請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96801完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧子彬 | zh_TW |
| dc.contributor.advisor | Tzu-Pin Lu | en |
| dc.contributor.author | 徐于晴 | zh_TW |
| dc.contributor.author | Yu-Ching Hsu | en |
| dc.date.accessioned | 2025-02-21T16:36:53Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-31 | - |
| dc.identifier.citation | 1. Kosorok, M.R. and E.B. Laber, Precision Medicine. Annu Rev Stat Appl, 2019. 6: p. 263-286.
2. Wang, R.C. and Z. Wang, Precision Medicine: Disease Subtyping and Tailored Treatment. Cancers (Basel), 2023. 15(15). 3. Konig, I.R., et al., What is precision medicine? Eur Respir J, 2017. 50(4). 4. Saria, S. and A. Goldenberg, Subtyping: What It is and Its Role in Precision Medicine. IEEE Intelligent Systems, 2015. 30(4): p. 70-75. 5. Zhao, L., et al., Molecular subtyping of cancer: current status and moving toward clinical applications. Brief Bioinform, 2019. 20(2): p. 572-584. 6. Bedard, P.L., et al., Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet, 2020. 395(10229): p. 1078-1088. 7. Naithani, N., et al., Precision medicine: Concept and tools. Med J Armed Forces India, 2021. 77(3): p. 249-257. 8. Turanli, B., et al., A Network-Based Cancer Drug Discovery: From Integrated Multi-Omics Approaches to Precision Medicine. Curr Pharm Des, 2018. 24(32): p. 3778-3790. 9. Weinshilboum, R.M. and L. Wang, Pharmacogenomics: Precision Medicine and Drug Response. Mayo Clin Proc, 2017. 92(11): p. 1711-1722. 10. Ashley, E.A., Towards precision medicine. Nat Rev Genet, 2016. 17(9): p. 507-22. 11. Ginsburg, G.S. and K.A. Phillips, Precision Medicine: From Science To Value. Health Aff (Millwood), 2018. 37(5): p. 694-701. 12. Wilkinson, L. and T. Gathani, Understanding breast cancer as a global health concern. Br J Radiol, 2022. 95(1130): p. 20211033. 13. Arnold, M., et al., Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 2022. 66: p. 15-23. 14. Cause of Death Statistics, 2020. 15. Taiwan Cancer Registry, 2017. 16. Maxwell, K.N. and K.L. Nathanson, Common breast cancer risk variants in the post-COGS era: a comprehensive review. Breast Cancer Res, 2013. 15(6): p. 212. 17. Yap, Y.S., et al., Insights Into Breast Cancer in the East vs the West: A Review. JAMA Oncol, 2019. 5(10): p. 1489-1496. 18. Pan, J.W., et al., The molecular landscape of Asian breast cancers reveals clinically relevant population-specific differences. Nat Commun, 2020. 11(1): p. 6433. 19. Bhoo-Pathy, N., et al., Breast cancer research in Asia: adopt or adapt Western knowledge? Eur J Cancer, 2013. 49(3): p. 703-9. 20. Uffelmann, E., et al., Genome-wide association studies. Nature Reviews Methods Primers, 2021. 1(1). 21. Tam, V., et al., Benefits and limitations of genome-wide association studies. Nat Rev Genet, 2019. 20(8): p. 467-484. 22. Stadler, Z.K., et al., Genome-wide association studies of cancer. J Clin Oncol, 2010. 28(27): p. 4255-67. 23. Akiyama, M., Multi-omics study for interpretation of genome-wide association study. J Hum Genet, 2021. 66(1): p. 3-10. 24. Abdellaoui, A., et al., 15 years of GWAS discovery: Realizing the promise. Am J Hum Genet, 2023. 110(2): p. 179-194. 25. Martschenko, D.O. and J.L. Young, Precision Medicine Needs to Think Outside the Box. Front Genet, 2022. 13: p. 795992. 26. Welter, D., et al., The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res, 2014. 42(Database issue): p. D1001-6. 27. Watanabe, K., et al., A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet, 2019. 51(9): p. 1339-1348. 28. Mills, M.C. and C. Rahal, The GWAS Diversity Monitor tracks diversity by disease in real time. Nat Genet, 2020. 52(3): p. 242-243. 29. Chan, H.C., A. Chattopadhyay, and T.P. Lu, Cross-population enhancement of PrediXcan predictions with a gnomAD-based east Asian reference framework. Brief Bioinform, 2024. 25(6). 30. Choi, S.W., T.S. Mak, and P.F. O'Reilly, Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc, 2020. 15(9): p. 2759-2772. 31. Osterman, M.D., T.G. Kinzy, and J.N.C. Bailey, Polygenic Risk Scores. Curr Protoc, 2021. 1(5): p. e126. 32. Kachuri, L., et al., Principles and methods for transferring polygenic risk scores across global populations. Nat Rev Genet, 2024. 25(1): p. 8-25. 33. Konuma, T. and Y. Okada, Statistical genetics and polygenic risk score for precision medicine. Inflamm Regen, 2021. 41(1): p. 18. 34. Kullo, I.J., et al., Polygenic scores in biomedical research. Nat Rev Genet, 2022. 23(9): p. 524-532. 35. Martin, A.R., et al., Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet, 2019. 51(4): p. 584-591. 36. Mars, N., et al., The role of polygenic risk and susceptibility genes in breast cancer over the course of life. Nat Commun, 2020. 11(1): p. 6383. 37. Mavaddat, N., et al., Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst, 2015. 107(5). 38. Shieh, Y., et al., Breast cancer risk prediction using a clinical risk model and polygenic risk score. Breast Cancer Res Treat, 2016. 159(3): p. 513-25. 39. Kramer, I., et al., Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk. Am J Hum Genet, 2020. 107(5): p. 837-848. 40. Auwerx, C., et al., From pharmacogenetics to pharmaco-omics: Milestones and future directions. HGG Adv, 2022. 3(2): p. 100100. 41. Wheeler, H.E., et al., Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet, 2013. 14(1): p. 23-34. 42. Pirmohamed, M., Pharmacogenomics: current status and future perspectives. Nat Rev Genet, 2023. 24(6): p. 350-362. 43. Yang, W., et al., Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res, 2013. 41(Database issue): p. D955-61. 44. Seashore-Ludlow, B., et al., Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov, 2015. 5(11): p. 1210-23. 45. Yu, C., et al., High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat Biotechnol, 2016. 34(4): p. 419-23. 46. Reay, W.R. and M.J. Cairns, Advancing the use of genome-wide association studies for drug repurposing. Nat Rev Genet, 2021. 22(10): p. 658-671. 47. Rodrigues, R., D. Duarte, and N. Vale, Drug Repurposing in Cancer Therapy: Influence of Patient's Genetic Background in Breast Cancer Treatment. Int J Mol Sci, 2022. 23(8). 48. Zhang, Z., et al., Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther, 2020. 5(1): p. 113. 49. Shruthi, N.R., et al., Drug Repurposing in Cancer, in Drug Repurposing for Emerging Infectious Diseases and Cancer, R.C. Sobti, S.K. Lal, and R.K. Goyal, Editors. 2023, Springer Nature Singapore: Singapore. p. 159-179. 50. Dash, R., et al., Drug repurposing a compelling cancer strategy with bottomless opportunities: Recent advancements in computational methods and molecular mechanisms. Indian J Pharmacol, 2023. 55(5): p. 322-331. 51. Van de Sande, B., et al., Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov, 2023. 22(6): p. 496-520. 52. Wang, S., et al., The Evolution of Single-Cell RNA Sequencing Technology and Application: Progress and Perspectives. Int J Mol Sci, 2023. 24(3). 53. Huang, D., et al., Advances in single-cell RNA sequencing and its applications in cancer research. J Hematol Oncol, 2023. 16(1): p. 98. 54. Proietto, M., et al., Tumor heterogeneity: preclinical models, emerging technologies, and future applications. Front Oncol, 2023. 13: p. 1164535. 55. Avila Cobos, F., et al., Computational deconvolution of transcriptomics data from mixed cell populations. Bioinformatics, 2018. 34(11): p. 1969-1979. 56. Venet, D., et al., Separation of samples into their constituents using gene expression data. Bioinformatics, 2001. 17 Suppl 1: p. S279-87. 57. Cherry, E.C., Some Experiments on the Recognition of Speech, with One and with Two Ears. Journal of the Acoustical Society of America, 1953. 25: p. 975-979. 58. Im, Y. and Y. Kim, A Comprehensive Overview of RNA Deconvolution Methods and Their Application. Mol Cells, 2023. 46(2): p. 99-105. 59. Menden, K., et al., Deep learning-based cell composition analysis from tissue expression profiles. Sci Adv, 2020. 6(30): p. eaba2619. 60. Mai, J., et al., Transcriptome-wide association studies: recent advances in methods, applications and available databases. Commun Biol, 2023. 6(1): p. 899. 61. Gamazon, E.R., et al., A gene-based association method for mapping traits using reference transcriptome data. Nat Genet, 2015. 47(9): p. 1091-8. 62. Consortium, G.T., The Genotype-Tissue Expression (GTEx) project. Nat Genet, 2013. 45(6): p. 580-5. 63. Lappalainen, T., et al., Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 2013. 501(7468): p. 506-11. 64. Battle, A., et al., Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res, 2014. 24(1): p. 14-24. 65. Spielman, R.S., et al., Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet, 2007. 39(2): p. 226-31. 66. Stranger, B.E., et al., Population genomics of human gene expression. Nat Genet, 2007. 39(10): p. 1217-24. 67. Taylor, D.J., et al., Sources of gene expression variation in a globally diverse human cohort. Nature, 2024. 632(8023): p. 122-130. 68. Shi, Y., et al., Integrative Comparison of mRNA Expression Patterns in Breast Cancers from Caucasian and Asian Americans with Implications for Precision Medicine. Cancer Res, 2017. 77(2): p. 423-433. 69. Wei, C.-Y., et al., Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. npj Genomic Medicine, 2021. 6(1): p. 10. 70. Huang, C.C., et al., Development of a prediction model for breast cancer based on the national cancer registry in Taiwan. Breast Cancer Res, 2019. 21(1): p. 92. 71. Chang, C.C., et al., Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 2015. 4: p. 7. 72. Hong, E.P. and J.W. Park, Sample size and statistical power calculation in genetic association studies. Genomics Inform, 2012. 10(2): p. 117-22. 73. Baek, S., et al., Propensity score matching: a conceptual review for radiology researchers. Korean J Radiol, 2015. 16(2): p. 286-96. 74. Chen, J.W., et al., Best Practice Guidelines for Propensity Score Methods in Medical Research: Consideration on Theory, Implementation, and Reporting. A Review. Arthroscopy, 2022. 38(2): p. 632-642. 75. Sherry, S.T., et al., dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 2001. 29(1): p. 308-11. 76. Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 406(6797): p. 747-52. 77. Sorlie, T., et al., Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8418-23. 78. Goldhirsch, A., et al., Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol, 2011. 22(8): p. 1736-47. 79. Choi, S.W. and P.F. O'Reilly, PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience, 2019. 8(7). 80. Kinker, G.S., et al., Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat Genet, 2020. 52(11): p. 1208-1218. 81. DepMap, DepMap 22Q2 Public. figshare., 2022. 82. Goldman, M.J., et al., Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol, 2020. 38(6): p. 675-678. 83. Corsello, S.M., et al., Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer, 2020. 1(2): p. 235-248. 84. Chakravarty, D., et al., OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol, 2017. 2017. 85. Sondka, Z., et al., The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer, 2018. 18(11): p. 696-705. 86. Lin, L.I., A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989. 45(1): p. 255-68. 87. Fan, J., et al., MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data. Brief Bioinform, 2022. 23(6). 88. Wang, L., et al., Epigenetic inactivation of HOXA11, a novel functional tumor suppressor for renal cell carcinoma, is associated with RCC TNM classification. Oncotarget, 2017. 8(13): p. 21861-21870. 89. Song, E., et al., Attenuation of kruppel-like factor 4 facilitates carcinogenesis by inducing g1/s phase arrest in clear cell renal cell carcinoma. PLoS One, 2013. 8(7): p. e67758. 90. Choueiri, T.K., et al., Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol, 2013. 31(2): p. 181-6. 91. Venugopal, B., et al., A phase I study of quisinostat (JNJ-26481585), an oral hydroxamate histone deacetylase inhibitor with evidence of target modulation and antitumor activity, in patients with advanced solid tumors. Clin Cancer Res, 2013. 19(15): p. 4262-72. 92. Shanchun, H., et al., Integrative analyses of biomarkers and pathways for metformin reversing cisplatin resistance in head and neck squamous cell carcinoma cells. Arch Oral Biol, 2023. 147: p. 105637. 93. Yu, Z., et al., PPM1D is a potential prognostic biomarker and correlates with immune cell infiltration in hepatocellular carcinoma. Aging (Albany NY), 2021. 13(17): p. 21294-21308. 94. Xie, W., et al., Comprehensive analysis of PPPCs family reveals the clinical significance of PPP1CA and PPP4C in breast cancer. Bioengineered, 2022. 13(1): p. 190-205. 95. Wang, C., et al., Expression of Abl interactor 1 and its prognostic significance in breast cancer: a tissue-array-based investigation. Breast Cancer Res Treat, 2011. 129(2): p. 373-86. 96. Tseng, C.N., et al., Brefeldin A reduces anchorage-independent survival, cancer stem cell potential and migration of MDA-MB-231 human breast cancer cells. Molecules, 2014. 19(11): p. 17464-77. 97. Kurenova, E.V., et al., Small molecule chloropyramine hydrochloride (C4) targets the binding site of focal adhesion kinase and vascular endothelial growth factor receptor 3 and suppresses breast cancer growth in vivo. J Med Chem, 2009. 52(15): p. 4716-24. 98. Burgess, J.T., et al., SASH1 mediates sensitivity of breast cancer cells to chloropyramine and is associated with prognosis in breast cancer. Oncotarget, 2016. 7(45): p. 72807-72818. 99. Abdel-Ghany, S., et al., Vorinostat-loaded titanium oxide nanoparticles (anatase) induce G2/M cell cycle arrest in breast cancer cells via PALB2 upregulation. 3 Biotech, 2020. 10(9): p. 407. 100. Palczewski, M.B., et al., Vorinostat exhibits anticancer effects in triple-negative breast cancer cells by preventing nitric oxide-driven histone deacetylation. Biol Chem, 2021. 402(4): p. 501-512. 101. Wawruszak, A., et al., Vorinostat (SAHA) and Breast Cancer: An Overview. Cancers (Basel), 2021. 13(18). 102. Foggetti, G., et al., Autophagy induced by SAHA affects mutant P53 degradation and cancer cell survival. Biosci Rep, 2019. 39(2). 103. Krall, E.B., et al., KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. Elife, 2017. 6. 104. Jeong, Y., et al., Role of KEAP1/NFE2L2 Mutations in the Chemotherapeutic Response of Patients with Non-Small Cell Lung Cancer. Clin Cancer Res, 2020. 26(1): p. 274-281. 105. Solis, L.M., et al., Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res, 2010. 16(14): p. 3743-53. 106. Zhang, D., et al., A Novel Nrf2 Pathway Inhibitor Sensitizes Keap1-Mutant Lung Cancer Cells to Chemotherapy. Mol Cancer Ther, 2021. 20(9): p. 1692-1701. 107. Andre, F., et al., Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N Engl J Med, 2019. 380(20): p. 1929-1940. 108. Kalous, O., et al., AMG 900, pan-Aurora kinase inhibitor, preferentially inhibits the proliferation of breast cancer cell lines with dysfunctional p53. Breast Cancer Res Treat, 2013. 141(3): p. 397-408. 109. Tang, A., et al., Aurora kinases: novel therapy targets in cancers. Oncotarget, 2017. 8(14): p. 23937-23954. 110. Park, S.H., et al., Resistance to gefitinib and cross-resistance to irreversible EGFR-TKIs mediated by disruption of the Keap1-Nrf2 pathway in human lung cancer cells. FASEB J, 2018: p. fj201800011R. 111. Hast, B.E., et al., Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res, 2014. 74(3): p. 808-17. 112. Parker, J.S., et al., Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol, 2009. 27(8): p. 1160-7. 113. Wong, E.S.Y., et al., Inherited breast cancer predisposition in Asians: multigene panel testing outcomes from Singapore. NPJ Genom Med, 2016. 1: p. 15003. 114. Hong, R. and B. Xu, Breast cancer: an up-to-date review and future perspectives. Cancer Commun (Lond), 2022. 42(10): p. 913-936. 115. Huang, Z., et al., ALOX12 inhibition sensitizes breast cancer to chemotherapy via AMPK activation and inhibition of lipid synthesis. Biochem Biophys Res Commun, 2019. 514(1): p. 24-30. 116. Goto-Yamaguchi, L., et al., Therapeutic predictors of neoadjuvant endocrine therapy response in estrogen receptor-positive breast cancer with reference to optimal gene expression profiling. Breast Cancer Res Treat, 2018. 172(2): p. 353-362. 117. Jiang, P., et al., The Protein Encoded by the CCDC170 Breast Cancer Gene Functions to Organize the Golgi-Microtubule Network. EBioMedicine, 2017. 22: p. 28-43. 118. Han, C.C., et al., TOX3 protein expression is correlated with pathological characteristics in breast cancer. Oncol Lett, 2016. 11(3): p. 1762-1768. 119. Zuo, X., et al., The association of CASC16 variants with breast Cancer risk in a northwest Chinese female population. Mol Med, 2020. 26(1): p. 11. 120. Hu, Z., et al., GEP100 regulates epidermal growth factor-induced MDA-MB-231 breast cancer cell invasion through the activation of Arf6/ERK/uPAR signaling pathway. Exp Cell Res, 2013. 319(13): p. 1932-1941. 121. Zhou, D., et al., Erythropoietin-producing hepatocellular A6 overexpression is a novel biomarker of poor prognosis in patients with breast cancer. Oncol Lett, 2018. 15(4): p. 5257-5263. 122. Li, L., et al., Therapeutic role of recurrent ESR1-CCDC170 gene fusions in breast cancer endocrine resistance. Breast Cancer Res, 2020. 22(1): p. 84. 123. Thomassen, M., Q. Tan, and T.A. Kruse, Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res Treat, 2009. 113(2): p. 239-49. 124. Lehner, A., et al., Downregulation of serine protease HTRA1 is associated with poor survival in breast cancer. PLoS One, 2013. 8(4): p. e60359. 125. Pongor, L., et al., A genome-wide approach to link genotype to clinical outcome by utilizing next generation sequencing and gene chip data of 6,697 breast cancer patients. Genome Med, 2015. 7: p. 104. 126. Hsieh, Y.C., et al., A polygenic risk score for breast cancer risk in a Taiwanese population. Breast Cancer Res Treat, 2017. 163(1): p. 131-138. 127. Huang, C.S., et al., Unique features of breast cancer in Asian women--breast cancer in Taiwan as an example. J Steroid Biochem Mol Biol, 2010. 118(4-5): p. 300-3. 128. Khan, U. and M.S. Khan, Prognostic Value Estimation of BRIP1 in Breast Cancer by Exploiting Transcriptomics Data Through Bioinformatics Approaches. Bioinform Biol Insights, 2021. 15: p. 11779322211055892. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96801 | - |
| dc.description.abstract | 精準醫學(precision medicine)旨在利用患者的遺傳資訊、生活方式及環境因素等多種資料,為個人提供量身打造的治療方案。為實現精準醫學的理念,主要需達成兩大目標:疾病分型及個人化治療。分子生物標誌物(molecular biomarker)的發現對疾病分型非常重要,而在藥物基因體學(pharmacogenomics)領域日益增加的科學證據則能為患者提供更精準的治療建議。在本研究中,我們提出了整合單核苷酸多型性(single nucleotide polymorphism)和基因表現(gene expression)數據的方法,以找出專屬台灣乳癌的分子生物標誌物以及可能的舊藥新用(drug repurposing)策略。
全基因體關聯研究(genome-wide association studies)能同時檢測數十萬個基因變異,是一種能有效用來找出可能與疾病相關的生物標誌物的方法,而多基因風險分數(polygenic risk score)則利用全基因體關聯研究的結果來建立疾病風險預測模型。過去針對乳癌的全基因體關聯研究大多使用高加索人族群(Caucasian population)的數據,所得出的結果可能不適用於其他族群,因此,我們針對台灣人族群進行了大規模的全基因體關聯研究,以解決此問題。本研究納入了來自中國醫藥大學附設醫院的12,480名受試者,包括2,496名乳癌患者與9,984名對照組,以進行全基因體關聯研究與多基因風險分數分析。我們鑑定出113個與乳癌相關的單核苷酸多型性,其中有50個是新發現的位點。此外,我們在所有乳癌以及管狀A型亞型(luminal A subtype)的多基因風險分數中,觀察到了達統計顯著的正相關趨勢,而在所有乳癌及管狀A型亞型中,多基因風險分數最高分組的勝算比(odds ratio)及其95%信賴區間(confidence interval)分別為5.33(3.79–7.66)及3.55(2.13–6.14)。 近年來,在癌症細胞株中已蒐集到了大規模的藥物反應資料,如何將這些從癌症細胞株所得到的藥物基因體學知識應用到實際的癌症上,是推動舊藥新用發展的重要關鍵。我們在此研究中的目標是先將腫瘤解構(deconvolute)為相對應的癌症細胞株,再利用解構的結果來開發藥物反應預測演算法以解決此問題。我們採用了先前開發來分析細胞組成的深度學習(deep learning)模型之架構,來訓練出可進行腫瘤解構(tumor deconvolution)的新模型,我們稱這些新模型為Scaden-CA,是針對涵蓋乳癌在內的18種癌症而開發,每個癌症各有一個模型。我們是利用癌症細胞株單細胞基因表現(single cell RNA-seq)數據所生成的模擬數據來訓練和測試這些模型,然後再利用癌症細胞株的基因表現數據進行驗證。Scaden-CA在模型測試(所有癌症的一致性相關係數 > 0.9)和模型驗證(大多數癌症細胞株的正確解構率> 70%)中均有優異的表現。我們進一步將Scaden-CA應用於來自癌症基因體圖譜(The Cancer Genome Atlas, TCGA)的真實腫瘤基因表現數據,並開發了藥物預測演算法。同時,我們也利用了癌症基因體圖譜的突變數據和基因表現數據,來探討舊藥新用及其可能的機制。 為了研究台灣族群與其他族群之間的基因表現差異,並找出可能可應用於台灣乳癌的舊藥新用,我們首先利用PrediXcan及中國醫藥大學附設醫院乳癌患者的基因型資料(genotype profiles)來預測出其相對應的基因表現。而在PredictAP提供的資料中,大約78.4%的基因在東亞族群(East Asian population)與歐洲族群(non-Finnish European population)之間顯示出有族群之差異。部分基因,包括乳癌相關基因,在台灣族群中顯示出基因表現差異,而大多數基因與東亞族群的表現量相近,而這些發現可能有助於解釋乳癌的臨床特徵差異。為了找出可能可用於台灣乳癌的舊藥新用,我們先透過PredictAP過濾掉可能受族群差異影響的基因,然後使用剩餘的基因來檢索從癌症基因體圖譜中所發現到可能用於舊藥新用之藥物,並從中挑出可能台灣乳癌也可能適用的舊藥新用。如此一來,我們不僅能夠找出全新和現有可適用於台灣乳癌的舊藥新用及其可能的機制,還能探討單核苷酸多型性、基因表現與舊藥新用之間的關聯性。 | zh_TW |
| dc.description.abstract | Precision medicine aims at providing tailored treatment for individuals by utilizing distinct types of patient information including genetic, lifestyle, and environmental factors. Two major objectives should be addressed to realize the concept of precision medicine, which are disease subtyping and tailored treatments for specific diseases. Identification of molecular biomarkers can be helpful for advancing disease subtyping, and the accumulating evidences in the field of pharmacogenomics can offer more precise suggestions for patient treatments. In this study, we proposed integrated approaches utilizing single nucleotide polymorphisms and gene expression data to identify biomarkers and potential drug repurposing for Taiwanese breast cancers.
Genome-wide association studies (GWASs) are effective methods to examine hundreds of thousands of genetic variants at the same time to identify potential disease-associated biomarkers, and polygenic risk score (PRS) analyses are useful in building prediction models for disease risk by utilizing the results from GWAS. Previous GWASs in breast cancers were mostly conducted in Caucasian population, which may not be applicable to other populations. Therefore, we conducted a large GWAS in Taiwanese population to address the issue. A total of 12,480 participants, including 2,496 cases and 9,984 controls from China Medical University Hospital (CMUH) were included for GWAS and PRS analyses. We identified 113 single-nucleotide polymorphisms (SNPs) associated with breast cancers, among which 50 SNPs are novel. We also observed positively correlated trends with statistical significance in PRS analyses for all breast cancer and the luminal A subtypes, and the odds ratio (95% confidence intervals) for the groups with highest PRS in all breast cancers and the luminal A subtypes were 5.33 (3.79–7.66) and 3.55 (2.13–6.14), respectively. Recently, large-scale drug response data were profiled in a collection of cancer cell lines. How to translate the pharmacogenomics knowledge from in vitro to in vivo is crucial to advance drug repurposing. We aimed to address the issue by deconvoluting tumors to cancer cell lines and developing a corresponding drug response prediction algorithm utilizing the deconvoluted results. We adopted a previously developed deep-learning based model of analyzing cell compositions to train new models for tumor deconvolution, which we called the Scaden-CA models, for 18 cancer types, including breast cancer. The models were trained and tested on simulation data generated from single cell RNA-seq data of cancer cell lines. Then, the models were validated by Cancer Cell Line Encyclopedia (CCLE) bulk RNA-seq data. The Scaden-CA models showed great performance in model testing (concordance correlation coefficient > 0.9 across all cancers) and model validation (correctly deconvoluted rate > 70% across most cancers). We further applied the models to real tumor RNA-seq data from The Cancer Genome Atlas (TCGA) and developed a drug response prediction algorithm. TCGA mutation data and gene expression data were also utilized to investigate the underlying mechanisms of drug repurposing. To investigate gene expression differences between Taiwanese population and other populations and to infer drug repurposing for Taiwanese breast cancers, we first imputed gene expression from the genotype profiles of CMUH breast cancer patients by PrediXcan. About 78.4% genes showed differences between East Asian and non-Finnish European populations in the information provided by PredictAP. Certain genes, including breast cancer associated genes showed gene expression disparity in Taiwanese population while most genes showed similar expression patterns compared to East Asian population. These findings may contribute to the differences in clinical traits of breast cancers. As for inferring drug repurposing for Taiwanese breast cancers, we filtered out imputed genes that may be biased by population differences using PredictAP. We then use the remaining genes to retrieve corresponding breast cancer-gene-drug combinations from TCGA drug repurposing results. In this way, we can not only identify novel and existing breast cancer-gene-drug combinations but also explore the associations between SNPs, gene expression, and drug repurposing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:36:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:36:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iv List of Figures xi List of Tables xiii Chapter 1 Introduction 1 1.1 Precision Medicine 1 1.2 Breast cancer 2 1.3 Genome-wide association study 2 1.4 Polygenic risk score analysis 3 1.5 Pharmacogenomics and drug repurposing 4 1.6 Single cell RNA sequencing 5 1.7 Deconvolution 6 1.8 Gene expression imputation and population differences 6 1.9 The use of SNPs and the corresponding imputed gene expression for drug repurposing 7 1.10 Goals and specific aims 8 1.10.1 To investigate genetic variants associated with breast cancers in Taiwanese population by GWAS 8 1.10.2 To establish PRS model for Taiwanese breast cancers 8 1.10.3 To develop tumor deconvolution model and drug response prediction algorithm for drug repurposing 8 1.10.4 To impute gene expression and investigate population differences 9 1.10.5 To utilize SNPs and the imputed gene expression and drug repurposing from larger datasets for inferring drug repurposing for Taiwanese breast cancers 9 Chapter 2 Materials and methods 10 2.1 Overview of the overall flowchart 10 2.2 Genome-wide association study and PRS analysis for breast cancers in Taiwanese population 10 2.2.1 Breast cancer dataset from China Medical University Hospital 10 2.2.2 Quality control for the breast cancer dataset 11 2.2.3 GWAS for Taiwanese breast cancer 12 2.2.4 Molecular subtypes of breast cancers 13 2.2.5 PRS analyses 13 2.3 Drug response prediction and drug repurposing 14 2.3.1 Datasets and preprocessing 14 2.3.2 The scheme for drug response prediction by tumor deconvolution 16 2.3.3 Bulk RNA-seq data simulation and deconvolution model training/testing 17 2.3.4 Cell line selection for the deconvolution model 18 2.3.5 Validation of the deconvolution models by CCLE 19 2.3.6 Simulation method assessment 19 2.3.7 TCGA tumors deconvolution by the Scaden-CA model 20 2.3.8 Drug response prediction algorithm 20 2.3.9 Exploration and visualization of drug repurposing 20 2.3.10 Validation by TCGA clinical data 21 2.4 Gene expression imputation and drug repurposing for breast cancers in Taiwanese population 21 2.4.1 Gene expression imputation by PrediXcan 22 2.4.2 Identification of potential drug repurposing for Taiwanese breast cancers 22 Chapter 3 Results 24 3.1 Results of GWAS and PRS analysis for Taiwanese breast cancers 24 3.1.1 Demography of the selected participants from the CMUH dataset 24 3.1.2 Taiwanese breast cancer-associated SNPs identified by GWAS 24 3.1.3 subtypes of CMUH breast cancers 24 3.1.4 GWAS results from the base data of breast cancer subtypes 25 3.1.5 SNPs selected for PRS analyses 25 3.1.6 disease risk increases with PRS in all breast cancers and luminal A subtype 26 3.1.7 Differences in the number of risk alleles between breast cancers and controls 26 3.2 Results of drug response prediction by tumor deconvolution and drug repurposing 27 3.2.1 Performance evaluation and improvement for Scaden-CA 27 3.2.2 Validation for Scaden-CA and assessment for the simulation method by CCLE 29 3.2.3 TCGA tumor deconvolution by Scaden-CA 30 3.2.4 Utilize predicted drug response of tumors to explore the effect of gene mutation on drug repurposing 30 3.2.5 Examine the influence of amino acid changes on drug response 33 3.2.6 Investigate the relationship between gene expression levels and drug response 34 3.2.7 Concordance between TCGA clinical data and the predicted drug response 35 3.3 Gene expression imputation and drug repurposing for Taiwanese breast cancers 35 3.3.1 Gene expression imputation of CMUH Taiwanese breast cancers 35 3.3.2 Assessment of potential gene imputation bias resulted from population differences by PredictAP 36 3.3.3 drug repurposing inference for CMUH Taiwanese breast cancers 38 Chapter 4 Discussion 40 Chapter 5 Conclusion 48 References 49 Appendix 103 | - |
| dc.language.iso | en | - |
| dc.subject | 全基因體關聯研究 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | 解構 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 舊藥新用 | zh_TW |
| dc.subject | 多基因風險分數 | zh_TW |
| dc.subject | drug repurposing | en |
| dc.subject | breast cancer | en |
| dc.subject | genome-wide association study | en |
| dc.subject | polygenic risk score | en |
| dc.subject | deconvolution | en |
| dc.subject | deep learning | en |
| dc.title | 整合單核苷酸多型性和基因表現以探索台灣乳癌之生物標記與舊藥新用 | zh_TW |
| dc.title | Integrated Approaches Utilizing Single Nucleotide Polymorphism and Gene Expression for Exploring Biomarkers and Potential Drug Repurposing in Taiwanese Breast Cancers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 蕭朱杏;黃宣誠;陳倩瑜;蔡懷寬;楊欣洲 | zh_TW |
| dc.contributor.oralexamcommittee | Chuhsing Kate Hsiao;Hsuan-Cheng Huang;Chien-Yu Chen;Huai-Kuang Tsai;Hsin-Chou Yang | en |
| dc.subject.keyword | 乳癌,全基因體關聯研究,多基因風險分數,解構,深度學習,舊藥新用, | zh_TW |
| dc.subject.keyword | breast cancer,genome-wide association study,polygenic risk score,deconvolution,deep learning,drug repurposing, | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU202404805 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-12-31 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生物資訊學國際研究生博士學位學程 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生物資訊學國際研究生博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 5.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
