請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96833完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 諶玉真 | zh_TW |
| dc.contributor.advisor | Yu-Jane Sheng | en |
| dc.contributor.author | 顏慧新 | zh_TW |
| dc.contributor.author | Hui-Hsin Yen | en |
| dc.date.accessioned | 2025-02-24T16:10:27Z | - |
| dc.date.available | 2025-02-25 | - |
| dc.date.copyright | 2025-02-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-03 | - |
| dc.identifier.citation | [1] W.-Z. Hsieh, Y.-H. Tsao, H.-K. Tsao, Y.-J. Sheng, Diverse wetting behavior of a binary mixture of antagonist liquids: Nanodroplet with finite precursor film and leak-out phenomenon, J. Mol. Liq. 372 (2023) 121197.
[2] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81(2) (2009) 739-805. [3] M.R. Moldover, J.W. Cahn, An interface phase transition: complete to partial wetting, Science 207(4435) (1980) 1073-1075. [4] Y.-H. Weng, C.-J. Wu, H.-K. Tsao, Y.-J. Sheng, Spreading dynamics of a precursor film of nanodrops on total wetting surfaces, Phys. Chem. Chem. Phys. 19(40) (2017) 27786-27794. [5] N. Adam, Use of the term ‘Young's Equation’for contact angles, Nature 180(4590) (1957) 809-810. [6] D. Seveno, T.D. Blake, J. De Coninck, Young’s equation at the nanoscale, Phys. Rev. Lett. 111(9) (2013) 096101. [7] K.G. Pepper, C. Bahrim, R. Tadmor, Interfacial tension and spreading coefficient of thin films: Review and future directions, J. Adhes. Sci. Technol. 25(12) (2011) 1379-1391. [8] F. Brochard-Wyart, J.M. Di Meglio, D. Quére, P.G. De Gennes, Spreading of nonvolatile liquids in a continuum picture, Langmuir 7(2) (1991) 335-338. [9] H. Dobbs, D. Bonn, Predicting wetting behavior from initial spreading coefficients, Langmuir 17(15) (2001) 4674-4676. [10] P. Silberzan, L. Leger, Evidence for a new spreading regime between partial and total wetting, Phys. Rev. Lett. 66(2) (1991) 185. [11] S. Shiomoto, H. Higuchi, K. Yamaguchi, H. Takaba, M. Kobayashi, Spreading dynamics of a precursor film of ionic liquid or water on a micropatterned polyelectrolyte brush surface, Langmuir 37(10) (2021) 3049-3056. [12] C. Panayiotou, Interfacial Tension and Interfacial Profiles of Fluids and Their Mixtures, Langmuir 18(23) (2002) 8841-8853. [13] S.A. Shain, J. Prausnitz, Thermodynamics and interfacial tension of multicomponent liquid‐liquid interfaces, AIChE J. 10(5) (1964) 766-773. [14] F. Oktasendra, A. Jusufi, A.R. Konicek, M.S. Yeganeh, J.R. Panter, H. Kusumaatmaja, Phase field simulation of liquid filling on grooved surfaces for complete, partial, and pseudo-partial wetting cases, J. Chem. Phys. 158(20) (2023). [15] H.-Y. Huang, Y.-H. Tsao, Y.-J. Sheng, H.-K. Tsao, Peculiar wetting behavior of nanodroplets comprising antagonistic alcohol-water mixtures on a graphene surface, Surf. Interfaces 51 (2024) 104572. [16] K. Nuthalapati, Y.-J. Sheng, H.-K. Tsao, Atypical wetting behavior of binary mixtures of partial and total wetting liquids: leak-out phenomena, Colloids Surf. A: Physicochem. Eng. Asp. 666 (2023) 131299. [17] F. Brochard-Wyart, R. Fondecave, M. Boudoussier, Wetting of antagonist mixtures: the ‘leak out' transition, Int. J. Eng. Sci. 38(9-10) (2000) 1033-1047. [18] R. Fondecave, F. Brochard-Wyart, Application of statistical mechanics to the wetting of complex liquids, Phys. A: Stat. Mech. Appl. 274(1-2) (1999) 19-29. [19] R. Fondecave, F.B. Wyart, Wetting laws for polymer solutions, Europhys. Lett. 37(2) (1997) 115. [20] H.-J. Huang, K. Nuthalapati, Y.-J. Sheng, H.-K. Tsao, Precursor film of self-propelled droplets: Inducing motion of a static droplet, J. Mol. Liq. 368 (2022) 120729. [21] H.-Y. Chang, H.-K. Tsao, Y.-J. Sheng, Abnormal wicking dynamics of total wetting ethanol in graphene nanochannels, Phys. Fluids 35(5) (2023). [22] L. Leger, M. Erman, A.M. Guinet-Picard, D. Ausserre, C. Strazielle, Precursor Film Profiles of Spreading Liquid Drops, Phys. Rev. Lett. 60(23) (1988) 2390-2393. [23] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci, J. Colloid Interface Sci. 538 (2019) 340-348. [24] P. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Phys. Rev. E 68(6) (2003) 066702. [25] J. Zhao, S. Chen, K. Zhang, Y. Liu, A review of many-body dissipative particle dynamics (MDPD): Theoretical models and its applications, Phys. Fluids 33(11) (2021). [26] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Spontaneous spreading of nanodroplets on partially wetting surfaces with continuous grooves: Synergy of imbibition and capillary condensation, J. Mol. Liq. 339 (2021) 117270. [27] M. Arienti, W. Pan, X. Li, G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J. Chem. Phys. 134(20) (2011). [28] G.-Y. He, H.-K. Tsao, Y.-J. Sheng, Imbibition dynamics in an open-channel capillary with holes, J. Mol. Liq. 349 (2022) 118117. [29] C. Chen, C. Gao, L. Zhuang, X. Li, P. Wu, J. Dong, J. Lu, A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage, Langmuir 26(12) (2010) 9533-9538. [30] C. Chen, L. Zhuang, X. Li, J. Dong, J. Lu, A many-body dissipative particle dynamics study of forced water–oil displacement in capillary, Langmuir 28(2) (2012) 1330-1336. [31] P.B. Warren, No-go theorem in many-body dissipative particle dynamics, Phys. Rev. E 87(4) (2013) 045303. [32] R.D. Groot, P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107(11) (1997) 4423-4435. [33] S. Jamali, A. Boromand, S. Khani, J. Wagner, M. Yamanoi, J. Maia, Generalized mapping of multi-body dissipative particle dynamics onto fluid compressibility and the Flory-Huggins theory, J. Chem. Phys. 142(16) (2015). [34] R.W. Zwanzig, High‐temperature equation of state by a perturbation method. I. Nonpolar gases, J. Chem. Phys. 22(8) (1954) 1420-1426. [35] K. Bansal, U.S. Baghel, S. Thakral, Construction and validation of binary phase diagram for amorphous solid dispersion using Flory–Huggins theory, AAPS PharmSciTech 17 (2016) 318-327. [36] A. Ghoufi, P. Malfreyt, Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods, Phys. Rev. E 82(1) (2010) 016706. [37] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Pressure-gated capillary nanovalves based on liquid nanofilms, J. Colloid Interface Sci. 560 (2020) 485-491. [38] C.-C. Chang, Y.-J. Sheng, H.-K. Tsao, Wetting hysteresis of nanodrops on nanorough surfaces, Phys. Rev. E 94(4) (2016) 042807. [39] J. Irving, J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18(6) (1950) 817-829. [40] S. Stephan, H. Hasse, Interfacial properties of binary mixtures of simple fluids and their relation to the phase diagram, Phys. Chem. Chem. Phys. 22(22) (2020) 12544-12564. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96833 | - |
| dc.description.abstract | 當部分潤濕液體與完全潤濕液體混合時,所得的拮抗混合物會展現出特殊的潤濕行為。本研究使用MDPD模擬,探討兩種液體間的親和力如何影響奈米液滴的潤濕性,同時保持固-液間作用力不變。混合物的潤濕行為受到其組成比例(φₚ)和兩種液體之間的Flory-Huggins參數(χpt)的影響。在接觸角對φₚ的相圖中可以識別出三種不同的潤濕狀態。通過改變χpt,在部分潤濕狀態下的相圖圖形可以被分類為三組親和性類型——弱、中等和強,分別表現為“向上凹”、“向下凹”、以及“向下凹且具有最大值”的曲線。每種類型的親和性各自展現出其獨有的特徵,透過分析界面張力隨組成的變化的趨勢來理解,並進一步評估了擴展係數(S),發現當S < 0時,模擬中直接測量到的接觸角與Young方程式的預測值在所有親和性類型中均會出現差異。因此對於奈米尺度的拮抗混合物而言,當S > 0時,僅能表示前驅膜的存在,而Young方程通常不適用。 | zh_TW |
| dc.description.abstract | When a partial wetting liquid is mixed with a total wetting liquid, the resulting antagonistic mixture exhibits distinctive wetting behavior. Many-body dissipative particle dynamics is used to explore how the affinity between the two liquids influences their wetting properties, while keeping solid-liquid interactions fixed. The wetting behavior of the mixture is influenced by its composition (φₚ) and the Flory-Huggins parameter between the two liquids (χpt). Three distinct wetting states can be identified in the phase diagram (contact angle vs. φₚ). By varying χpt, the phase diagram can be categorized into three affinity types—weak, intermediate, and strong—each represented by ‘concave-up’, ‘concave-down’, and ‘concave-down with a maximum’ curves, respectively. Each affinity type exhibits unique characteristics, which can be understood by analyzing the variation in interfacial tensions with composition. The spreading coefficient (S) is then evaluated, and it is found that in regions where S < 0 across all affinity types, discrepancies in the contact angle are observed between the direct measurements obtained from simulations and the predictions from Young’s equation. Therefore, S > 0 indicates the existence of a precursor film, and Young’s equation is generally invalid for describing antagonistic mixtures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:10:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-24T16:10:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vi Chapter 1 Introduction 1 Chapter 2 Simulation Methods 5 Chapter 3 Results and discussion 10 3.1 Weak affinity between two antagonistic liquids 10 3.2 Strong affinity between two antagonistic liquids 21 3.3 Intermediate affinity between two antagonistic liquids 29 Chapter 4 Conclusion 37 Reference 39 | - |
| dc.language.iso | en | - |
| dc.subject | 接觸角 | zh_TW |
| dc.subject | 界面張力 | zh_TW |
| dc.subject | 相圖 | zh_TW |
| dc.subject | 拮抗混合物 | zh_TW |
| dc.subject | 潤濕現象 | zh_TW |
| dc.subject | interfacial tension | en |
| dc.subject | wetting phenomenon | en |
| dc.subject | antagonistic mixture | en |
| dc.subject | phase diagram | en |
| dc.subject | contact angle | en |
| dc.title | 二元拮抗混合物的特殊液滴潤濕行為:從弱到強的液體間親和性 | zh_TW |
| dc.title | Peculiar droplet wetting of binary antagonistic mixtures: from weak to strong liquid-liquid affinity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曹恆光;陳儀帆;崔宏瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Heng-Kwong Tsao;Yi-Fan Chen;Hung-Wei Tsui | en |
| dc.subject.keyword | 潤濕現象,拮抗混合物,相圖,接觸角,界面張力, | zh_TW |
| dc.subject.keyword | wetting phenomenon,antagonistic mixture,phase diagram,contact angle,interfacial tension, | en |
| dc.relation.page | 44 | - |
| dc.identifier.doi | 10.6342/NTU202500017 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-02-25 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 2.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
