請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96817完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李承叡 | zh_TW |
| dc.contributor.advisor | Cheng-Ruei Lee | en |
| dc.contributor.author | 連俞涵 | zh_TW |
| dc.contributor.author | Yu-Han Lien | en |
| dc.date.accessioned | 2025-02-21T16:41:07Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-01-02 | - |
| dc.identifier.citation | Agrawal AA (2020) A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. Ecology 101: e02924
Ahrens CW, Andrew ME, Mazanec RA, Ruthrof KX, Challis A, Hardy G, Byrne M, Tissue DT, Rymer PD (2020) Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecology and Evolution 10: 232-248 Bari A, Street K, Mackay M, Endresen D, De Pauw E, Amri A (2012) Focused identification of germplasm strategy (FIGS) detects wheat stem rust resistance linked to environmental variables. Genetic Resources and Crop Evolution 59 Blanquart F, Kaltz O, Nuismer SL, Gandon S (2013) A practical guide to measuring local adaptation. Ecology Letters 16: 1195-1205 Bohra A, Kilian B, Sivasankar S, Caccamo M, Mba C, McCouch SR, Varshney RK (2022) Reap the crop wild relatives for breeding future crops. Trends in Biotechnology 40: 412-431 Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633-2635 Breiman L (2001) Random Forests. Machine Learning 45: 5-32 Breria CM, Hsieh CH, Yen J-Y, Nair R, Lin C-Y, Huang S-M, Noble TJ, Schafleitner R (2020) Population Structure of the World Vegetable Center Mungbean Mini Core Collection and Genome-Wide Association Mapping of Loci Associated with Variation of Seed Coat Luster. Tropical Plant Biology 13: 1-12 Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet C, Ares M, Haussler D (1999) Support vector machine classification of microarray gene expression data. University of California, Santa Cruz, Technical Report UCSC-CRL-99-09 Browning BL, Zhou Y, Browning SR (2018) A One-Penny Imputed Genome from Next-Generation Reference Panels. The American Journal of Human Genetics 103: 338-348 Burlyaeva M, Vishnyakova M, Gurkina M, Kozlov K, Lee C-R, Ting C-T, Schafleitner R, Nuzhdin S, Samsonova M, von Wettberg E (2019) Collections of Mungbean [Vigna radiata) (L.) R. Wilczek] and urdbean [V. mungo (L.) Hepper] in Vavilov Institute (VIR): traits diversity and trends in the breeding process over the last 100 years. Genetic Resources and Crop Evolution 66: 767-781 Chirgwin E, Marshall DJ, Sgrò CM, Monro K (2018) How does parental environment influence the potential for adaptation to global change? Proc Biol Sci 285 Cho L-H, Yoon J, An G (2017) The control of flowering time by environmental factors. The Plant Journal 90: 708-719 Cortes C (1995) Support-Vector Networks. Machine Learning Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science 19: 592-601 Dirk Nikolaus K, Olaf C, Jürgen B, Tobias K, Holger K, Rodrigo Wilber S-A, Niklaus EZ, Linder HP, Michael K (2021) Climatologies at high resolution for the earth’s land surface areas. In. EnviDat Douglas C, Pratap A, Rao BH, Manu B, Dubey S, Singh P, Tomar R (2020) Breeding Progress and Future Challenges: Abiotic Stresses. In RM Nair, R Schafleitner, S-H Lee, eds, The Mungbean Genome. Springer International Publishing, Cham, pp 81-96 Downes BP, Saracco SA, Lee SS, Crowell DN, Vierstra RD (2006) MUBs, a Family of Ubiquitin-fold Proteins That Are Plasma Membrane-anchored by Prenylation*. Journal of Biological Chemistry 281: 27145-27157 Endelman JB (2011) Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP. The Plant Genome 4 Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302-4315 Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Molecular Ecology 25: 104-120 Gambín BL, Borrás L (2010) Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology 156: 91-102 Gayacharan, Tripathi K, Meena SK, Panwar BS, Lal H, Rana JC, Singh K (2020) Understanding genetic variability in the mungbean ( L.) genepool. Annals of Applied Biology 177: 346-357 Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21: 394-407 Gregory TR (2009) Understanding Natural Selection: Essential Concepts and Common Misconceptions. Evolution: Education and Outreach 2: 156-175 Habier D, Fernando RL, Garrick DJ (2013) Genomic BLUP Decoded: A Look into the Black Box of Genomic Prediction. Genetics 194: 597-607 Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant Breeding with Genomic Selection: Gain per Unit Time and Cost. Crop Science 50: 1681-1690 Hereford J (2009) A Quantitative Survey of Local Adaptation and Fitness Trade‐Offs. The American Naturalist 173: 579-588 Holliday JA, Wang T, Aitken S (2012) Predicting Adaptive Phenotypes From Multilocus Genotypes in Sitka Spruce (Picea sitchensis) Using Random Forest. G3 Genes|Genomes|Genetics 2: 1085-1093 Jones MR, Forester BR, Teufel AI, Adams RV, Anstett DN, Goodrich BA, Landguth EL, Joost S, Manel S (2013) INTEGRATING LANDSCAPE GENOMICS AND SPATIALLY EXPLICIT APPROACHES TO DETECT LOCI UNDER SELECTION IN CLINAL POPULATIONS. Evolution 67: 3455-3468 Kaler AS, Purcell LC, Beissinger T, Gillman JD (2022) Genomic prediction models for traits differing in heritability for soybean, rice, and maize. BMC Plant Biology 22: 87 Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters 7: 1225-1241 Khazaei H, Street K, Bari A, Mackay M, Stoddard FL (2013) The FIGS (Focused Identification of Germplasm Strategy) Approach Identifies Traits Related to Drought Adaptation in Vicia faba Genetic Resources. PLOS ONE 8: e63107 Kim SK, Nair RM, Lee J, Lee S-H (2015) Genomic resources in mungbean for future breeding programs. Frontiers in Plant Science 6 Kuhn M (2008) Building Predictive Models in R Using the caret Package. Journal of Statistical Software 28: 1 - 26 Kyu KL, Malik AI, Colmer TD, Siddique KHM, Erskine W (2021) Response of Mungbean (cvs. Celera II-AU and Jade-AU) and Blackgram (cv. Onyx-AU) to Transient Waterlogging. Frontiers in Plant Science 12 Lasky JR, Des Marais DL, Lowry DB, Povolotskaya I, McKay JK, Richards JH, Keitt TH, Juenger TE (2014) Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana. Molecular Biology and Evolution 31: 2283-2296 Lasky JR, Josephs EB, Morris GP (2022) Genotype–environment associations to reveal the molecular basis of environmental adaptation. The Plant Cell 35: 125-138 Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, Juenger TE, Hyma K, Acharya C, Mitchell SE, Buckler ES, Brenton Z, Kresovich S, Morris GP (2015) Genome-environment associations in sorghum landraces predict adaptive traits. Science Advances 1: e1400218 Li B, Zhang N, Wang Y-G, George AW, Reverter A, Li Y (2018) Genomic Prediction of Breeding Values Using a Subset of SNPs Identified by Three Machine Learning Methods. Frontiers in Genetics 9 Li F, Gates DJ, Buckler ES, Hufford MB, Janzen GM, Rellán-Álvarez R, Rodríguez-Zapata F, Navarro JAR, Sawers RJH, Snodgrass SJ, Sonder K, Willcox MC, Hearne SJ, Ross-Ibarra J, Runcie DE (2024) The utility of environmental data from traditional varieties for climate-adaptive maize breeding. bioRxiv: 2024.2009.2019.613351 Liaw A (2002) Classification and regression by randomForest. R news Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J-L (2011) Chapter Two - Genomic Selection in Plant Breeding: Knowledge and Prospects. In DL Sparks, ed, Advances in Agronomy, Vol 110. Academic Press, pp 77-123 Lozada DN, Mason RE, Sarinelli JM, Brown-Guedira G (2019) Accuracy of genomic selection for grain yield and agronomic traits in soft red winter wheat. BMC Genetics 20: 82 Maenhout S, De Baets B, Haesaert G, Van Bockstaele E (2007) Support vector machine regression for the prediction of maize hybrid performance. Theoretical and Applied Genetics 115: 1003-1013 Mandal A, Sharma N, Muthamilarasan M, Prasad M (2018) Ubiquitination: a tool for plant adaptation to changing environments. The Nucleus 61: 253-260 Meek MH, Beever EA, Barbosa S, Fitzpatrick SW, Fletcher NK, Mittan-Moreau CS, Reid BN, Campbell-Staton SC, Green NF, Hellmann JJ (2022) Understanding Local Adaptation to Prepare Populations for Climate Change. BioScience 73: 36-47 Moon J, Parry G, Estelle M (2004) The Ubiquitin-Proteasome Pathway and Plant Development. The Plant Cell 16: 3181-3195 Morris K, Barker GC, Walley PG, Lynn JR, Finch-Savage WE (2016) Trait to gene analysis reveals that allelic variation in three genes determines seed vigour. New Phytologist 212: 964-976 Motsinger-Reif AA, Reif DM, Fanelli TJ, Ritchie MD (2008) A comparison of analytical methods for genetic association studies. Genetic Epidemiology 32: 767-778 Nair R (2020) Breeding Progress and Future Challenges—Nutritional Quality. In RM Nair, R Schafleitner, S-H Lee, eds, The Mungbean Genome. Springer International Publishing, Cham, pp 97-105 Nair R, Schreinemachers P (2020) Global Status and Economic Importance of Mungbean. In RM Nair, R Schafleitner, S-H Lee, eds, The Mungbean Genome. Springer International Publishing, Cham, pp 1-8 New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Research 21: 1 Noble TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA, Mundree SG (2018) Characterization of Linkage Disequilibrium and Population Structure in a Mungbean Diversity Panel. Frontiers in Plant Science 8 Ong P-W, Lin Y-P, Chen H-W, Lo C-Y, Burlyaeva M, Noble T, Nair RM, Schafleitner R, Vishnyakova M, Bishop-von-Wettberg E, Samsonova M, Nuzhdin S, Ting C-T, Lee C-R (2023) Environment as a limiting factor of the historical global spread of mungbean. eLife 12: e85725 Pataczek L, Zahir Z, Ahmad M, Rani S, Nair R, Schafleitner R, Cadisch G, Hilger T (2018) Beans with Benefits-The Role of Mungbean (Vigna radiata) in a Changing Environment, Vol 09 Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161: 209-228 Rachaputi RCN, Sands D, McKenzie K, Agius P, Lehane J, Seyoum S (2019) Eco-physiological drivers influencing mungbean [Vigna radiata (L.) Wilczek] productivity in subtropical Australia. Field Crops Research 238: 74-81 Rice B, Lipka AE (2019) Evaluation of RR-BLUP Genomic Selection Models that Incorporate Peak Genome-Wide Association Study Signals in Maize and Sorghum. The Plant Genome 12: 180052 Rubio Teso ML, Lara-Romero C, Rubiales D, Parra-Quijano M, Iriondo JM (2022) Searching for Abiotic Tolerant and Biotic Stress Resistant Wild Lentils for Introgression Breeding Through Predictive Characterization. Frontiers in Plant Science 13 Sadras VO (2007) Evolutionary aspects of the trade-off between seed size and number in crops. Field Crops Research 100: 125-138 Sadras VO, Richards RA (2014) Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen. Journal of Experimental Botany 65: 1981-1995 Sandhu KS, Patil SS, Aoun M, Carter AH (2022) Multi-Trait Multi-Environment Genomic Prediction for End-Use Quality Traits in Winter Wheat. Frontiers in Genetics 13 Sarkar RK, Rao AR, Meher PK, Nepolean T, Mohapatra T (2015) Evaluation of random forest regression for prediction of breeding value from genomewide SNPs. Journal of Genetics 94: 187-192 Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nature Reviews Genetics 14: 807-820 Scalfi M, Mosca E, Di Pierro EA, Troggio M, Vendramin GG, Sperisen C, La Porta N, Neale DB (2015) Micro- and Macro-Geographic Scale Effect on the Molecular Imprint of Selection and Adaptation in Norway Spruce. PLOS ONE 9: e115499 Seneviratne S, Nicholls N, Easterling D, Goodess C, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M (2012) Changes in climate extremes and their impacts on the natural physical environment. Sequeros T, Ochieng J, Schreinemachers P, Binagwa PH, Huelgas ZM, Hapsari RT, Juma MO, Kangile JR, Karimi R, Khaririyatun N, Mbeyagala EK, Mvungi H, Nair RM, Sanya LN, Nguyen TTL, Phommalath S, Pinn T, Simfukwe E, Suebpongsang P (2021) Mungbean in Southeast Asia and East Africa: varieties, practices and constraints. Agriculture & Food Security 10: 2 Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Statistics and Computing 14: 199-222 Song H, Dong T, Yan X, Wang W, Tian Z, Sun A, Dong Y, Zhu H, Hu H (2023) Genomic selection and its research progress in aquaculture breeding. Reviews in Aquaculture 15: 274-291 Title PO, Bemmels JB (2018) ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41: 291-307 Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics 42: 260-263 Van Haeften S, Dudley C, Kang Y, Smith D, Nair RM, Douglas CA, Potgieter A, Robinson H, Hickey LT, Smith MR (2023) Building a better Mungbean: Breeding for reproductive resilience in a changing climate. Food and Energy Security 12: e467 VanRaden PM (2008) Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science 91: 4414-4423 Verma SK, Singh CK, Taunk J, Gayacharan, Chandra Joshi D, Kalia S, Dey N, Singh AK (2022) Vignette of Vigna domestication: From archives to genomics. Frontiers in Genetics 13 Zhao W, Lai X, Liu D, Zhang Z, Ma P, Wang Q, Zhang Z, Pan Y (2020) Applications of Support Vector Machine in Genomic Prediction in Pig and Maize Populations. Frontiers in Genetics 11 Zhou X, Carbonetto P, Stephens M (2013) Polygenic Modeling with Bayesian Sparse Linear Mixed Models. PLOS Genetics 9: e1003264 Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44: 821-824 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96817 | - |
| dc.description.abstract | 綠豆是一種重要的豆科作物,提供優質蛋白質和其他必需營養素,廣泛種植於亞洲。然而綠豆育種面臨了許多環境壓力,因應多變的氣候環境,若能提供不同栽培種綠豆適合生長的環境資訊,將能幫助育種的選擇。地區適應性,即植物基因型與原生環境的匹配,是可以提供作物抗逆境一重要資訊。基於此,本研究旨在利用基因體預測模型,預測綠豆品系的原生氣候條件,並探討適應性如何影響其性狀表現。我們的實驗材料為來自亞洲的栽培種綠豆,這1,108 個綠豆在先前的研究中發現來自不同地區的群體,他們長期適應於當地環境,群體間的遺傳差異很大。利用部分已知氣候數據的品系來預測其他未知當地氣候的品系,我們應用多種基因體預測模型(如隨機森林、rrBLUP等)對28項氣候變數進行原生環境預測。結果顯示,隨機森林在各類模型中表現出最高的準確度和最低的誤差,且隨機森林模型在預測多數環境變數都具有最高準確性。此外,通過多個共同花園試驗,我們發現品系的果莢數量在氣候相似性高的花園中表現更佳,反映了地區適應性的影響。GWAS 分析進一步揭示了與泛素化相關的基因(如 E3泛素連接酶)可能在調控綠豆表型可塑性中發揮重要作用。本研究結果證實,基因體預測模型可用於預測綠豆的原生氣候條件,並闡明了地區適應性對作物性狀的影響。這些發現不僅為綠豆的氣候適應性育種提供了依據,還為應對氣候變遷下的農業育種提供了新思路。 | zh_TW |
| dc.description.abstract | Mungbean is an important leguminous crop that provides high-quality protein and other essential nutrients, widely grown in Asia. However, mungbean breeding faces numerous environmental challenges, and providing information on suitable environments for different mungbean cultivars to grow in can greatly help breeding decisions in response to changing climatic conditions. Local adaptation, which refers to the match between a plant's genotype and its native environment. It is crucial information for crop resistance. Based on this, this study aimed to use genomic prediction models to predict the native climate conditions of mungbean accessions and explore how adaptability affects trait performance. Our experimental material consisted of 1,108 cultivated mungbean accessions from Asia. Previous studies have found that these accessions represent populations from different regions that have long been locally adapted to their native environments, with significant genetic differences between populations. We used accessions with known climate data to predict the native climate for other accessions with unknown climates, and applied various genomic prediction models (such as random forest, rrBLUP, etc.) to predict 28 climate variables. The results showed that the random forest model performed better than other models in terms of accuracy and exhibited the lowest error in predicting most environmental variables. In addition, through multiple common garden experiments, we found that accession’s pod number exhibited better performance in gardens with higher climate similarity, reflecting the effect of local adaptation. GWAS analysis further revealed that genes related to ubiquitination, such as E3 ubiquitin ligase, may play important roles in regulating phenotypic plasticity in mungbean. Our findings confirm that genomic prediction models can be used to predict native climate conditions for mungbean and elucidate the effects of local adaptation on crop traits. These findings not only provide a basis for climate-adaptive breeding of mungbean but also offer new perspectives for agricultural breeding in the face of climate change. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:41:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:41:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Contents v List of Figures vii List of Tables x 1. Introduction 1 2. Materials and Methods 6 2.1 Plant materials 6 2.2 Sequencing data 6 2.2.1 DArT sequence for genomic prediction 6 2.2.2 Whole genome sequencing for GWAS 7 2.3 Climate variables 7 2.4 Genomic prediction of mungbean climate 8 2.4.1 Ridge regression best linear unbiased prediction (rrBLUP) 9 2.4.2 Genomic best linear unbiased prediction (GBLUP) 10 2.4.3 Random forest (RF) 10 2.4.4 Support vector machine (SVM) 10 2.4.5 Bayesian sparse linear mixed model (BSLMM) 11 2.5 Field data 11 2.6 Genome-wide association study (GWAS) 12 2.7 Mungbean yield map 12 3. Results 14 3.1 Climate prediction model performance 14 3.2 Mungbean native climate value prediction 15 3.3 Native climate and yield performance in each garden 17 3.4 GWAS of reaction norm slopes in accessions 21 3.5 Mungbean yield map 22 4. Discussion 24 4.1 Model evaluation and mungbean climate prediction 24 4.2 Local adaptation across different environments 26 4.3 Phenotypic plasticity and implications for climate-adaptive agriculture 29 5. Conclusion 31 Figures 32 Tables 60 References 72 | - |
| dc.language.iso | en | - |
| dc.subject | 氣候變數 | zh_TW |
| dc.subject | 原生環境 | zh_TW |
| dc.subject | 基因體預測 | zh_TW |
| dc.subject | 地區適應性 | zh_TW |
| dc.subject | 綠豆 | zh_TW |
| dc.subject | native environment | en |
| dc.subject | mungbean | en |
| dc.subject | local adaptation | en |
| dc.subject | genomic prediction | en |
| dc.subject | climate variables | en |
| dc.title | 透過基因體預測原生地氣候來探索綠豆的適應能力 | zh_TW |
| dc.title | Exploring Mungbean Adaptation Through Genomic Prediction of Native Climate | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何傳愷;董致韡;廖培鈞 | zh_TW |
| dc.contributor.oralexamcommittee | Chuan-Kai Ho;Chih-Wei Tung;Pei-Chun Liao | en |
| dc.subject.keyword | 綠豆,地區適應性,基因體預測,氣候變數,原生環境, | zh_TW |
| dc.subject.keyword | mungbean,local adaptation,genomic prediction,climate variables,native environment, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202404615 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-01-02 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 12.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
