請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96792
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張恆華 | zh_TW |
dc.contributor.advisor | Herng-Hua Chang | en |
dc.contributor.author | 劉憶欣 | zh_TW |
dc.contributor.author | Yi-Hsin Liu | en |
dc.date.accessioned | 2025-02-21T16:34:25Z | - |
dc.date.available | 2025-02-22 | - |
dc.date.copyright | 2025-02-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-25 | - |
dc.identifier.citation | [1] Samar A. Antar, Nada A. Ashour, Marwa Sharaky, Muhammad Khattab, Naira A. Ashour, Roaa T. Zaid, Eun Joo Roh, Ahmed Elkamhawy, and Ahmed A. Al Karmalawy. Diabetes mellitus: Classification, mediators, and complications; a gate to identify potential targets for the development of new effective treatments, 2023.
[2] American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus, 12 2013. [3] Chinmay D Deshmukh, Anurekha Jain, and B Nahata. Diabetes mellitus: a review. Int. J. Pure App. Biosci, 3(3):224–230, 2015. [4] Mónica Mendes Sousa and Maria João Saraiva. Neurodegeneration in familial amyloid polyneuropathy: from pathology to molecular signaling. Progress in Neurobiology, 71(5):385–400, 2003. [5] David Adams. Recent advances in the treatment of familial amyloid polyneuropathy. Therapeutic Advances in Neurological Disorders, 6(2):129–139, 2013. PMID: 23483184. [6] A.Mazzeo, M.Russo, G.DiBella, F.Minutoli, C.Stancanelli, L.Gentile, S.Baldari, S. Carerj, A. Toscano, and G. Vita. Transthyretin-related familial amyloid polyneuropathy (ttr-fap): A single-center experience in sicily, an italian endemic area. Journal of Neuromuscular Diseases, 2(s2):S39–S48, 2015. [7] Yukio Ando, Masaaki Nakamura, and Shukuro Araki. Transthyretin-related familial amyloidotic polyneuropathy. Archives of Neurology, 62(7):1057–1062, 07 2005. [8] Dinesh D. Patil and Sonal G. Deore. Medical image segmentation: A review. 2013. [9] Ying Yu, Chunping Wang, Qiankun Fu, Ren-Jay Kou, Fuyu Huang, Boxiong Yang, Tingting Yang, and Mingliang Gao. Techniques and challenges of image segmentation: A review. Electronics, 2023. [10] Beatriz Remeseiro and Veronica Bolon-Canedo. A review of feature selection methods in medical applications. Computers in Biology and Medicine, 112:103375, 2019. [11] Ricardo J. Araújo, Kelwin Fernandes, and Jaime S. Cardoso. Sparse multi-bending snakes. IEEE Transactions on Image Processing, 28(8):3898–3909, 2019. [12] Ricardo J. Araújo, Kelwin Fernandes, and Jaime S. Cardoso. Sparse multi-bending snakes. IEEE Transactions on Image Processing, 28(8):3898–3909, 2019. [13] Laurent D. Cohen. On active contour models and balloons. CVGIP: Image Understanding, 53(2):211–218, 1991. [14] Chenyang Xu and J.L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3):359–369, 1998. [15] T.F. Chan and L.A. Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266–277, 2001. [16] Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 79(1):12–49, 1988. [17] Jesse Weissman, Tom Hancewicz, and Peter Kaplan. Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Opt. Express, 12(23):5760–5769, Nov 2004. [18] Juliana M Haggerty, Xiao N Wang, AnneDickinson, Chris J O’Malley, and Elaine B Martin. Segmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skin. BMC medical imaging, 14:7, February 2014. [19] Cheng Lu and Mrinal Mandal. Automated segmentation and analysis of the epidermis area in skin histopathological images. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 5355–5359, 2012. [20] HongmingXuandMrinalMandal. Efficient segmentation of skin epidermis in whole slide histopathological images. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3855–3858, 2015. [21] Annan Li, Jun Cheng, Ai Ping Yow, Carolin Wall, Damon Wing Kee Wong, Hong Liang Tey, and Jiang Liu. Epidermal segmentation in high-definition optical coherence tomography. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3045–3048, 2015. [22] 羅偉育. 基於多階段主動輪廓模型之自動表皮組織影像分割. Master’sthesis, 國立臺灣大學,Jan2023. [23] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979. [24] Yung-Sheng Chen and Wen-Hsing Hsu. A modified fast parallel algorithm for thinning digital patterns. Pattern Recognition Letters, 7(2):99–106, 1988. [25] Ming-Tsung Tseng, Song-Chou Hsieh, Chia-Tung Shun, Kuang-Lun Lee, Chun Liang Pan, Whei-Min Lin, Yea-Hui Lin, Chia-Li Yu, and Sung-Tsang Hsieh. Skin denervation and cutaneous vasculitis in systemic lupus erythematosus. Brain, 129(4):977–985, 01 2006. [26] Amelia Swift, Roberta Heale, and Alison Twycross. What are sensitivity and specificity? Evidence-Based Nursing, 23(1):2–4, 2020. [27] Herng-Hua Chang, Audrey H. Zhuang, Daniel J. Valentino, and Woei-Chyn Chu. Performance measure characterization for evaluating neuroimage segmentation algorithms. NeuroImage, 47(1):122–135, 2009. [28] LeeR.Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):297–302, 1945. [29] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing images using the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):850–863, 1993. [30] Prabhaker Mishra, Uttam Singh, ChandraM Pandey, Priyadarshni Mishra, and Gaurav Pandey. Application of student’s t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia, 22:407, 10 2019. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96792 | - |
dc.description.abstract | 周邊神經負責感知外界刺激並將訊息傳遞至中樞神經系統,由中樞神經作出決策以完成身體動作。然而,當神經因病變或外來因素受損,將導致訊息傳導功能失常,進而引發身體功能異常,常見的疾病如糖尿病和家族性澱粉樣多發性神經病變,其診斷往往依賴染色神經影像。透過分割表皮組織區域,可以提取與病變相關的關鍵特徵。然而,人工標註表皮組織既耗時又費力。本研究提出了一種自動化影像分割方法,通過影像處理技術、最大連通分量和骨架化來獲取初始輪廓。此外,本研究結合了傳統主動輪廓模型與進階可變形模型,提出了一個新的分割模型,將新的外力作為曲線移動的方向。由於表皮組織影像規模龐大,為了縮短分割時間,我們將分割過程分為三個步驟。在使用134張表皮神經組織影像進行分割測試中,平均戴斯係數達到80.40%,優於其他比較的方法。本論文所提之改良主動輪廓模型能自動分割表皮組織區域,有潛力協助醫生進行相關研究。 | zh_TW |
dc.description.abstract | Peripheral nerves are responsible for sensing external stimuli and transmitting the information to the central nervous system, where decisions are made to perform bodily movements. However, the signal transmission becomes impaired and leads to dysfunction in the body when nerves are damaged due to disease or external factors. Common diseases associated with such damage, such as diabetes and familial amyloid polyneuropathy, often rely on stained nerve images for accurate diagnosis. By segmenting the epidermal tissue regions, key features related to the pathology can be extracted. However, manually annotating the epidermal tissue is time-consuming. This thesis proposes an automated image segmentaion method that utilizes image processing techniques, maximum connected components and skeletonization to obtain the initial contours. Additionally, a new image segmentation system is introduced by combining traditional snakes with advanced deformable models, where a new external force is proposed to guide the contour movement. Given the large size of epidermal tissue images, the segmentation process is divided into three major steps to reduce the processing time. In the experiments using 134 epidermal nerve tissue images, the proposed method achieved an average Dice coefficient of 80.40%, outperforming other snake methods. The proposed image segmentation model based on an improved snake can automatically segment epidermal tissue regions, providing potential assistance to physicians in doing related research. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:34:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-21T16:34:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents v List of Figures ix List of Tables xiii Chapter 1 INTRODUCTION 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 RELATED STUDIES 5 2.1 Active Contour Models . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Snake Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Balloon Snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Gradient Vector Flow Snake . . . . . . . . . . . . . . . . . . . . . 6 2.1.4 Sparse Multi-Bending Snake . . . . . . . . . . . . . . . . . . . . . 7 2.2 Chan-Vese Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Epidermal Tissue Segmentation . . . . . . . . . . . . . . . . . . . . 8 Chapter 3 METHODS 10 3.1 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.1 Green Nerve Tissue Removal . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Noise Removal and Refinement of the Purple Epidermal Region . . 12 3.2 Initial Contour Computation . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Spur Removal Algorithm . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1.1 Endpoint and Node Detection . . . . . . . . . . . . . . 14 3.2.1.2 Redundant Node Removal . . . . . . . . . . . . . . . . 15 3.2.1.3 Removal of Spurs from Endpoints . . . . . . . . . . . 16 3.2.1.4 Removal of Spurs from Nodes . . . . . . . . . . . . . 17 3.2.2 Determination of Initial Contour Thickness . . . . . . . . . . . . . 17 3.3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Segmentation Process . . . . . . . . . . . . . . . . . . . . . . . . . 23 Chapter 4 EXPERIMENTAL RESULTS 26 4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.1 Experimental environment . . . . . . . . . . . . . . . . . . . . . . 26 4.1.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.1 Parameter λ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.2 Parameter τ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.3 Parameter n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.4 Parameter α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 Segmentation Results of Epidermal Images . . . . . . . . . . . . . . 33 4.4.1 Segmentation Results using ES Snake . . . . . . . . . . . . . . . . 33 4.4.2 Comparison with Other Methods . . . . . . . . . . . . . . . . . . . 50 4.4.3 Comparison with One-Stage Approach . . . . . . . . . . . . . . . . 58 Chapter 5 Conclusions 61 References 63 | - |
dc.language.iso | en | - |
dc.title | 利用可擴展形狀蛇模型自動分割表皮組織影像 | zh_TW |
dc.title | Automated Segmentation of Epidermis Images Using an Extendable Shape Snake Model | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張瑞益;丁肇隆;江明彰 | zh_TW |
dc.contributor.oralexamcommittee | Ray-I Chang;Chao-Lung Ting;Ming-Chang Chiang | en |
dc.subject.keyword | 影像分割,表皮組織,主動輪廓模型,可變形模型,周邊神經病變, | zh_TW |
dc.subject.keyword | image segmentation,epidermis tissue,active contour model,deformable model,peripheral neuropathy, | en |
dc.relation.page | 66 | - |
dc.identifier.doi | 10.6342/NTU202404779 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-12-26 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 11.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。