Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96838
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐昱辰zh_TW
dc.contributor.advisorYu-Chen Ouen
dc.contributor.author錢汕梅zh_TW
dc.contributor.authorJoanna Agathaen
dc.date.accessioned2025-02-24T16:11:50Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2025-
dc.date.submitted2025-01-07-
dc.identifier.citationAbdelMalek, H., Hassan, T. K., & Moustafa, A. (2023). Nonlinear Time History Analysis Evaluation of Optimized Design for Medium to High Rise Buildings Using Performance-Based Design. Ain Shams Engineering Journal, 14(9), 102081. https://doi.org/10.1016/j.asej.2022.102081
American Society of Civil Engineers (ASCE). (2005). ASCE/SEI 7-05: Minimum Design Loads for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers.
American Society of Civil Engineers (ASCE). (2010). ASCE/SEI 7-10: Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers.
American Society of Civil Engineers (ASCE). (2016). ASCE/SEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784414248
American Society of Civil Engineers (ASCE). (2022). ASCE/SEI 7-22: Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers.
Bagheri, M., & Miri, M. (2010). Performance-Based Design in Earthquake Engineering. In 5th International Congress in Civil Engineering, Ferdowsi University of Marshad, Iran, 23, 878-884.
Boore, D. M., Watson-Lamprey, J., & Abrahamson, N. A. (2006). Orientation-Independent Measures of Ground Motion. Bulletin of the Seismological Society of America, 96(4A), 1502-1511. https://doi.org/10.1785/0120050209
Chiou, T. C., Chung, L. L., Tu, Y. S., Lai, Y. C., Tseng, C. C., Weng, P. W., Chuang, M. C., Yeh, Y. K., Li, C. H., Lin, M. L., Wang, J. X., Shen, W. C., Hsiao, F. P., Xue, P., & Hwang S. J. (2020). Technical Handbook for Taiwan Earthquake Assessment and Strengthening of Structures by Pushover Analysis (TEASPA V4.0). National Center for Research on Earthquake Engineering (NCREE).
Chopra, A. K. (2017). Dynamics of Structures: Theory and Applications to Earthquake Engineering (5th ed.). Pearson.
Fajfar, P., & Krawinkler, H. (2004). Performance-based seismic design: Concepts and implementation: Proceedings of the International Workshop, Bled, Slovenia, 28 June-1 July 2004. Pacific Earthquake Engineering Research Center.
FEMA (2000). FEMA 356: Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency.
FEMA (2012). FEMA P-58: Seismic Performance Assessment of Buildings. Federal Emergency Management Agency.
Haselton, C., & Baker, J. (2006). Ground Motion Intensity Measures for Collapse Capacity Prediction: Choice of Optimal Spectral Period and Effect of Spectral Shape. 8th National Conference on Earthquake Engineering,
Hassanzadeh, A., Moradi, S., & Burton, H. V. (2024). Performance-Based Design Optimization of Structures: State-of-the-Art Review. Journal of Structural Engineering, 150(8). https://doi.org/10.1061/jsendh.steng-13542
Hsiao, F. P., Chung, L. L., Yeh, Y. K., Chien, W. Y., Shen W. C., Chiu, C. C., Zhou, D. G., Zhao, Y. F., Weng, P. W., Yang, Y. S., Tu, Y. H., Chai, J. F., & Huang, S. J. (2013). Seismic Evaluation and Retrofitting Techniques Handbook for School Buildings (3rd ed.). National Center for Research on Earthquake Engineering.
Krawinkler, H., & Seneviratna, G. D. P. K. (1998). Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation. Engineering Structures, 20(4–6), 452–464.
Lagaros, N. D., Fragiadakis, M., & Papadrakakis, M. (2013). Issues on Computationally Intensive Nonlinear Dynamic Analysis. Earthquake Engineering and Structural Dynamics, 42(1), 1-17.
LATBSDC. (2017). An Alternative Procedure for Seismic Analysis and Design of Tall Buildings, 2017 Edition with 2018 supplements. Los Angeles Tall Buildings Structural Design Council.
LATBSDC. (2023). An Alternative Procedure for Seismic Analysis and Design of Tall Buildings, 2023 Edition. Los Angeles Tall Buildings Structural Design Council.
Liu, X. R., Chien, W. Y., & Chang, Y. W. (2020). Research on the Selection of Measured Earthquake Time Histories for Design at General Site Areas in Taiwan.
Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). OpenSees Command Language Manual. Pacific Earthquake Engineering Research Center.
National Land Management Agency MOI. (2024a). Earthquake Resistant Design Specifications for Buildings — Appendix A: Design Verification Using Nonlinear Response Time Analysis. Ministry of the Interior, Taiwan.
NCREE (2020). Seismic Design Code and Commentary for Buildings in Taiwan. National Center for Research on Earthquake Engineering.
PEER (2017). Tall Buildings Initiative: Guidelines for Performance-Based Seismic Design of Tall Buildings. Pacific Earthquake Engineering Research Center.
PEER (2023). Pacific Earthquake Engineering Research Center Annual Report. University of California, Berkeley.
Shome, N., & Cornell, C. A. (1999). Probabilistic Seismic Demand Analysis of Nonlinear Structures. Pacific Earthquake Engineering Research Center.
Wilson, E. L. (2002). Three-Dimensional Static and Dynamic Analysis of Structures. Computers and Structures, Inc.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96838-
dc.description.abstract隨著地震工程領域的不斷進步,耐震性能評估從簡化的線性方法逐步發展到能夠模擬結構在地震載荷下複雜行為的非線性方法。其中,非線性歷時分析(Nonlinear Response History Analysis)在模擬結構的非彈性變形和破壞機制等方面發揮了關鍵作用,能夠更真實地反映結構在地震作用下的行為。然而,其應用仍面臨多方面的挑戰,包括地震動記錄的選擇與調幅、分析過程的高計算需求以及專業技術門檻。
本研究聚焦於高地震活動區域——台灣,探討如何有效應用Nonlinear Response History Analysis來提升建築物的耐震性能評估能力。我們利用創新的地震動選擇工具「臺灣工址輸入地震查選平台(Input Motion Selection for Taiwan, INMOST)」並結合最新的規範要求,如《附篇 A—使用非線性反應歷時分析進行設計驗證》。此外,本研究參考國際標準(如ASCE 7-22、TBI和LATBSDC指南),以提升台灣耐震性能評估的效率與準確性,展示了本地化方法如何在精準性與實用性之間取得平衡,並推動耐震設計的進一步發展。
研究的核心之一是地震動調幅方法的整合,確保輸入地震動與目標設計反應譜相匹配。調幅方法通過在保持地震動頻譜特性和持續時間的基礎上調整地震動的強度,使其能更準確地反映場地的地震危險性特徵,從而提高分析結果的準確性並減少變異性(Baker and Cornell, 2006)。本研究利用INMOST平台進行地震動選擇和調幅處理,確保其反映本地場地特性並符合目標反應譜要求。結合精細的數值建模和先進的計算技術,研究建立了一套適用於監管及實務領域的全面框架,推動Nonlinear Response History Analysis的有效應用,提升高地震風險地區(如台灣)的結構韌性。
zh_TW
dc.description.abstractSeismic performance evaluation has undergone significant advancements, evolving from simplified linear methods to sophisticated nonlinear approaches capable of complex structural behaviors under earthquake loads. Nonlinear Response History Analysis now plays a pivotal role in understanding structural behavior under realistic seismic conditions, accurately simulating phenomena like inelastic deformation and failure mechanisms. However, its application remains challenging due to the complexity of selecting and scaling ground motion records, the high computational demand, and the level of expertise required. Addressing these challenges, this study focuses on Nonlinear Response History Analysis implementation in Taiwan, a region characterized by high seismic activity. By using innovative tools such as the Input Motion Selection for Taiwan (INMOST) platform and integrating updated regulatory frameworks like “Appendix A — Design Verification Using Nonlinear Response Time Analysis,” this research aligns with international standards like ASCE 7-22, TBI, and LATBSDC guidelines to improve the efficiency and reliability of seismic evaluations. These advancements reflect Taiwan’s commitment to advancing seismic design through localized methods that balance precision and practicality.
A key component of this research is integrating amplitude scaling methods for ground motion selection, ensuring input motions align with the target design spectrum. Amplitude scaling involves modifying the intensity of selected ground motions while preserving their frequent content and duration, making them more representative of the seismic hazard at the site. This process enhances the compatibility of input motions with specific design criteria, reducing variability in analysis result an improving the accuracy of seismic performance predictions (Baker and Cornell, 2006). This study utilizes tools such as the Input Motion Selection for Taiwan (INMOST) platform to enhance ground motion selection and amplitude scaling, ensuring that they reflect local site characteristics and align with the target response spectrum. By integrating these refined inputs with precise numerical modeling and advanced computational methods, the research establishes a comprehensive framework for applying Nonlinear Response History Analysis effectively in both regulatory and practical contexts. This approach contributes to improving the resilience of structures in regions with significant seismic risk, such as Taiwan.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:11:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:11:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsThesis Acceptance Certificate ii
Acknowledgements iv
Abstract v
中文摘要 vii
Table of Contents ix
List of Tables xiii
List of Figures xiv
Chapter 1 Introduction 1
1.1. Significance of Research 1
1.2. Research Objective and Process 3
1.3. Thesis Structure 5
Chapter 2 Advancements in Seismic Performance Evaluation Methods 7
2.1. Linear Static Analysis: Foundation and Applications 7
2.2. Linear Dynamic Analysis: Enhancing Precision 8
2.3. Nonlinear Static (Pushover) Analysis: Bridging the Gap 9
2.4. Nonlinear Dynamic Analysis: The Apex of Precision 11
2.5. Comparative Practices in the US and Taiwan 14
Chapter 3 Preliminary Research Findings on Earthquake Ground Motion 16
3.1. Criteria for Selecting Earthquake Ground Motion 16
3.2. Evaluating Periods for Seismic Analysis 17
3.3. Amplitude Scaling 19
3.4. Selecting and Adjusting Earthquake Ground Motion 21
3.5.1. Amplitude Scaling in Earthquake Ground Motion Selection 24
3.5.2. Load Cases Strategies for Earthquake Ground Motions 26
3.5. Taiwan Earthquake Input Motion Selection Platform 27
Chapter 4 Nonlinear Modeling and Performance Specifications for Structural Components 29
4.1. Modeling Plastic and Fiber Hinges 29
4.1.1. Plastic Hinge Modeling for Beams 29
4.1.2. Plastic Hinge Modeling for Columns 30
4.1.3. Fiber Hinge Modeling for Walls 31
4.1.4. Location of Plastic Hinges 33
4.2. Backbone Curves and Strength Degradation 33
4.3. Classification of Behavioral Response in Structural Components 34
4.4. Effective Stiffness for Structural Components 35
4.5. Material Properties for Nonlinear Analysis 37
4.6. Performance Acceptance Criteria 38
4.6.1. Acceptance Criteria for Overall Structure 38
4.6.2. Displacement-Controlled Behavior: Acceptance Criteria and Reinforcement Details 39
4.6.3. Force-Controlled Behavior: Acceptance Criteria and Reinforcement Details 40
Chapter 5 Case Study – Nonlinear Response History Analysis Applied on Building D 42
5.1. Structural System Overview 42
5.1.1. Building D Floor Height Information 45
5.1.2. Building D Concrete Compressive Strength Specifications 46
5.1.3. Building D Structural Dimension Description 47
5.1.3.1. Beam Cross-Section Data 47
5.1.3.2. Column Cross-Section Data 48
5.1.3.3. Wall Cross-Section Data 50
5.2. Earthquake Ground Motion Selection for Building D 51
5.3. Obtain Earthquake Ground Motion 54
5.4. Earthquake Ground Motion Input 55
5.5. ETABS Imports Earthquake Ground Motion as Response History 60
5.6. Load Cases 61
5.6.1. Initial State Load Case 61
5.6.2. Earthquake Ground Motion Load Cases 63
5.7. Plastic Hinges 64
5.8. Fiber Hinges 67
5.9. Effective Strength Settings 72
5.10. Analysis Time 74
5.11. Results and Discussions 75
5.11.1 Plastic Hinge Results 75
5.11.1.1 Load Case 1 - 1999/09/20 Seismic Station TCU078 Plastic Hinge Results 75
5.11.1.2 Load Case 2 - 1999/09/20 Seismic Station TCU078 (Main Axis Swap) Plastic Hinge Results 78
5.11.1.3 Load Case 3 – 2002/03/31 Seismic Station TCU095 Plastic Hinge Results 81
5.11.1.4 Load Case 4 – 2002/03/31 Seismic Station TCU095 (Main Axis Swap) Plastic Hinge Results 83
5.11.1.5 Load Case 5 – 2016/02/05 Seismic Station CHY056 Plastic Hinge Results 85
5.11.1.6 Load Case 6 – 2016/02/05 Seismic Station CHY056 (Main Axis Swap) Plastic Hinge Results 87
5.11.2 Displacement Control Behavior Verification 89
5.11.2.1 1999/09/20 Seismic Station TCU078 Hysteresis Loop 89
5.11.2.2 1999/09/20 Seismic Station TCU078 (Main Axis Swap) Hysteresis Loop 93
5.11.2.3 2002/03/31 Seismic Station TCU095 Hysteresis Loop 97
5.11.2.4 2002/03/31 Seismic Station TCU095 (Main Axis Swap) Hysteresis Loop 101
5.11.2.5 2016/02/05 Seismic Station CHY056 Hysteresis Loop 105
5.11.2.6 2016/02/05 Seismic Station CHY056 (Main Axis Swap) Hysteresis Loop 109
5.11.3 Non-Structural Wall Results 112
5.11.3.1 Impact of Fiber Hinges on Adjacent Beams and Columns 115
5.11.3.2 Reinforcement of Non-Structural Wall 116
Chapter 6 Conclusions and Future Work 118
6.1. Conclusions 118
6.2. Future Work 119
References 120
-
dc.language.isoen-
dc.subject耐震性能評估zh_TW
dc.subject振幅縮放法zh_TW
dc.subject地震歷時縮放zh_TW
dc.subject非線性歷時分析zh_TW
dc.subjectseismic performance evaluationen
dc.subjectNonlinear response history analysisen
dc.subjectground-motion scalingen
dc.subjectamplitude scaling methoden
dc.title以非線性歷時分析評估耐震性能之鋼筋混凝土建築案例研究zh_TW
dc.titleCase Study on Evaluating Seismic Performance of RC Buildings Using Nonlinear Response History Analysisen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王勝煇;黃明慧zh_TW
dc.contributor.oralexamcommitteeSheng-Hui Wang;Ming-Hui Huangen
dc.subject.keyword非線性歷時分析,地震歷時縮放,振幅縮放法,耐震性能評估,zh_TW
dc.subject.keywordNonlinear response history analysis,ground-motion scaling,amplitude scaling method,seismic performance evaluation,en
dc.relation.page123-
dc.identifier.doi10.6342/NTU202500051-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-01-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-02-25-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved