.Chen PC, Chiu NC, Su CW, et al. Albumin-bilirubin grade may determine the outcomes of patients with very early stage hepatocellular carcinoma after radiofrequency ablation therapy. J Chin Med Assoc. 2019;82:2-10. 97.Ho SY, Liu PH, Hsu CY, et al. Prognostic role of noninvasive liver reserve markers in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. PLoS One. 2017;12:e0180408. 98.Zhong BY, Ni CF, Ji JS, et al. Nomogram and Artificial Neural Network for Prognostic Performance on the Albumin-Bilirubin Grade for Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. J Vasc Interv Radiol. 2019;30:330-8. 99.Ni JY, Fang ZT, Sun HL, et al. A nomogram to predict survival of patients with intermediate-stage hepatocellular carcinoma after transarterial chemoembolization combined with microwave ablation. Eur Radiol. 2020;30:2377-90. 100.Pinato DJ, Yen C, Bettinger D, et al. The albumin-bilirubin grade improves hepatic reserve estimation post-sorafenib failure: implications for drug development. Aliment Pharmacol Ther. 2017;45:714-22. 101.Tada T, Kumada T, Toyoda H, et al. Impact of albumin-bilirubin grade on survival in patients with hepatocellular carcinoma who received sorafenib: An analysis using time-dependent receiver operating characteristic. J Gastroenterol Hepatol. 2019;34:1066-73. 102.Kudo M, Galle PR, Brandi G, et al. Effect of ramucirumab on ALBI grade in patients with advanced HCC: Results from REACH and REACH-2. JHEP Rep. 2021;3:100215. 103.Vogel A, Frenette C, Sung M, et al. Baseline Liver Function and Subsequent Outcomes in the Phase 3 REFLECT Study of Patients with Unresectable Hepatocellular Carcinoma. Liver Cancer. 2021;10:510-21. 104.Okuda K, Ohtsuki T, Obata H, et al. Natural history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer. 1985;56:918-28. 105.A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. Hepatology. 1998;28:751-5. 106.Leung TW, Tang AM, Zee B, et al. Construction of the Chinese University Prognostic Index for hepatocellular carcinoma and comparison with the TNM staging system, the Okuda staging system, and the Cancer of the Liver Italian Program staging system: a study based on 926 patients. Cancer. 2002;94:1760-9. 107.Wensink M, Westendorp RG, Baudisch A. The causal pie model: an epidemiological method applied to evolutionary biology and ecology. Ecol Evol. 2014;4:1924-30. 108.Caruana EJ, Roman M, Hernández-Sánchez J, et al. Longitudinal studies. J Thorac Dis. 2015;7:E537-40. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96861 | - |
| dc.description.abstract | 目前對於肝細胞癌在接受肝臟放射治療後長期追蹤之縱貫性肝功能的重要性尚未充分認識。詳細了解此重要性包含了識別不良肝功能惡化的高風險族群,以及評估不良肝功能對於存活的影響。這些關聯性在長期追蹤過程中的時變性,以及分析縱貫性數據時流行病學上需要考量的因素,對於是否能夠正確評估不同階段肝功能的重要性相當重要且值得注意。
在論文的第一部分(第二章),我們旨在尋找影響肝臟放射治療後長期波動的肝功能中有意義的肝功能惡化之關鍵風險因子和影響的時間變化效應。由於縱貫性肝功能是本部分的研究結果,我們在Cox模型中採用了穩健變異數(robust variance estimation)估計來更正確的檢驗所估計的風險比的虛無假設,以考慮同一受試者不同時間肝功能的相關性。我們還於模型中導入了時間依賴協變項(time-dependent covariates),用於了解顯著違反比例風險假設的因子其效應的時變趨勢。我們發現性別是個重要的顯著因子,和男性相比,女性肝功能惡化的風險會隨時間每月增加。這個發現與另一個發現形成了對比,放射治療前較高的肝功能數值可能導致放射治療後肝功能惡化的效應在時間上幾乎保持恆定。 在論文的第二部分(第三章),我們專注於縱貫性肝功能對於存活的影響。作為一種客觀且有鑑別力的方法,白蛋白-膽紅素分級(Albumin-Bilirubin grade, ALBI grade)在這裡代表了肝功能,計算了它對於死亡的時間依賴族群可歸因分率(time-dependent population attributable fraction, time-dependent PAF)。由於縱貫性肝功能是本部分的研究暴露變項,我們將時間依賴白蛋白-膽紅素分級納入了競爭風險的事件發生時間設置下(time-to-event settings with competing risks)的累積發生函數(cumulative incidence functions, CIFs)中以估計族群可歸因分率,我們也應用了逆機率加權(inverse probability weighting, IPW)來處理動態腫瘤狀態所引起的時間變化干擾效應。我們發現經過逆機率加權調整後的第三等級白蛋白-膽紅素分級在肝臟放射治療後第一年的死亡族群可歸因分率估計可高達90%,且兩年後仍然維持在60%。這樣的發現顯示縱貫性肝功能對肝細胞癌族群的存活具有時間依賴且顯著的影響,其重要性可能不亞於肝細胞癌本身。 總結來說,縱貫性肝功能可能不論在調節臨床影響因子和直接影響肝細胞癌患者的存活都具有顯著的角色。我們的研究突顯了在長期追蹤中監測肝臟放射治療後縱貫性肝功能的重要性,有助於促進建立肝衰竭的預防策略,最終能夠提升肝細胞族群的生存和福祉。 | zh_TW |
| dc.description.abstract | The importance of longitudinal liver function (LF) following hepatic radiotherapy (RT) in treating hepatocellular carcinoma (HCC) has not been fully recognized. Understanding this importance in detail involves identifying high-risk groups for adverse LF deterioration and evaluating the impact of adverse LF on survival. Time variation of the associations within long-term follow-up and epidemiological considerations in analyzing longitudinal data are noteworthy for accurately assessing this importance across different time periods.
In the first part of this dissertation (Chapter 2), we aim to identify essential risk factors for LF deterioration within the fluctuating long-term LF following hepatic RT and their time-varying effects. Since longitudinal LF is the study outcome in this part, we use robust variance estimation within the Cox model to accurately test the null hypotheses regarding the estimated hazard ratios, accounting for LF correlation within subjects. We also introduce time-dependent covariates for the factors that significantly violate the proportional hazards assumption to understand their trends of effects over time. We find that gender is a significant factor, with the hazard of LF deterioration for females increasing monthly over time compared with males. This contrasts with another finding that a higher baseline LF score before RT may induce LF deterioration after RT that remains almost constant over time. In the second part of this dissertation (Chapter 3), we focus on the impact of longitudinal LF on survival. Albumin-Bilirubin (ALBI) grade, as an objective and discriminative approach, is used as the representative for LF, and its time-dependent population attributable fraction (PAF) for mortality is calculated. Since longitudinal LF is the study exposure in this part, we incorporate time-dependent ALBI grade into the cumulative incidence functions in time-to-event settings with competing risks to estimate the PAF. We also apply inverse probability weighting (IPW) to address time-varying confounding due to dynamic tumor status. We find that the estimated IPW-adjusted PAF of ALBI grade 3 for mortality is as high as 90% within the first year following hepatic RT and remains at 60% after two years. These findings indicate that longitudinal LF has a time-dependent and substantial impact on survival in HCC populations, possibly with importance no less than that of HCC itself. In summary, longitudinal LF may play a significant role in mediating clinical factors and directly affecting survival for HCC patients. Our work highlights the importance of monitoring longitudinal LF following hepatic RT during long-term follow-up, helps facilitate prevention strategies for hepatic decompensation, and ultimately enhances the survival and well-being of HCC populations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:18:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-24T16:18:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | DOCTORAL DISSERTATION ACCEPTANCE CERTIFICATE I
中文摘要 II ABSTRACT IV LIST OF FIGURES IX LIST OF TABLES X CHAPTER 1. INTRODUCTION 1 1.1. IMPORTANCE OF LIVER FUNCTION 1 1.2. CHARACTERISTICS OF LIVER FUNCTION 2 1.2.1. Diversity in types and related testing 2 1.2.2. Fluctuations during follow-up 3 1.3. PRE-HEPATIC RT FACTORS ASSOCIATED WITH POST-HEPATIC RT LIVER FUNCTION 3 1.4. OUTLINE 4 CHAPTER 2. TIME VARIATION OF HIGH-RISK GROUPS FOR LIVER FUNCTION DETERIORATIONS WITHIN FLUCTUATING LONG-TERM LIVER FUNCTION AFTER HEPATIC RADIOTHERAPY IN PATIENTS WITH HEPATOCELLULAR CARCINOMA 6 2.1. ABSTRACT 6 2.2. INTRODUCTION 8 2.3. MATERIALS AND METHODS 10 2.3.1. Study population 11 2.3.2. Data collection and processing 12 2.3.3. Hepatic radiotherapy 13 2.3.4. Follow-up 14 2.3.5. Definitions of LF events 15 2.3.6. Statistical analysis 16 2.3.7. Sensitivity analyses 17 2.4. RESULTS 18 2.4.1. Characteristics of the study population 18 2.4.2. LF events 19 2.4.3. Hazard ratios in developing LF events 20 2.4.4. Sensitivity analyses 21 2.5. DISCUSSION 22 2.6. CONCLUSION 26 2.7. FIGURES 27 2.8. TABLES 32 CHAPTER 3. TIME-DEPENDENT POPULATION ATTRIBUTABLE FRACTION OF LONGITUDINAL ALBUMIN-BILIRUBIN GRADE FOLLOWING HEPATIC RADIOTHERAPY FOR MORTALITY 44 3.1. ABSTRACT 44 3.2. INTRODUCTION 46 3.3. MATERIALS AND METHODS 48 3.3.1. Study population 48 3.3.2. Hepatic RT 48 3.3.3. Clinical data acquisition 49 3.3.4. Follow-up for survival 50 3.3.5. Calculation of time-dependent PAF 51 3.4. RESULTS 54 3.4.1. Characteristics of the study population 54 3.4.2. Mortality 55 3.4.3. Time-dependent PAF of longitudinal ALBI grade 3 for mortality 55 3.5. DISCUSSION 56 3.6. CONCLUSION 60 3.7. FIGURES 62 3.8. TABLES 66 CHAPTER 4. DISCUSSION 67 REFERENCE 71 | - |
| dc.language.iso | en | - |
| dc.subject | 肝臟放射治療 | zh_TW |
| dc.subject | 高風險族群 | zh_TW |
| dc.subject | 時間變化 | zh_TW |
| dc.subject | 存活 | zh_TW |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 縱貫性肝功能 | zh_TW |
| dc.subject | Survival | en |
| dc.subject | Hepatocellular carcinoma | en |
| dc.subject | Hepatic radiotherapy | en |
| dc.subject | Longitudinal liver function | en |
| dc.subject | High-risk group | en |
| dc.subject | Time variation | en |
| dc.title | 肝細胞癌放射治療後的縱貫性肝功能之影響因子以及對於死亡之影響 | zh_TW |
| dc.title | Factors Affecting Longitudinal Liver Function Following Hepatic Radiotherapy for Hepatocellular Carcinoma and Impact on Survival | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 王彥雯;范怡琴;雷德;林聖軒 | zh_TW |
| dc.contributor.oralexamcommittee | Charlotte Wang;Yi-Chin Fan;Louis Tak Lui;Sheng-Hsuan Lin | en |
| dc.subject.keyword | 縱貫性肝功能,肝臟放射治療,肝細胞癌,存活,時間變化,高風險族群, | zh_TW |
| dc.subject.keyword | Longitudinal liver function,Hepatic radiotherapy,Hepatocellular carcinoma,Survival,Time variation,High-risk group, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202404604 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-11-20 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| dc.date.embargo-lift | 2025-02-25 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 2.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
