Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96856
標題: 基於熔池影像的焊接外觀結果預測研究
Research on Predicting Welding Appearance Results Based on Molting Pool Images
作者: 林承漢
Cheng-Han Lin
指導教授: 蔡曜陽
Yao-Yang Tsai
關鍵字: 不鏽鋼薄片,氬氣電弧無填料焊接,被動視覺,影像處理,機器學習,
stainless steel sheet,argon arc welding without filler,passive vision,image processing,machine learning,
出版年 : 2024
學位: 碩士
摘要: 在製造業中,焊接品質的控制對於最終產品的穩定性和可靠性至關重要。尤其在薄片材料的焊接中,由於材料特性和厚度較薄,焊接過程極易出現變形及各種缺陷,對品質的即時監控有著更高的要求。然而,傳統檢測方法多為事後檢查,難以及時反映焊接過程中的異常與缺陷,如工件表面的裂紋或熔透不足等問題。尤其是在管道類環境中,接口焊接完成後甚至無法直接檢查內部是否焊接成功。此外,使用被動視覺工業相機記錄焊接過程,由於電弧光強度高和焊接區域溫度高,影像捕捉與分析面臨挑戰。因此,如何透過實時監視焊接過程並減少缺陷成為一項需解決的課題。
本研究提出一種基於被動視覺工業相機的實時監控系統,並利用機器學習對焊接過程中捕捉到的影像進行分析,從而實現對加工成品形貌的分類和預測。本研究將拍攝下來的加工影像進行分類,其後將影像做處理後抓取影像中的特徵信息,將熔池邊緣輪廓作為特徵進行計算。接著本研究第二部份利用隨機森林模型學習這些特徵信息,以達到對加工成品形貌的預測分類效果。此技術在提高工業焊接生產線自動化程度方面具有重要意義,能夠有效減少因材料特性帶來的焊接缺陷,提高產品的一致性和可靠性。
In the manufacturing industry, the control of welding quality is crucial to the stability and reliability of the final product. Particularly in the welding of thin sheet materials, the unique material properties and reduced thickness make the process highly prone to deformation and various defects, placing higher demands on real-time quality monitoring. However, traditional inspection methods are predominantly post-process and struggle to promptly detect anomalies and defects during welding, such as surface cracks or insufficient penetration. This issue is even more pronounced in pipeline environments, where it is often impossible to directly inspect the internal welding quality after joint completion. Additionally, using passive industrial cameras to capture welding processes is challenging due to the high intensity of arc light and the elevated temperatures in the welding area. Therefore, developing methods to monitor the welding process in real-time and reduce defects has become a critical issue to address.
This study proposes a real-time monitoring system based on passive vision industrial cameras, and uses machine learning to analyze the images captured during the welding process, thereby achieving classification and prediction of the morphology of processed products. This study classifies the captured processed images and then processes them to capture feature information from the images. In the second part of this study, the random forest model is used to learn these feature information, in order to achieve the prediction and classification effect of the processed product morphology. The model is then put into the processing process to test the accuracy and speed of real-time judgment, thereby improving the real-time monitoring efficiency of welding quality and reducing the cost and time of manual inspection. This technology is of great significance in improving the automation level of industrial welding production lines, which can effectively reduce welding defects caused by material characteristics and improve product consistency and reliability.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96856
DOI: 10.6342/NTU202500033
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2030-01-06
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
4.43 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved