請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96850完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳瑀屏 | zh_TW |
| dc.contributor.advisor | Yu-Ping Chen | en |
| dc.contributor.author | 李紫婕 | zh_TW |
| dc.contributor.author | Tzu-Chieh Lee | en |
| dc.date.accessioned | 2025-02-24T16:15:04Z | - |
| dc.date.available | 2025-02-25 | - |
| dc.date.copyright | 2025-02-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-13 | - |
| dc.identifier.citation | Ankit Verma (2021). Ecommerce Customer Churn Analysis and Prediction [Database]. Kaggle. https://www.kaggle.com/datasets/ankitverma2010/ecommerce-customer-churn-analysis-and-prediction
Swathi Menon (2023). Amazon consumer Behaviour Dataset [Database]. Kaggle. https://www.kaggle.com/datasets/swathiunnikrishnan/amazon-consumer-behaviour-dataset/data Peter Trkman, Kevin McCormack, Marcos Paulo Valadares de Oliveira, Marcelo Bronzo Ladeira, (2010). The impact of business analytics on supply chain performance. Decision Support Systems, 49(3), 318-327 Coussement, K., Lessmann, S., & Verstraeten, G. (2017). A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the tele- communication industry. Decision Support Systems, 95, 27–36. Óskarsdóttir, M., Bravo, C., Verbeke, W., Sarraute, C., Baesens, B., & Vanthienen, J. (2017). Social network analytics for churn prediction in telco: Model building, eva- luation and network architecture. Expert Systems with Applications, 85, 204–220. Sharma, R. R., & Rajan, S. (2017). Evaluating prediction of customer churn behavior based on artificial bee colony algorithm. International Journal Of Engineering And Computer Science, 6(1), 20017–20021 Athanassopoulos, A. (2000). Customer satisfaction cues to support market segmentation and explain switching behavior. Journal of Business Research, 47(3), 191–207. Bhattacharya, C. (1998). When customers are members: Customer retention in paid membership contexts. Journal of the Academy of Marketing Science, 26(1), 31–44. Colgate, M., & Danaher, P. (2000). Implementing a customer relationship strategy: The assymetric impact of poor versus excellent execution. Journal of the Academy of Marketing Science, 28(3), 375–387. Rasmusson, E. (1999). Complaints can build relationships. Sales and Marketing Management, 151(9), 89–90. Hughes, A. M. (1994), “Strategic Database Marketing”, Chicago, IL: Probus Publishing Company. Maria, O., Verbeke, W., Sarraute, C., Baesens, B., & Vanthienen, J. (2016). A comparative study of social network classifiers for predicting churn in the telecommunication industry. IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 1151–1158). Ahmed, S. R. (2004). Applications of Data Mining in Retail Business. Proceedings of International Conference on Information Technology: Coding and Computing, Las Vegas, NV, USA. Giraud-Carrier, C. and Povel, O. (2003). Characterising Data Mining Software. Intelligent Data Analysis, 7(3), 181-192. Barfar, A., Padmanabhan, B. and Hevner, A. (2017). Applying Behavioral Economics in Predictive Analytics for B2B Churn: Findings from Service Quality Data. Decision Support Systems, 101, 115-127. Jahromi, A. T., Stakhovych, S. and Ewing, M. (2014). Managing B2B Customer Churn, Retention and Profitability. Industrial Marketing Management, 43(7), 1258-1268. A. P. Patil, M. P. Deepshika, S. Mittal, S. Shetty, S. S. Hiremath and Y. E. Patil, "Customer churn prediction for retail business," 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 2017, pp. 845-851, doi: 10.1109/ICECDS.2017.8389557. Kaya, E., Dong, X., Suhara, Y., Balcisoy, S., Bozkaya, B. and Pentland, A. S. (2018). Behavioral Attributes and Financial Churn Prediction. EPJ Data Science, 7(1), 1-18. Amin, A., Al-Obeidat, F., Shah, B., Adnan, A., Loo, J. and Anwar, S. (2019). Customer Churn Prediction in Telecommunication Industry Using Data Certainty. Journal of Business Research, 94, 290-301. Moeyersoms, J. and Martens, D. (2015). Including High-cardinality Attributes in Predictive Models: A Case Study in Churn Prediction in The Energy Sector. Decision Support Systems, 72, 72-81. D. Chen, K. Guo and B. Li, "Predicting Customer Profitability Dynamically over Time: An Experimental Comparative Study", Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11896 LNCS, pp. 174-183, 2019. Heldt R, Silveira CS, Luce FB. (2021). Predicting customer value per product: From RFM to RFM/P. J Bus Res, 127, 444–53. Piao, J.; Zhang, G.; Xu, F.; Chen, Z.; Li, Y. Predicting Customer Value with Social Relationships via Motif-based Graph Attention Networks. In Proceedings of the The Web Conference 2021 (WWW 2021), Ljubljana, Slovenia, 19–23 April 2021; Leskovec, J., Grobelnik, M., Najork, M., Tang, J., Zia, L., Eds.; ACM/IW3C2: Ljubljana, Slovenia, 2021; pp. 3146–3157 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96850 | - |
| dc.description.abstract | 歸功於科技的進步降低了數位化轉型阻礙,企業能夠輕易地捕捉和儲存顧客活動資訊,建構龐大數據庫,包含人口變數、行為數據與心理特徵,並透過數據分析深入了解顧客需求與期望,以提供客製化體驗,進而成為競爭優勢。同時,顧客也擁有了更便捷的方式探索資訊,在不同的企業與商品之間進行選擇。
一直以來,顧客之於企業都是不可或缺的存在,且顧客一旦流失,便需要耗費大量的資源來獲取新顧客。所以,如何讓企業的既有顧客盡可能地留存下來,並且提高每一位顧客的貢獻程度,是讓企業得以長久經營之關鍵所在。 因此,本研究旨在探討與顧客流失以及顧客貢獻度攸關之變數,各自運用三種機器學習模型分析哪些企業或顧客行為會影響顧客流失與貢獻度。除此之外,也研究每一個攸關變數之背後可能原因,並針對該原因提出對應的建議對策,以協助企業進行後續改善措施的規劃。 | zh_TW |
| dc.description.abstract | With the advancement of technology, the barriers to digital transformation have been significantly eliminated. Consequently, corporations are able to easily collect and store vast amounts of customer data. By deeply analyzing this data, corporations will learn the demands and expectations of customers, enabling them to provide a personalized experience for each customer and gain competitive advantages in the market. Meanwhile, customers now have more convenient ways to access information, allowing them to switch between different companies and products easily.
Customers have always been indispensable to businesses. Once an existing customer is lost, it takes a lot of resources to attract a new customer. Therefore, for companies aiming to operate sustainably, it is crucial to retain as many customers as possible and to enhance the contribution of each customer. Thus, in this study, three machine learning models are employed to analyze variables related to customer churn and customer contribution. In addition, possible explanations of each relevant variable and strategic recommendations are provided in order for enterprises to plan subsequent improvements. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:15:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-24T16:15:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
中文摘要 II ABSTRACT III 圖次 VI 表次 VIII 第一章. 前言 1 第一節、 研究背景 1 第二節、 研究動機 2 第三節、 研究目的 2 第二章.文獻探討 4 第一節、 過往預測顧客流失之方式 4 第二節、 過往預測顧客貢獻度之方式 5 第三節、 本研究之顧客流失與顧客貢獻度之預測分析方式 5 第三章.研究方法 7 第一節、 資料集介紹 7 壹、 產業介紹 7 貳、 資料集架構說明 8 參、 資料集概況 10 第二節、 統計分析與機器學習模型 19 壹、 模型演算法說明 19 貳、 評估預測表現之指標 26 參、 評估變數重要性之指標 28 第四章.實驗分析 30 第一節、 不同模型預測顧客流失之分析結果 30 壹、 影響顧客流失之重要變數與統計檢定 30 貳、 影響顧客流失之可能原因 41 第二節、 預測顧客流失之模型預測能力比較 44 第三節、 不同模型預測顧客貢獻度之結果 47 壹、 影響顧客貢獻度之重要變數與統計檢定 47 貳、 影響顧客貢獻度之可能原因 53 第四節、 預測顧客貢獻度之模型預測能力比較 54 第五節、 針對減少顧客流失與提高顧客貢獻度之建議對策 58 壹、 減少顧客流失之因應對策 58 貳、 提高顧客貢獻度之因應對策 60 第五章.結論與建議 62 第一節、 研究發現與管理意涵 62 壹、 預測分析結果 62 貳、 建議企業採行之對策 63 第二節、 研究限制與未來研究發展方向 65 壹、 研究限制 65 貳、 未來研究發展方向 65 參考文獻 66 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 顧客流失 | zh_TW |
| dc.subject | 隨機森林 | zh_TW |
| dc.subject | 線性迴歸 | zh_TW |
| dc.subject | 羅吉斯迴歸 | zh_TW |
| dc.subject | 顧客貢獻度 | zh_TW |
| dc.subject | Customer contribution | en |
| dc.subject | Random forest | en |
| dc.subject | Customer churn | en |
| dc.subject | Linear regression | en |
| dc.subject | Logistic regression | en |
| dc.title | 與電商平台顧客流失與顧客貢獻度有關之主要變數分析與對策 | zh_TW |
| dc.title | Analysis of main variables related to customer churn and customer contribution on e-commerce platforms | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳俊廷;吳政衛 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Ting Chen;Cheng-Wei Wu | en |
| dc.subject.keyword | 顧客流失,顧客貢獻度,羅吉斯迴歸,線性迴歸,隨機森林, | zh_TW |
| dc.subject.keyword | Customer churn,Customer contribution,Logistic regression,Linear regression,Random forest, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202404574 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-11-14 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 國際企業學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 國際企業學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 2.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
