請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96806完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺 | zh_TW |
| dc.contributor.advisor | Pai-Chi Li | en |
| dc.contributor.author | 蔡宜珊 | zh_TW |
| dc.contributor.author | Yi-Shan Tsai | en |
| dc.date.accessioned | 2025-02-21T16:38:13Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-01-06 | - |
| dc.identifier.citation | [1] E. W. Young, and D. J. Beebe, “Fundamentals of microfluidic cell culture in controlled microenvironments,” Chem Soc Rev, vol. 39, no. 3, pp. 1036-48, Mar, 2010.
[2] I. A. Janson, and A. J. Putnam, “Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms,” J Biomed Mater Res A, vol. 103, no. 3, pp. 1246-58, Mar, 2015. [3] A. J. Engler, S. Sen, H. L. Sweeney et al., “Matrix elasticity directs stem cell lineage specification,” Cell, vol. 126, no. 4, pp. 677-89, Aug 25, 2006. [4] J. Otero, D. Navajas, and J. Alcaraz, “Characterization of the elastic properties of extracellular matrix models by atomic force microscopy,” Methods Cell Biol, vol. 156, pp. 59-83, 2020. [5] R. M. S. Sigrist, “Ultrasound Elastography: Review of Techniques and Clinical Applications,” Theranostics 7.5, 2017. [6] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson et al., “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound in medicine & biology, 1998. [7] M. B. Mazalan, R. Toyohara, and T. Ohashi, “A Review of Fabrication and Applications of Confined Microchannels for Cell Migration Assay,” International Journal of Precision Engineering and Manufacturing, vol. 25, no. 7, pp. 1525-1538, 2024. [8] A. L. Paguirigan, and D. J. Beebe, “From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures,” Integr Biol (Camb), vol. 1, no. 2, pp. 182-95, Feb, 2009. [9] W. Sun, Y. Chen, Y. Wang et al., “Interaction study of cancer cells and fibroblasts on a spatially confined oxygen gradient microfluidic chip to investigate the tumor microenvironment,” Analyst, vol. 143, no. 22, pp. 5431-5437, Nov 5, 2018. [10] J. W. Song, S. P. Cavnar, A. C. Walker et al., “Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells,” PLoS One, vol. 4, no. 6, pp. e5756, Jun 1, 2009. [11] S. Vedel, S. Tay, D. M. Johnston et al., “Migration of cells in a social context,” Proc Natl Acad Sci U S A, vol. 110, no. 1, pp. 129-34, Jan 2, 2013. [12] S. Y. Teh, R. Lin, L. H. Hung et al., “Droplet microfluidics,” Lab Chip, vol. 8, no. 2, pp. 198-220, Feb, 2008. [13] A. Yahyazadeh Shourabi, N. Kashaninejad, and M. S. Saidi, “An integrated microfluidic concentration gradient generator for mechanical stimulation and drug delivery,” Journal of Science: Advanced Materials and Devices, vol. 6, no. 2, pp. 280-290, 2021. [14] C. Zheng, Z. Yu, Y. Zhou et al., “Live cell imaging analysis of the epigenetic regulation of the human endothelial cell migration at single-cell resolution,” Lab Chip, vol. 12, no. 17, pp. 3063-72, Sep 7, 2012. [15] A. Grosberg, P. W. Alford, M. L. McCain et al., “Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip,” Lab Chip, vol. 11, no. 24, pp. 4165-73, Dec 21, 2011. [16] C. Long, C. Finch, M. Esch et al., “Design optimization of liquid-phase flow patterns for microfabricated lung on a chip,” Ann Biomed Eng, vol. 40, no. 6, pp. 1255-67, Jun, 2012. [17] I. A. Janson, “Extracellular matrix elasticity and topography: Material-based cues thataffect cell function via conserved mechanisms,” 2014. [18] H. K. Kleinman, et al., “Use of extracellular matrix components for cell culture." Analytical biochemistry,” Analytical biochemistry, 166(1), 1-13., 1987. [19] S. R. Peyton, and A. J. Putnam, “Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion,” J Cell Physiol, vol. 204, no. 1, pp. 198-209, Jul, 2005. [20] S. Mabuchi, T. Sasano, H. Kuroda et al., “Real-time tissue sonoelastography for early response monitoring in cervical cancer patients treated with definitive chemoradiotherapy: preliminary results,” J Med Ultrason (2001), vol. 42, no. 3, pp. 379-85, Jul, 2015. [21] A. J. Engler, F. Rehfeldt, S. Sen et al., “Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation,” Methods Cell Biol, vol. 83, pp. 521-45, 2007. [22] P. Y. Chao, W. W. Liu, S. F. You et al., “Shear Wave Elasticity Measurements of Three-Dimensional Cancer Cell Cultures Using Laser Speckle Contrast Imaging,” Sci Rep, vol. 8, no. 1, pp. 14470, Sep 27, 2018. [23] Z. Yin, T. M. Schmid, T. K. Yasar et al., “Mechanical characterization of tissue-engineered cartilage using microscopic magnetic resonance elastography,” Tissue Eng Part C Methods, vol. 20, no. 8, pp. 611-9, Aug, 2014. [24] A. Kader, J. Snellings, L. C. Adams et al., “Sensitivity of magnetic resonance elastography to extracellular matrix and cell motility in human prostate cancer cell line-derived xenograft models,” Biomater Adv, vol. 161, pp. 213884, Jul, 2024. [25] A. C. Sharma, M. S. Soo, G. E. Trahey et al., “Acoustic radiation force impulse imaging of in vivo breast masses,” IEEE Ultrasonics Symposium, vol. 1, pp. 728-731, 2004. [26] L. Zhai, J. Madden, W. C. Foo et al., “Acoustic radiation force impulse imaging of human prostates ex vivo,” Ultrasound Med Biol, vol. 36, no. 4, pp. 576-588, Apr, 2010. [27] W. K. Jeong, H. K. Lim, H. K. Lee et al., “Principles and clinical application of ultrasound elastography for diffuse liver disease,” Ultrasonography, vol. 33, no. 3, pp. 149-60, Jul, 2014. [28] M. L. Palmeri, M. H. Wang, J. J. Dahl et al., “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med Biol, vol. 34, no. 4, pp. 546-58, Apr, 2008. [29] S. P. e. al., “Synergy and Applications of Combined Ultrasound, Elasticity, and Photoacoustic Imaging,” IEEE Ultrasonics Symposium, Vancouver, BC, Canada, 2006, pp. 405-415, 2006. [30] R. M. S. Sigrist, J. Liau, A. E. Kaffas et al., “Ultrasound Elastography: Review of Techniques and Clinical Applications,” Theranostics, vol. 7, no. 5, pp. 1303-1329, 2017. [31] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson et al., “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med Biol, vol. 24, no. 9, pp. 1419-35, Nov, 1998. [32] P.-C. Li. "Principles of Medical Ultrasound," https://sites.google.com/view/pai-chilislab/courses. [33] I. Jorba, J. J. Uriarte, N. Campillo et al., “Probing Micromechanical Properties of the Extracellular Matrix of Soft Tissues by Atomic Force Microscopy,” J Cell Physiol, vol. 232, no. 1, pp. 19-26, Jan, 2017. [34] "k-Wave Documentation," http://www.k-wave.org/documentation.php. [35] B. Treeby, B. Cox, and J. Jaros, “k-wave user manual,” 2016. [36] "k-Wave function "pstdElastic3D"," http://www.k-wave.org/documentation/pstdElastic3D.php. [37] B. E. Treeby, J. Jaros, D. Rohrbach et al., “Modelling elastic wave propagation using the k-wave matlab toolbox,” IEEE international ultrasonics symposium, 2014. [38] M. L. Palmeri, A. C. Sharma, R. R. Bouchard et al., “A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 10, pp. 1699-1712, 2005. [39] F. Prieur, “Simulation of shear wave elastography imaging using the toolbox “k-Wave”,” Proceedings of Meetings on Acoustics (Vol. 29, No. 1). AIP Publishing., 2016. [40] G. Xu, Z. Ni, X. Chen et al., “Acoustic Characterization of Polydimethylsiloxane for Microscale Acoustofluidics,” Physical Review Applied, vol. 13, no. 5, 2020. [41] C. C. Shih, P. Y. Chen, T. Ma et al., “Development of an intravascular ultrasound elastography based on a dual-element transducer,” R Soc Open Sci, vol. 5, no. 4, pp. 180138, Apr, 2018. [42] R. Das, T.-M. Nguyen, S. D. Lim et al., “Feasibility of a hybrid elastographic-microfluidic device to rapidly process and assess pancreatic cancer biopsies for pathologists,” IEEE Healthcare Innovation Conference (HIC), pp. 271-275, 2014. [43] G. F. Pinton, J. J. Dahl, and G. E. Trahey, “Rapid tracking of small displacements with ultrasound,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 53, no. 6, pp. 1103-17, Jun, 2006. [44] A. A. Masud, and J. Liu, “Ultrasonic surface acoustic wave elastography: A review of basic theories, technical developments, and medical applications,” Med Phys, Apr 10, 2024. [45] S. Bernard, S. Kazemirad, and G. Cloutier, “A Frequency-Shift Method to Measure Shear-Wave Attenuation in Soft Tissues,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 64, no. 3, pp. 514-524, Mar, 2017. [46] A. Sancakli, B. Basaran, F. Arican et al., “Effects of bovine gelatin viscosity on gelatin-based edible film mechanical, physical and morphological properties,” SN Applied Sciences, vol. 3, no. 1, 2021. [47] G. Y. Li, Y. Zheng, Y. X. Jiang et al., “Guided wave elastography of layered soft tissues,” Acta Biomater, vol. 84, pp. 293-304, Jan 15, 2019. [48] C. C. Shih, X. Qian, T. Ma et al., “Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model,” IEEE Trans Med Imaging, vol. 37, no. 8, pp. 1887-1898, Aug, 2018. [49] E. H. Ling, and R. H. Abdul Rahim, “A review on ultrasonic guided wave technology,” Australian Journal of Mechanical Engineering, vol. 18, no. 1, pp. 32-44, 2017. [50] J. J. Pitre, Jr., M. A. Kirby, D. S. Li et al., “Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE,” Sci Rep, vol. 10, no. 1, pp. 12983, Jul 31, 2020. [51] X. Feng, G. Y. Li, A. Ramier et al., “In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography,” Acta Biomater, vol. 146, pp. 295-305, Jul 1, 2022. [52] M. Couade, M. Pernot, C. Prada et al., “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med Biol, vol. 36, no. 10, pp. 1662-76, Oct, 2010. [53] G.-Y. Li, Q. He, L. Jia et al., “An Inverse Method to Determine Arterial Stiffness with Guided Axial Waves,” Ultrasound in Medicine & Biology, vol. 43, no. 2, pp. 505-516, 2017. [54] M. W. Urban, I. Z. Nenadic, B. Qiang et al., “Characterization of material properties of soft solid thin layers with acoustic radiation force and wave propagation,” J Acoust Soc Am, vol. 138, no. 4, pp. 2499-507, Oct, 2015. [55] X. Xiang, F. Yan, Y. Yang et al., “Quantitative Assessment of Healthy Skin Elasticity: Reliability and Feasibility of Shear Wave Elastography,” Ultrasound Med Biol, vol. 43, no. 2, pp. 445-452, Feb, 2017. [56] Z. Wang, A. A. Volinsky, and N. D. Gallant, “Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom‐built compression instrument,” Journal of Applied Polymer Science, vol. 131, no. 22, 2014. [57] M. A. Kirby, I. Pelivanov, S. Song et al., “Optical coherence elastography in ophthalmology,” J Biomed Opt, vol. 22, no. 12, pp. 1-28, Dec, 2017. [58] I. Viktorov, "Rayleigh and Lamb Waves," Plenum press, 1967. [59] J. L. Rose, Ultrasonic guided waves in solid media: Cambridge university press, 2014. [60] S. Yoon, M. G. Kim, J. A. Williams et al., “Dual-element needle transducer for intravascular ultrasound imaging,” J Med Imaging (Bellingham), vol. 2, no. 2, pp. 027001, Apr, 2015. [61] C. L. De Korte, and A. F. Van Der Steen, “Intravascular ultrasound elastography: an overview,” Ultrasonics, vol. 40, no. 1-8, pp. 859-865, 2002. [62] C. L. de Korte, A. F. van der Steen, E. I. Céspedes et al., “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Physics in Medicine & Biology, vol. 45, no. 6, pp. 1465, 2000. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96806 | - |
| dc.description.abstract | 相比於宏觀尺度,微觀環境下培養細胞具有更多優勢,其體積小且尺度接近體內微環境,更能真實模擬細胞在體內的生理狀態。細胞外基質的機械性質對細胞的黏附、遷移及分化等行為有重要影響,因此在微流道內進行細胞培養時,實時監測細胞外基質的彈性對於維持適合的培養環境至關重要。然而,目前主要的細胞外基質彈性量測技術多需與樣本直接接觸,增加了操作上的限制。為了解決這一問題,本研究嘗試利用超音波彈性影像技術實現微流道內基質彈性的非接觸式量測。由於隨著流道尺寸的縮小,臨床常用的大型探頭難以適應小型仿體的量測需求,本研究採用了更小型的探頭進行研究,並使用兩種不同的超音波系統進行實驗,第一種系統使用一維陣列式探頭,其探頭尺寸較大、能量輸出較高,能有效引起較大的粒子位移。第二種系統則採用三單一探頭的設置,具備更高的軸向解析度,能更精確地對應微流道結構的細微特性。此外,本研究考量了微流道材質與厚度對超音波傳遞特性可能造成的影響,自製了不同大小的PDMS微流道以進行實驗,並利用k-Wave軟體模擬超音波探頭的聲場,進一步分析聲波在流道內的傳遞行為並與實驗結果比較,檢驗實驗的準確性。由於邊界效應的影響,波速與楊氏模數之間無法簡單以一個公式轉換,因此,本研究建立了針對特定流道尺寸的波速對應表,總體而言越小的流道會有越快的波速,為後續研究提供參考依據。實驗結果顯示,在大仿體與較寬流道中,三單一探頭系統可有效使用;而在波速較快或衰減較大的仿體中,一維陣列式探頭更適合進行準確量測。未來,隨著流道尺寸進一步縮小,一維陣列式探頭可能因對位困難而受到限制,此時可透過縮小並固定三單一探頭的間距來提高其精度和穩定性。整體而言,三單一探頭系統在微流道應用中具備改進潛力,未來可成為精準測量波速的有效工具。 | zh_TW |
| dc.description.abstract | Compared to macroscale environments, microenvironments offer significant advantages for cell culture, closely mimicking the small-scale and physiological conditions of the in vivo environment. The mechanical properties of the extracellular matrix (ECM) significantly influence cell behaviors such as adhesion, migration, and differentiation. Therefore, real-time monitoring of the ECM's elasticity in microchannels is crucial for maintaining a suitable cultivation environment. However, most current ECM elasticity measurement techniques require direct contact with the sample, which imposes operational limitations. This study explores using ultrasound elastography for non-contact measurement of ECM elasticity within microchannels. As the size of the channels decreases, conventional large-scale clinical ultrasound transducers become unsuitable for measuring small-scale phantoms. Hence, this research employs more miniature transducers and conducts experiments with two ultrasound systems: one for higher energy and the other for higher resolution. Polydimethylsiloxane (PDMS) microchannels of various sizes were fabricated for experiments. Additionally, k-Wave software was employed to simulate the acoustic field of the ultrasound transducers, analyzing the wave propagation within the channels and comparing the results with experimental data. Due to boundary effects, the relationship between wave speed and Young's modulus cannot be simplified into a single equation. Therefore, a wave speed correspondence table specific to particular channel dimensions was established. Generally, smaller channels exhibit faster wave speeds, providing a reference for future research. Experimental results indicate that in larger phantoms and wider channels, the three-element transducer system is effective. Conversely, in phantoms with faster wave speeds or higher attenuation, the linear array transducer is more suitable for accurate measurements. In the future, as the channel size further decreases, the linear array transducer may face limitations due to alignment difficulties. In such cases, reducing and fixing the spacing between the three-element transducer can enhance precision and stability. Overall, the three-element transducer system has the potential for improvement in microchannel applications and could become an effective tool for accurately measuring wave speeds. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:38:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:38:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目次 iv 圖次 vii 表次 xii 第一章 緒論 1 1.1微流道內細胞培養 2 1.1.1微流道材料與製作方法 2 1.1.2微流道幾何結構 3 1.1.3微觀尺度相較於宏觀尺度的優勢 3 1.2細胞外基質彈性 5 1.3超音波彈性影像 8 1.3.1彈性模數 8 1.3.2彈性影像分類 9 1.3.3剪切波彈性成像原理 11 1.4研究目的 14 1.5論文架構 15 第二章 剪切波模擬 16 2.1模型介紹 17 2.2模擬方法與架構 18 2.2.1三維聲輻射力模擬 19 2.2.2三維剪切波傳遞模擬 21 2.3模擬結果與討論 23 2.3.1均質介質模擬結果 23 2.3.2不同尺寸、不同介質流道模擬結果 25 第三章 仿體實驗方法 32 3.1整體實驗架構 32 3.2超音波系統架構 33 3.2.1 一維陣列式探頭超音波影像系統 33 3.2.2三單一探頭超音波影像系統 35 3.3實驗樣本 39 3.3.1真實微流道架構 39 3.3.2大仿體製作流程 40 3.3.3自製微流道製作流程 40 3.4訊號處理演算法 43 第四章 仿體實驗結果 45 4.1真實微流道實驗結果 45 4.1.1一維陣列式探頭超音波影像系統 45 4.1.2雙探頭超音波影像系統 46 4.2大仿體實驗結果 48 4.2.1一維陣列式探頭超音波影像系統 48 4.2.2三單一探頭超音波影像系統 50 4.3自製微流道實驗結果 52 4.3.1一維陣列式探頭超音波影像系統 52 4.3.2三單一探頭超音波影像系統 57 4.4波速比較與討論 62 4.4.1不同濃度仿體波速比較 62 4.4.2不同系統波速比較 63 第五章 分析與討論 66 5.1導波特性 66 5.2基底材料硬度對仿體硬度的影響 68 5.3模擬結果與實驗結果比較 70 第六章 結論與未來展望 73 6.1結論 73 6.2未來展望 74 參考文獻 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 邊界效應 | zh_TW |
| dc.subject | 超音波彈性影像 | zh_TW |
| dc.subject | 微流道內彈性量測 | zh_TW |
| dc.subject | 導波彈性 | zh_TW |
| dc.subject | 細胞外基質彈性 | zh_TW |
| dc.subject | Ultrasound Elastography | en |
| dc.subject | Guided Wave Elastography | en |
| dc.subject | Boundary Effect | en |
| dc.subject | ECM Elasticity | en |
| dc.subject | Elasticity Measurement in Microchannels | en |
| dc.title | 超音波彈性成像應用於微流道內細胞外基質彈性測量 | zh_TW |
| dc.title | Ultrasound Elastography for Measuring Extracellular Matrix Elasticity in Microchannels | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 沈哲州;鄭耿璽;謝達斌 | zh_TW |
| dc.contributor.oralexamcommittee | Che-Chou Shen;Geng-Shi Jeng;Dar-Bin Shieh | en |
| dc.subject.keyword | 超音波彈性影像,細胞外基質彈性,微流道內彈性量測,導波彈性,邊界效應, | zh_TW |
| dc.subject.keyword | Ultrasound Elastography,ECM Elasticity,Elasticity Measurement in Microchannels,Guided Wave Elastography,Boundary Effect, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202500034 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-01-06 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2030-01-06 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 6.81 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
