Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96829
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘zh_TW
dc.contributor.advisorDa-Ming Wangen
dc.contributor.author黃柏瑞zh_TW
dc.contributor.authorBo-Rui Huangen
dc.date.accessioned2025-02-24T16:09:19Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2025-
dc.date.submitted2025-01-06-
dc.identifier.citation[1] Mulder, J. (2012), Basic principles of membrane technology. Springer Science & Business Media.
[2] McGowan, W. and Harrison, J. (2000), Water processing: residential, commercial, light-industrial. Lisle, IL. Water Quality Association.
[3] Baker, R.W. (2012), Membrane technology and applications. John Wiley & Sons
[4] Altinkaya, S.A. and Ozbas, B. (2004). Modeling of asymmetric membrane formation by dry-casting method. Journal of membrane science, 230(1-2), 71-89.
[5] Park, H.C., et al. (1999), Membrane formation by water vapor induced phase inversion. Journal of Membrane Science. 156(2), 169-178.
[6] Wang, D.-M. and Lai, J.-Y. (2013), Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering, 2(2), 229-237.
[7] 莊雨潔(2021)。聚醯亞胺薄膜的製備與其過濾機制和效能之探討。碩士論文,國立臺灣大學化學工程學研究所,臺北市。
[8] Guillen, G.R., et al. (2011), Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Industrial engineering chemistry research, 50(7), 3798-3817.
[9] Conesa, A., T. Gumi, and C. Palet (2007), Membrane thickness and preparation temperature as key parameters for controlling the macrovoid structure of chiral activated membranes (CAM). Journal of membrane science, 287(1), 29-40.
[10] Li, D., et al. (2004), Thickness dependence of macrovoid evolution in wet phase-inversion asymmetric membranes. Industrial engineering chemistry research, 43(6), 1553-1556.
[11] Karimi, M. (2011). Diffusion in Polymer Solids and Solutions. Mass transfer in chemical engineering processes, 25, 17-40.
[12] Kuckling, D., Doering, A., Krahl, F., Arndt, K.-F.(2012). 8.15 - Stimuli-Responsive Polymer Systems. Polymer Science: A Comprehensive Reference, Elsevier, 377-413,
[13] Aarts, D., R. Dullens, and H. Lekkerkerker (2005), Interfacial dynamics in demixing systems with ultralow interfacial tension. New Journal of Physics, 7(1), 40.
[14] Ishigami, T., et al. (2013), Solidification characteristics of polymer solution during polyvinylidene fluoride membrane preparation by nonsolvent-induced phase separation. Journal of membrane science, 438, 77-82.
[15] Cui, Z., Y. Jiang, and R. Field (2010), Fundamentals of pressure-driven membrane separation processes, in Membrane technology. Elsevier. 1-18.
[16] Chellam, S., & Wiesner, M. W. (1998). Evaluation of Crossflow Filtration Models Based on Shear-Induced Diffusion and Particle Adhesion: Complications Induced by Feed Suspension Polydispersivity. Journal of Membrane Science, 138(1), 83–97. https://doi.org/10.1016/S0376-7388(97)00213-5
[17] Ripperger, S., et al. (2000), Filtration, 1. Fundamentals, in Ullmann's encyclopedia of industrial chemistry, p. 1-38.
[18] Sablani, S., et al. (2001), Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination, 141(3): p. 269-289.
[19] D. Zhong, Z. Wang, Q. Lan, Y. Wang, (2018) Selective swelling of block copolymer ultrafiltration membranes for enhanced water permeability and fouling resistance, J. Membr. Sci. 558, 106–112.
[20] Bailey, F. E., & Koleske, J. V. (2000). Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH. https://doi.org/10.1002/14356007
[21] Qu, K. et al. (2022). Structures, Properties, and Applications of Zwitterionic Polymers. ChemPhysMater, 1(4),294–309. doi: 10.1016/j.chphma.2022.04.003
[22] Jin, W., et al. (2023). Polyethersulfone membrane modified by zwitterionic groups for improving anti-fouling and antibacterial properties. Journal of Industrial and Engineering Chemistry 122,274-284.
[23] Wang, J., et al. (2020). A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. Journal of Membrane Science 606.
[24] Li, J. F., et al. (2007). Hydrophilic microporous PES membranes prepared by PES/PEG/DMAc casting solutions. Journal of Applied Polymer Science, 107(6), 4100-4108.
[25] 蘇詩芸(2020)。利用傅立葉轉換紅外光顯微鏡探討聚醚碸薄膜之成膜機制。碩士論文,國立臺灣大學化學工程學研究所,臺北市。
[26] 王芝淇(2022)。添加劑對聚醚碸/聚碸薄膜結構與過濾效能的影響。碩士論文,國立臺灣大學化學工程學研究所,臺北市。
[27] 吳炳徵(2023)。添加聚乙二醇對聚颯薄膜的孔洞結構與過濾效能之影響。碩士論文,國立臺灣大學化學工程學研究所,臺北市。
[28] Lusiana, R. A., et al. (2018). Synthesis and characterization of composite polyethersulfone (PES) membranes with polyethylene glycol (PEG) and heparin-chitosan (Hep-CS). IOP Conference Series: Materials Science and Engineering 503, 012123.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96829-
dc.description.abstract本研究使用不同的溶劑以及添加劑配置高分子鑄膜液,再藉由濕式法製備薄膜,並進一步的研究其薄膜結構以及相關之過濾性質。本研究中所使用的高分子為聚醚碸(Polyethersulfone, PES)以及聚碸(Polysulfone, PSF),溶劑則選用了DMAc以及2P和將兩者混合的共溶劑,添加劑則選用了雙離子化合物與分子量為8000的聚乙二醇(Polyethylene Glycol, PEG)。
本研究主要從溶劑系統和添加劑的面向來討論。以溶劑系統而言,固定高分子和添加劑濃度之下,溶劑的選擇代表鑄膜液黏度的改變。對於PES而言,DMAc比起2P有更低的黏度,因此在PES/DMAc的成膜階段,質傳較快速的情況能使薄膜中的PES填補質傳交換出的溶劑所留下的空隙,因此PES/DMAc系統的薄膜表面為極緻密的結構;相較之下,PES/2P系統的薄膜表面會形成連通性較佳的海綿狀結構,也因此有較佳的純水通過率。然而雖然PES/2P系統有著良好的純水通過率,但與75%2P的溶劑系統相比,會因純2P系統的海綿層較厚而增加過濾阻力,因此通過率會略低於75%2P系統。
添加劑則同樣在薄膜表面的結構扮演著重要的角色。在成膜階段,添加劑藉由FTIR檢測確認並無殘存於表面,因此在被質傳交換出薄膜之時,便在薄膜表面形成了造孔效應使薄膜表面的連通性增加,因此提升了薄膜的通過率,然而在添加達一定量以上,會使薄膜的表面截留率下降。
而若是未來投入實際應用,薄膜的使用壽命也是值得注意的地方。在本研究中,含有添加劑之系統的薄膜抗汙度有所提升,因此未來希望能找到鑄膜液的最佳比例,以製備出高連通性、適當的海綿層厚度及孔洞尺寸,以獲得理想薄膜。
zh_TW
dc.description.abstractIn this study, we prepared polymer membranes using different solvent compositions and additives to make polymer casting solutions and prepared membranes via wet-phase inversion method in order to conduct the membrane structures and filtration properties. Polymers used were Polyethersulfone (PES) and Polysulfone (PSF). Solvents included DMAc, 2P, and their mixtures, while additives were zwitterionic compounds and polyethylene glycol (PEG) with a molecular weight of 8000.
In this study, the solvent system and additives was discussed. For solvent systems, with fixed concentrations of polymer and additives, solvent choice affects the viscosity of the casting solution. For PES, DMAc has lower viscosity than 2P, leading to way faster mass transfer rate during membrane formation. This results in a dense surface in the PES/DMAc system, while PES/2P forms a more porous sponge layer with higher water permeability. However, the pure 2P system, with thicker sponge layers, showed slightly lower flux due to increased filtration resistance compared to the 75% 2P system.
Additives also play an important role in the surface structure. During membrane formation, results of FTIR microscopy confirmed that no additives remained on the surface. Instead, they induced a pore-forming effect when mass transfer exchanges occured, increasing membrane surface connectivity and improving water permeability. However, excessive additives reduce the membrane's surface filtration efficiency. For practical applications, the membrane's service life is crucial, and in this study, additives enhance fouling resistance. The goal is to find the optimal casting solution ratio to produce membranes with high connectivity, suitable sponge thickness, and pore size.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:09:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:09:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目次 v
圖次 viii
表次 xi
第一章 緒論 1
1-1 薄膜簡介 1
1-2 高分子薄膜製備方式 2
1-2-1 燒結法 (Sintering) 2
1-2-2 拉伸法 (Stretching) 2
1-2-3 軌跡蝕刻法 (Track Etching) 2
1-2-4 相轉換法 (Phase Inversion) 3
1-2-4-1 熱誘導式相分離法 (Thermal-Induced Phase Separation, TIPS) 3
1-2-4-2 乾式法 (Dry Method) 4
1-2-4-3 溼式法 (Wet Method, Liquid-Induced Phase Separation, LIPS) 4
1-2-4-4 蒸氣誘導式相分離法(Vapor-Induced Phase Separation, VIPS) 4
1-3 非溶劑誘導式相分離法之成膜步驟 5
1-3-1 配製高分子溶液 (Solution Preparation) 5
1-3-2 刮製成膜 (Membrane Casting) 5
1-3-3 溶劑與非溶劑的質傳交換 (Exchange of Solvent and Nonsolvent) 6
1-3-4 相分離 (Phase Separation) 6
1-3-5 合併 (coarsening) 6
1-3-6 固化 (Solidification) 6
1-4 非溶劑誘導式相分離法之成膜理論 7
1-4-1 熱力學 7
1-4-2 質傳動力學 8
1-5 過濾方式簡介 10
1-5-1 薄膜過濾模式 10
1-5-2 薄膜過濾機制 11
1-5-3 過濾效能評估 12
1-5-3-1 通量(Flux)及通過率(Permeability) 12
1-5-3-2 截留率(Retention) 13
1-5-3-3 薄膜抗汙度(Permeability Recovery Ratio, PRR) 14
1-6 製膜材料簡介 15
1-6-1 聚醚碸 (Polyethersulfone) 15
1-6-2 聚碸 (Polysulfone) 15
1-6-3 聚乙二醇 (Polyethylene Glycol) 15
1-6-4 雙離子化合物 (Zwitterionic compound) 16
1-7 文獻回顧 17
1-8 研究動機與目的 24
第二章 實驗材料與研究方法 25
2-1 實驗材料 25
2-2 實驗儀器 25
2-3 實驗方法 26
2-3-1 鑄膜液配置. 26
2-3-2 溼式法成膜 26
2-3-3 過濾性質測定 26
2-3-3-1 純水通過率 27
2-3-3-2 溶菌酶溶液通過率及截留率 27
2-3-3-3 薄膜抗汙度 28
2-3-4 薄膜結構分析 29
2-3-5 傅立葉轉換紅外光顯微鏡分析 (FTIR-microscope) 31
第三章 結果與討論 33
3-1 聚醚颯薄膜系統 33
3-1-1 PES/Co-solvent系統之薄膜結構討論 33
3-1-2 PES/Co-solvent系統之薄膜過濾效能討論 40
3-2 聚醚颯/雙離子添加劑薄膜系統 42
3-2-1 PES/Co-solvent/Zwitterionic系統之薄膜結構討論 42
3-2-2 PES/Co-solvent/Zwitterionic系統之薄膜過濾效能討論 56
3-2-3 與PSF/Co-solvent/Zwitterionic系統比較 61
3-3 聚醚颯/聚乙二醇薄膜系統 64
3-3-1 PES/Co-solvent/PEG系統之薄膜結構討論 64
3-3-2 PES/Co-solvent/PEG系統之薄膜過濾效能討論 78
3-4 綜合討論 84
3-4-1 FTIR之薄膜表面組成分析 84
3-4-2 添加劑對薄膜海綿層厚度之影響 87
3-4-3 添加劑對薄膜性質之影響 89
3-4-4 共溶劑對薄膜性質之影響 89
3-4-5 理想薄膜之討論 90
第四章 結論與未來展望 93
4-1 結論 93
4-2 未來展望 94
參考文獻 95
-
dc.language.isozh_TW-
dc.subject聚乙二醇zh_TW
dc.subject過濾效能zh_TW
dc.subject聚醚碸zh_TW
dc.subject雙離子zh_TW
dc.subject共溶劑zh_TW
dc.subjectPolyethylene Glycolen
dc.subjectPolyethersulfoneen
dc.subjectCosolventen
dc.subjectFiltration Performanceen
dc.subjectZwitterionic Compoundsen
dc.title添加劑對聚醚碸薄膜的結構及過濾效能之影響zh_TW
dc.titleEffects of Additives on Membrane Structure and Filtration Performance of Polyethersulfone Membraneen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝學真;謝子陽zh_TW
dc.contributor.oralexamcommitteeHsyue-Jen Hsieh;Tzu-Yang Hsienen
dc.subject.keyword聚醚碸,聚乙二醇,雙離子,共溶劑,過濾效能,zh_TW
dc.subject.keywordFiltration Performance,Cosolvent,Zwitterionic Compounds,Polyethylene Glycol,Polyethersulfone,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202500016-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2025-02-25-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf10.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved