Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96791
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李峻霣zh_TW
dc.contributor.advisorJiun-Yun Lien
dc.contributor.author李昱呈zh_TW
dc.contributor.authorYu-Cheng Lien
dc.date.accessioned2025-02-21T16:34:08Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2024-
dc.date.submitted2024-12-19-
dc.identifier.citation[1] S. K. Sood, "Quantum computing review: A decade of research," IEEE Transactions on Engineering Management, vol. 71, pp. 6662-6676, 2023.
[2] V. Hassija, V. Chamola, V. Saxena, V. Chanana, P. Parashari, S. Mumtaz, and M. Guizani, "Present landscape of quantum computing," IET Quantum Communication, vol. 1, no. 2, pp. 42-48, 2020.
[3] M. Langione, C. Tillemann-Dick, A. Kumar, and V. Taneja, "Where will quantum computers create value—and when," Boston Consulting Group, p. 19, 2019.
[4] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, and D. A. Buell, "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, no. 7779, pp. 505-510, 2019.
[5] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, "Quantum computers," Nature, vol. 464, no. 7285, pp. 45-53, 2010.
[6] G. Popkin, "Quest for qubits," ed: American Association for the Advancement of Science, 2016.
[7] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, "Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects," Physical Review A, vol. 89, no. 2, p. 022317, 2014.
[8] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, "Coherent manipulation of coupled electron spins in semiconductor quantum dots," Science, vol. 309, no. 5744, pp. 2180-2184, 2005.
[9] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. Vandersypen, "Spins in few-electron quantum dots," Reviews of Modern Physics, vol. 79, no. 4, pp. 1217-1265, 2007.
[10] E. Abe, A. M. Tyryshkin, S. Tojo, J. J. Morton, W. M. Witzel, A. Fujimoto, J. W. Ager, E. E. Haller, J. Isoya, and S. A. Lyon, "Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei," Physical Review B—Condensed Matter and Materials Physics, vol. 82, no. 12, p. 121201, 2010.
[11] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J. R. Petta, "Semiconductor spin qubits," Reviews of Modern Physics, vol. 95, no. 2, p. 025003, 2023.
[12] R. Abram and M. Jaros, "Band Structure Engineering in Semiconductor Microstucture," NATO AS1 B, 1989.
[13] J. Elzerman, R. Hanson, L. Willems van Beveren, B. Witkamp, L. Vandersypen, and L. P. Kouwenhoven, "Single-shot read-out of an individual electron spin in a quantum dot," Nature, vol. 430, no. 6998, pp. 431-435, 2004.
[14] S. J. Angus, A. J. Ferguson, A. S. Dzurak, and R. G. Clark, "Gate-defined quantum dots in intrinsic silicon," Nano Letters, vol. 7, no. 7, pp. 2051-2055, 2007.
[15] W. Huang, C. Yang, K. Chan, T. Tanttu, B. Hensen, R. Leon, M. Fogarty, J. Hwang, F. Hudson, and K. M. Itoh, "Fidelity benchmarks for two-qubit gates in silicon," Nature, vol. 569, no. 7757, pp. 532-536, 2019.
[16] K. M. Itoh and H. Watanabe, "Isotope engineering of silicon and diamond for quantum computing and sensing applications," MRS Communications, vol. 4, no. 4, pp. 143-157, 2014.
[17] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, "Surface codes: Towards practical large-scale quantum computation," Physical Review A—Atomic, Molecular, and Optical Physics, vol. 86, no. 3, p. 032324, 2012.
[18] X. Mi, T. Hazard, C. Payette, K. Wang, D. Zajac, J. Cady, and J. R. Petta, "Magnetotransport studies of mobility limiting mechanisms in undoped Si/SiGe heterostructures," Physical Review B, vol. 92, no. 3, p. 035304, 2015.
[19] S.-H. Huang, T.-M. Lu, S.-C. Lu, C.-H. Lee, C. Liu, and D. Tsui, "Mobility enhancement of strained Si by optimized SiGe/Si/SiGe structures," Applied Physics Letters, vol. 101, no. 4, 2012.
[20] D. Zajac, T. Hazard, X. Mi, E. Nielsen, and J. R. Petta, "Scalable gate architecture for a one-dimensional array of semiconductor spin qubits," Physical Review Applied, vol. 6, no. 5, p. 054013, 2016.
[21] A. R. Mills, C. R. Guinn, M. J. Gullans, A. J. Sigillito, M. M. Feldman, E. Nielsen, and J. R. Petta, "Two-qubit silicon quantum processor with operation fidelity exceeding 99%," Science Advances, vol. 8, no. 14, p. eabn5130, 2022.
[22] N. Hendrickx, D. Franke, A. Sammak, G. Scappucci, and M. Veldhorst, "Fast two-qubit logic with holes in germanium," Nature, vol. 577, no. 7791, pp. 487-491, 2020.
[23] N. W. Hendrickx, W. I. Lawrie, M. Russ, F. van Riggelen, S. L. de Snoo, R. N. Schouten, A. Sammak, G. Scappucci, and M. Veldhorst, "A four-qubit germanium quantum processor," Nature, vol. 591, no. 7851, pp. 580-585, 2021.
[24] R. Winkler, S. Papadakis, E. De Poortere, and M. Shayegan, Spin-orbit coupling in two-dimensional electron and hole systems. Springer, 2003.
[25] H. Watzinger, J. Kukučka, L. Vukušić, F. Gao, T. Wang, F. Schäffler, J.-J. Zhang, and G. Katsaros, "A germanium hole spin qubit," Nature Communications, vol. 9, no. 1, p. 3902, 2018.
[26] G. Scappucci, P. Taylor, J. Williams, T. Ginley, and S. Law, "Crystalline materials for quantum computing: Semiconductor heterostructures and topological insulators exemplars," MRS Bulletin, vol. 46, no. 7, pp. 596-606, 2021.
[27] X. Mi, M. Benito, S. Putz, D. M. Zajac, J. M. Taylor, G. Burkard, and J. R. Petta, "A coherent spin–photon interface in silicon," Nature, vol. 555, no. 7698, pp. 599-603, 2018.
[28] L. Pfeiffer, K. West, H. Stormer, and K. Baldwin, "Electron mobilities exceeding 107 cm2/V s in modulation‐doped GaAs," Applied Physics Letters, vol. 55, no. 18, pp. 1888-1890, 1989.
[29] M. Manfra, E. Hwang, S. Das Sarma, L. Pfeiffer, K. West, and A. Sergent, "Transport and percolation in a low-density high-mobility two-dimensional hole system," Physical Review Letters, vol. 99, no. 23, p. 236402, 2007.
[30] K. C. Nowack, F. Koppens, Y. V. Nazarov, and L. Vandersypen, "Coherent control of a single electron spin with electric fields," Science, vol. 318, no. 5855, pp. 1430-1433, 2007.
[31] J. Taylor, J. Petta, A. Johnson, A. Yacoby, C. Marcus, and M. Lukin, "Relaxation, dephasing, and quantum control of electron spins in double quantum dots," Physical Review B—Condensed Matter and Materials Physics, vol. 76, no. 3, p. 035315, 2007.
[32] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson, "Silicon quantum electronics," Reviews of Modern Physics, vol. 85, no. 3, pp. 961-1019, 2013.
[33] A. M. Tyryshkin, S. Tojo, J. J. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, T. Schenkel, M. L. Thewalt, and K. M. Itoh, "Electron spin coherence exceeding seconds in high-purity silicon," Nature Materials, vol. 11, no. 2, pp. 143-147, 2012.
[34] C. Yang, A. Rossi, R. Ruskov, N. Lai, F. Mohiyaddin, S. Lee, C. Tahan, G. Klimeck, A. Morello, and A. Dzurak, "Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting," Nature Communications, vol. 4, no. 1, p. 2069, 2013.
[35] D. Sabbagh, N. Thomas, J. Torres, R. Pillarisetty, P. Amin, H. George, K. Singh, A. Budrevich, M. Robinson, and D. Merrill, "Quantum transport properties of industrial 28Si/28SiO2," Physical Review Applied, vol. 12, no. 1, p. 014013, 2019.
[36] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, and Y. Hoshi, "A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%," Nature Nanotechnology, vol. 13, no. 2, pp. 102-106, 2018.
[37] M. Friesen, M. Eriksson, and S. Coppersmith, "Magnetic field dependence of valley splitting in realistic Si/SiGe quantum wells," Applied Physics Letters, vol. 89, no. 20, 2006.
[38] A. Hollmann, T. Struck, V. Langrock, A. Schmidbauer, F. Schauer, T. Leonhardt, K. Sawano, H. Riemann, N. V. Abrosimov, and D. Bougeard, "Large, tunable valley splitting and single-spin relaxation mechanisms in a Si/SixGe1−x quantum dot," Physical Review Applied, vol. 13, no. 3, p. 034068, 2020.
[39] A. Sammak, D. Sabbagh, N. W. Hendrickx, M. Lodari, B. Paquelet Wuetz, A. Tosato, L. Yeoh, M. Bollani, M. Virgilio, and M. A. Schubert, "Shallow and undoped germanium quantum wells: a playground for spin and hybrid quantum technology," Advanced Functional Materials, vol. 29, no. 14, p. 1807613, 2019.
[40] A. Dobbie, M. Myronov, R. J. Morris, A. Hassan, M. J. Prest, V. Shah, E. H. Parker, T. E. Whall, and D. R. Leadley, "Ultra-high hole mobility exceeding one million in a strained germanium quantum well," Applied Physics Letters, vol. 101, no. 17, 2012.
[41] M. Lodari, N. W. Hendrickx, W. I. Lawrie, T.-K. Hsiao, L. M. Vandersypen, A. Sammak, M. Veldhorst, and G. Scappucci, "Low percolation density and charge noise with holes in germanium," Materials for Quantum Technology, vol. 1, no. 1, p. 011002, 2021.
[42] A. Korotkov and Y. V. Nazarov, "Single-electron tunneling coexisting with the barrier suppression," Physica B: Condensed Matter, vol. 173, no. 3, pp. 217-222, 1991.
[43] L. P. Kouwenhoven, N. C. Van der Vaart, A. Johnson, W. Kool, C. Harmans, J. Williamson, A. Staring, and C. Foxon, "Single electron charging effects in semiconductor quantum dots," Zeitschrift für Physik B Condensed Matter, vol. 85, pp. 367-373, 1991.
[44] T. Hiramot and H. Ishikuro, "Quantum energy and charging energy in point contact MOSFETs acting as single electron transistors," Superlattices and microstructures, vol. 25, no. 1-2, pp. 263-267, 1999.
[45] X. Gao, E. Nielsen, R. P. Muller, R. W. Young, A. G. Salinger, N. C. Bishop, M. P. Lilly, and M. S. Carroll, "Quantum computer aided design simulation and optimization of semiconductor quantum dots," Journal of Applied Physics, vol. 114, no. 16, 2013.
[46] C. W. Beenakker, "Theory of Coulomb-blockade oscillations in the conductance of a quantum dot," Physical Review B, vol. 44, no. 4, p. 1646, 1991.
[47] A. Hanna and M. Tinkham, "Variation of the Coulomb staircase in a two-junction system by fractional electron charge," Physical Review B, vol. 44, no. 11, p. 5919, 1991.
[48] B. L. v. Altshuler, P. A. Lee, and W. R. Webb, Mesoscopic phenomena in solids. Elsevier, 2012.
[49] M. Amman, K. Mullen, and E. Ben‐Jacob, "The charge‐effect transistor," Journal of Applied Physics, vol. 65, no. 1, pp. 339-346, 1989.
[50] Y. Meir, N. S. Wingreen, and P. A. Lee, "Transport through a strongly interacting electron system: Theory of periodic conductance oscillations," Physical Review Letters, vol. 66, no. 23, p. 3048, 1991.
[51] S. Tarucha, D. Austing, T. Honda, R. Van der Hage, and L. P. Kouwenhoven, "Shell filling and spin effects in a few electron quantum dot," Physical Review Letters, vol. 77, no. 17, p. 3613, 1996.
[52] N.-W. Hsu, W.-C. Hou, Y.-Y. Chen, Y.-J. Wu, H.-S. Kao, C. T. Harris, T.-M. Lu, and J.-Y. Li, "Temperature dependence of charge distributions and carrier mobility in an undoped Si/SiGe heterostructure," IEEE Transactions on Electron Devices, vol. 69, no. 2, pp. 482-486, 2022.
[53] J. Phillips, "Band structure of silicon, germanium, and related semiconductors," Physical Review, vol. 125, no. 6, p. 1931, 1962.
[54] L. Rokhinson, L. Guo, S. Chou, and D. Tsui, "Spin transitions in a small Si quantum dot," Physical Review B, vol. 63, no. 3, p. 035321, 2001.
[55] F. H. Koppens, C. Buizert, K.-J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. Kouwenhoven, and L. Vandersypen, "Driven coherent oscillations of a single electron spin in a quantum dot," Nature, vol. 442, no. 7104, pp. 766-771, 2006.
[56] F. Schäffler, "High-mobility Si and Ge structures," Semiconductor Science and Technology, vol. 12, no. 12, p. 1515, 1997.
[57] T. Ando, A. B. Fowler, and F. Stern, "Electronic properties of two-dimensional systems," Reviews of Modern Physics, vol. 54, no. 2, p. 437, 1982.
[58] T. B. Boykin, G. Klimeck, M. Eriksson, M. Friesen, S. Coppersmith, P. Von Allmen, F. Oyafuso, and S. Lee, "Valley splitting in strained silicon quantum wells," Applied Physics Letters, vol. 84, no. 1, pp. 115-117, 2004.
[59] L. Petit, J. Boter, H. Eenink, G. Droulers, M. Tagliaferri, R. Li, D. Franke, K. Singh, J. Clarke, and R. Schouten, "Spin lifetime and charge noise in hot silicon quantum dot qubits," Physical review letters, vol. 121, no. 7, p. 076801, 2018.
[60] M. Veldhorst, J. Hwang, C. Yang, A. Leenstra, B. de Ronde, J. Dehollain, J. Muhonen, F. Hudson, K. M. Itoh, and A. t. Morello, "An addressable quantum dot qubit with fault-tolerant control-fidelity," Nature Nanotechnology, vol. 9, no. 12, pp. 981-985, 2014.
[61] A. Laucht, J. T. Muhonen, F. A. Mohiyaddin, R. Kalra, J. P. Dehollain, S. Freer, F. E. Hudson, M. Veldhorst, R. Rahman, and G. Klimeck, "Electrically controlling single-spin qubits in a continuous microwave field," Science advances, vol. 1, no. 3, p. e1500022, 2015.
[62] M. G. Borselli, R. S. Ross, A. A. Kiselev, E. T. Croke, K. S. Holabird, P. W. Deelman, L. D. Warren, I. Alvarado-Rodriguez, I. Milosavljevic, and F. C. Ku, "Measurement of valley splitting in high-symmetry Si/SiGe quantum dots," Applied Physics Letters, vol. 98, no. 12, 2011.
[63] F. Simmel, D. Abusch-Magder, D. Wharam, M. Kastner, and J. Kotthaus, "Statistics of the Coulomb-blockade peak spacings of a silicon quantum dot," Physical Review B, vol. 59, no. 16, p. R10441, 1999.
[64] M. G. Borselli, K. Eng, E. T. Croke, B. M. Maune, B. Huang, R. S. Ross, A. A. Kiselev, P. W. Deelman, I. Alvarado-Rodriguez, and A. E. Schmitz, "Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots," Applied Physics Letters, vol. 99, no. 6, 2011.
[65] M. Veldhorst, C. Yang, J. Hwang, W. Huang, J. Dehollain, J. Muhonen, S. Simmons, A. Laucht, F. Hudson, and K. M. Itoh, "A two-qubit logic gate in silicon," Nature, vol. 526, no. 7573, pp. 410-414, 2015.
[66] C. Yang, K. Chan, R. Harper, W. Huang, T. Evans, J. Hwang, B. Hensen, A. Laucht, T. Tanttu, and F. Hudson, "Silicon qubit fidelities approaching incoherent noise limits via pulse engineering," Nature Electronics, vol. 2, no. 4, pp. 151-158, 2019.
[67] E. Kawakami, P. Scarlino, D. R. Ward, F. Braakman, D. Savage, M. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. Vandersypen, "Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot," Nature Nanotechnology, vol. 9, no. 9, pp. 666-670, 2014.
[68] E. Kawakami, T. Jullien, P. Scarlino, D. R. Ward, D. E. Savage, M. G. Lagally, V. V. Dobrovitski, M. Friesen, S. N. Coppersmith, and M. A. Eriksson, "Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet," Proceedings of the National Academy of Sciences, vol. 113, no. 42, pp. 11738-11743, 2016.
[69] M. Ciorga, A. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, "Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy," Physical Review B, vol. 61, no. 24, p. R16315, 2000.
[70] J. Elzerman, R. Hanson, J. Greidanus, L. W. Van Beveren, S. De Franceschi, L. Vandersypen, S. Tarucha, and L. Kouwenhoven, "Few-electron quantum dot circuit with integrated charge read out," Physical Review B, vol. 67, no. 16, p. 161308, 2003.
[71] D. Schröer, A. Greentree, L. Gaudreau, K. Eberl, L. Hollenberg, J. Kotthaus, and S. Ludwig, "Electrostatically defined serial triple quantum dot charged with few electrons," Physical Review B—Condensed Matter and Materials Physics, vol. 76, no. 7, p. 075306, 2007.
[72] C. Volk, A.-M. J. Zwerver, U. Mukhopadhyay, P. T. Eendebak, C. J. van Diepen, J. P. Dehollain, T. Hensgens, T. Fujita, C. Reichl, and W. Wegscheider, "Loading a quantum-dot based “Qubyte” register," Npj Quantum Information, vol. 5, no. 1, p. 29, 2019.
[73] P.-A. Mortemousque, E. Chanrion, B. Jadot, H. Flentje, A. Ludwig, A. D. Wieck, M. Urdampilleta, C. Bäuerle, and T. Meunier, "Coherent control of individual electron spins in a two-dimensional quantum dot array," Nature Nanotechnology, vol. 16, no. 3, pp. 296-301, 2021.
[74] N. Lai, W. Lim, C. Yang, F. Zwanenburg, W. Coish, F. Qassemi, A. Morello, and A. Dzurak, "Pauli spin blockade in a highly tunable silicon double quantum dot," Scientific Reports, vol. 1, no. 1, p. 110, 2011.
[75] B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman, K. S. Holabird, A. A. Kiselev, I. Alvarado-Rodriguez, R. S. Ross, and A. E. Schmitz, "Coherent singlet-triplet oscillations in a silicon-based double quantum dot," Nature, vol. 481, no. 7381, pp. 344-347, 2012.
[76] W. H. Lim, F. Zwanenburg, H. Huebl, M. Möttönen, K. W. Chan, A. Morello, and A. Dzurak, "Observation of the single-electron regime in a highly tunable silicon quantum dot," Applied Physics Letters, vol. 95, no. 24, 2009.
[77] D. J. Paul, "Si/SiGe heterostructures: from material and physics to devices and circuits," Semiconductor Science and Technology, vol. 19, no. 10, p. R75, 2004.
[78] C.-T. Tai and J.-Y. Li, "Recent progress in undoped group-IV heterostructures for quantum technologies," Materials for Quantum Technology, 2024.
[79] Y.-J. Wu, H.-Y. Tsao, C.-Y. Liao, W.-H. Kao, C.-Y. Liu, and J.-Y. Li, "Transient characteristics of carrier transport in an isotopically enriched 28Si/SiGe undoped heterostructure," Applied Physics Letters, vol. 125, no. 9, 2024.
[80] T.-M. Lu, N. Bishop, T. Pluym, J. Means, P. G. Kotula, J. Cederberg, L. A. Tracy, J. Dominguez, M. P. Lilly, and M. S. Carroll, "Enhancement-mode buried strained silicon channel quantum dot with tunable lateral geometry," Applied Physics Letters, vol. 99, no. 4, 2011.
[81] S. G. Philips, M. T. Mądzik, S. V. Amitonov, S. L. de Snoo, M. Russ, N. Kalhor, C. Volk, W. I. Lawrie, D. Brousse, and L. Tryputen, "Universal control of a six-qubit quantum processor in silicon," Nature, vol. 609, no. 7929, pp. 919-924, 2022.
[82] W. Nolting and A. Ramakanth, Quantum theory of magnetism. Springer Science & Business Media, 2009.
[83] R. Winkler, D. Culcer, S. Papadakis, B. Habib, and M. Shayegan, "Spin orientation of holes in quantum wells," Semiconductor Science and Technology, vol. 23, no. 11, p. 114017, 2008.
[84] P. Lawaetz, "Valence-band parameters in cubic semiconductors," Physical Review B, vol. 4, no. 10, p. 3460, 1971.
[85] L. Terrazos, E. Marcellina, Z. Wang, S. Coppersmith, M. Friesen, A. Hamilton, X. Hu, B. Koiller, A. Saraiva, and D. Culcer, "Theory of hole-spin qubits in strained germanium quantum dots," Physical Review B, vol. 103, no. 12, p. 125201, 2021.
[86] C. Kittel and P. McEuen, Introduction to solid state physics. John Wiley & Sons, 2018.
[87] G. Scappucci, C. Kloeffel, F. A. Zwanenburg, D. Loss, M. Myronov, J.-J. Zhang, S. De Franceschi, G. Katsaros, and M. Veldhorst, "The germanium quantum information route," Nature Reviews Materials, vol. 6, no. 10, pp. 926-943, 2021.
[88] J. Van Bree, A. Y. Silov, M. Van Maasakkers, C. Pryor, M. Flatté, and P. Koenraad, "Anisotropy of electron and hole g tensors of quantum dots: An intuitive picture based on spin-correlated orbital currents," Physical Review B, vol. 93, no. 3, p. 035311, 2016.
[89] G. Katsaros, P. Spathis, M. Stoffel, F. Fournel, M. Mongillo, V. Bouchiat, F. Lefloch, A. Rastelli, O. G. Schmidt, and S. De Franceschi, "Hybrid superconductor–semiconductor devices made from self-assembled SiGe nanocrystals on silicon," Nature Nanotechnology, vol. 5, no. 6, pp. 458-464, 2010.
[90] A. Crippa, R. Maurand, L. Bourdet, D. Kotekar-Patil, A. Amisse, X. Jehl, M. Sanquer, R. Laviéville, H. Bohuslavskyi, and L. Hutin, "Electrical spin driving by g-matrix modulation in spin-orbit qubits," Physical Review Letters, vol. 120, no. 13, p. 137702, 2018.
[91] J. T. Muhonen, J. P. Dehollain, A. Laucht, F. E. Hudson, R. Kalra, T. Sekiguchi, K. M. Itoh, D. N. Jamieson, J. C. McCallum, and A. S. Dzurak, "Storing quantum information for 30 seconds in a nanoelectronic device," Nature Nanotechnology, vol. 9, no. 12, pp. 986-991, 2014.
[92] Y.-H. Su, Y. Chuang, C.-Y. Liu, J.-Y. Li, and T.-M. Lu, "Effects of surface tunneling of two-dimensional hole gases in undoped Ge/GeSi heterostructures," Physical Review Materials, vol. 1, no. 4, p. 044601, 2017.
[93] D. J. Paul, "The progress towards terahertz quantum cascade lasers on silicon substrates," Laser & Photonics Reviews, vol. 4, no. 5, pp. 610-632, 2010.
[94] E. Murakami, K. Nakagawa, A. Nishida, and M. Miyao, "Strain-controlled Si-Ge modulation-doped FET with ultrahigh hole mobility," IEEE Electron Device Letters, vol. 12, no. 2, pp. 71-73, 1991.
[95] Y. Xie, D. Monroe, E. Fitzgerald, P. Silverman, F. Thiel, and G. Watson, "Very high mobility two‐dimensional hole gas in Si/GexSi1−x/Ge structures grown by molecular beam epitaxy," Applied Physics Letters, vol. 63, no. 16, pp. 2263-2264, 1993.
[96] H. v. Känel, M. Kummer, G. Isella, E. Müller, and T. Hackbarth, "Very high hole mobilities in modulation-doped Ge quantum wells grown by low-energy plasma enhanced chemical vapor deposition," Applied Physics Letters, vol. 80, no. 16, pp. 2922-2924, 2002.
[97] C. Morrison and M. Myronov, "Electronic transport anisotropy of 2D carriers in biaxial compressive strained germanium," Applied Physics Letters, vol. 111, no. 19, 2017.
[98] V. Shah, A. Dobbie, M. Myronov, D. Fulgoni, L. J. Nash, and D. R. Leadley, "Reverse graded relaxed buffers for high Ge content SiGe virtual substrates," Applied Physics Letters, vol. 93, no. 19, 2008.
[99] T. Lu, C. Harris, S.-H. Huang, Y. Chuang, J.-Y. Li, and C. Liu, "Effective g factor of low-density two-dimensional holes in a Ge quantum well," Applied Physics Letters, vol. 111, no. 10, 2017.
[100] N. Hendrickx, D. Franke, A. Sammak, M. Kouwenhoven, D. Sabbagh, L. Yeoh, R. Li, M. Tagliaferri, M. Virgilio, and G. Capellini, "Gate-controlled quantum dots and superconductivity in planar germanium," Nature Communications, vol. 9, no. 1, p. 2835, 2018.
[101] W. Lawrie, H. Eenink, N. Hendrickx, J. Boter, L. Petit, S. Amitonov, M. Lodari, B. Paquelet Wuetz, C. Volk, and S. Philips, "Quantum dot arrays in silicon and germanium," Applied Physics Letters, vol. 116, no. 8, 2020.
[102] N. Hendrickx, W. Lawrie, L. Petit, A. Sammak, G. Scappucci, and M. Veldhorst, "A single-hole spin qubit," Nature Communications, vol. 11, no. 1, p. 3478, 2020.
[103] L. Hutin, B. Bertrand, R. Maurand, A. Crippa, M. Urdampilleta, Y. Kim, A. Amisse, H. Bohuslavskyi, L. Bourdet, and S. Barraud, "Si MOS technology for spin-based quantum computing," in 2018 48th European Solid-State Device Research Conference (ESSDERC), 2018: IEEE, pp. 12-17.
[104] M. L. Cohen and J. R. Chelikowsky, Electronic structure and optical properties of semiconductors. Springer Science & Business Media, 2012.
[105] J. R. Chelikowsky and M. L. Cohen, "Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors," Physical Review B, vol. 14, no. 2, p. 556, 1976.
[106] M. M. Rieger and P. Vogl, "Electronic-band parameters in strained Si1−xGex alloys on Si1−yGey substrates," Physical Review B, vol. 48, no. 19, p. 14276, 1993.
[107] M. L. Cohen and V. Heine, "The fitting of pseudopotentials to experimental data and their subsequent application," in Solid state physics, vol. 24: Elsevier, 1970, pp. 37-248.
[108] S. Bloom and T. K. Bergstresser, "Band structure of HgSe and HgTe," Physica Status Solidi (b), vol. 42, no. 1, pp. 191-196, 1970.
[109] J. P. Walter, M. L. Cohen, Y. Petroff, and M. Balkanski, "Calculated and measured reflectivity of ZnTe and ZnSe," Physical Review B, vol. 1, no. 6, p. 2661, 1970.
[110] S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, "Achieving direct band gap in germanium through integration of Sn alloying and external strain," Journal of Applied Physics, vol. 113, no. 7, 2013.
[111] S. J. Lee, T. S. Kwon, K. Nahm, and C. K. Kim, "Band structure of ternary compound semiconductors beyond the virtual crystal approximation," Journal of Physics: Condensed Matter, vol. 2, no. 14, p. 3253, 1990.
[112] O. Madelung, "Physics of group IV elements and III-V compounds," Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, vol. 17, 1982.
[113] S. Sant and A. Schenk, "Pseudopotential calculations of strained-GeSn/SiGeSn hetero-structures," Applied Physics Letters, vol. 105, no. 16, 2014.
[114] L. Liu, R. Liang, J. Wang, and J. Xu, "Enhanced carrier mobility and direct tunneling probability of biaxially strained Ge1−xSnx alloys for field-effect transistors applications," Journal of Applied Physics, vol. 117, no. 18, 2015.
[115] H. Lan and C. Liu, "Band alignments at strained Ge1−xSnx/relaxed Ge1−ySny heterointerfaces," Journal of Physics D: Applied Physics, vol. 50, no. 13, p. 13LT02, 2017.
[116] C. T. Tai, P. Y. Chiu, C. Y. Liu, H. S. Kao, C. T. Harris, T. M. Lu, C. T. Hsieh, S. W. Chang, and J. Y. Li, "Strain effects on rashba spin‐orbit coupling of 2D hole gases in GeSn/Ge heterostructures," Advanced Materials, vol. 33, no. 26, p. 2007862, 2021.
[117] S. Luryi, "Quantum capacitance devices," Applied Physics Letters, vol. 52, no. 6, pp. 501-503, 1988.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96791-
dc.description.abstract四族半導體因其在高濃度同位素材料中的長退相干時間及與VLSI製造科技的相容性,成為有潛力實現自旋量子位元(qubit)的方法之一。由閘極所形成之量子點(gate-defined QD)是製造半導體量子位元的最常用方法。通過異質結構來禁止載子面外方向的移動,將其限制在準二維系統中,而上方閘極進一步限制載子在面內方向的運動,形成可容納數個載子的量子點,進行自旋操作與讀出。然而,在大規模量子點陣列中,串擾電容效應阻礙了每個量子點電位的獨立控制。目前,很少有實驗或研究著重在不同量子點設計中的閘極間的串擾問題,因此對不同結構設計的半導體量子點進行電特性的模擬比較有其必要性。
本論文基於模擬的分析比較不同設計量子點的電特性。透過使用COMSOL計算每個閘極的電容,並通過電容模型結合主方程式來模擬出量子點的特徵,包括庫倫阻隔和電荷穩定圖。接著,對閘極配置與間隔層厚度等諸多參數對量子點電特性的影響進行研究。在矽基量子點中,通過將吸引閘極(plunger gate)設置在阻隔閘極(barrier gate)之下、增加吸引閘極與阻隔閘極的長度比、引入限制閘極(confinement gate),減少了阻隔閘極偏壓對量子點的影響,進而改善了吸引閘極控制的獨立性。在矽/矽鍺量子點中,增厚矽鍺間隔層提高了電荷穩定性,但降低了吸引閘極控制的獨立性,導致鄰近量子點彼此的串擾增強。
對於鍺基量子點,通過經驗贗勢法計算了應變鍺與鍺錫量子阱中的等效質量與能障高低。在這些量子點中,較厚的間隔層提高了電荷穩定性,但會降低吸引閘的獨立控制性,這與矽基量子點的趨勢相似。比較矽基和鍺基量子點發現,間隔層的介電特性顯著影響電荷穩定性,而不影響吸引閘極與阻隔閘極之間的控制比。這一分析表明,與材料選擇相比,閘極配置在實現獨立閘極控制方面有著更明顯的影響。
zh_TW
dc.description.abstractGroup-IV semiconductors are a promising platform for spin-based quantum bit (qubit) devices owing to their long decoherence times in isotopically enriched materials and compatibility with VLSI manufacturing technology. Gate-defined quantum dots (QDs) are widely used devices for realizing qubits in semiconductors. Carrier confinement along the z-direction in these devices is achieved through heterostructures, which restrict out-of-plane motion to form a quasi-two-dimensional system. Top gates then confine carriers in the in-plane directions, creating a QD that can host one or a few electrons for spin manipulation and readout. However, in large-scale QD arrays, cross-capacitance effects hamper the independent control of each QD potential. However, limited research has explored the cross-talk issues across different QD designs, making it important to simulate and compare the electrical properties of various QD configurations.
This thesis presents a simulation-based analysis of the electrical properties of different QDs. The simulation process uses COMSOL to calculate the capacitance of each gate and combines the capacitance model with the master equation to characterize electrical properties of QD, such as Coulomb blockade and stability diagram. The influence of gate configuration and spacer thickness on QD electrical property are investigated. In Si-based QDs, placing the plunger gate beneath the barrier gates, increasing the plunger-to-barrier gate length ratio, or incorporating confinement gates improve control capability of the plunger gates by reducing the impact from barrier gate biases. Increasing the SiGe spacer thickness in Si/SiGe QDs also enhances charge stability, but weakens the control by the plunger gates, leading to increased cross-talk between neighboring QDs.
For Ge-based QDs, effective masses and band offsets in strained Ge and GeSn quantum wells are computed using the empirical pseudopotential method. In these devices, thicker spacers improve charge stability, but at the cost of reduced plunger gate control—similar to trends observed in Si-based QDs. Comparing Si- and Ge-based QDs, the dielectric of the spacer significantly affects charge stability, but have little effect on the difference of the control ability between the plunger and barrier gates. This analysis indicates that gate configuration is more critical for achieving independent gate control than the material choice.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:34:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:34:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Quantum computing 1
1.2 Semiconductor Spin Qubits 4
1.3 Thesis Structure 8
Chapter 2 Physics of Semiconductor Quantum Dots 9
2.1 Literature Review 9
2.2 Capacitor Model of Quantum Dots 12
2.3 Simulation of a Quantum Dot 15
2.4 Summary 21
Chapter 3 Si Metal-Oxide-Semiconductor and Si/SiGe Heterostructure Quantum Dots 23
3.1 Review of Si MOS and Si/SiGe quantum dots 23
3.1.1 Band structures in bulk Si 23
3.1.2 Si quantum dot and spin qubit 24
3.2 Gate Configuration 25
3.3 Functions of Different Gates 27
3.4 Effects of Gate Configurations 29
3.4.1 Gate Stackings 29
3.4.2 Effects of Gate Dimensions 33
3.4.3 Two-Layer and Three-Layer Gate Structures 36
3.4.4 Effects of Gate Oxide Thicknesses 40
3.5 Effects of SiGe Spacer Layers 43
3.5.1 Single QD 43
3.5.2 Multiple QDs 48
3.6 Summary 51
Chapter 4 Ge/GeSi and GeSn/Ge Heterostructure Quantum Dot 53
4.1 Review of Ge-Based Quantum Dots 53
4.1.1 Physics of holes in germanium 53
4.1.2 Ge/GeSi heterostructure 56
4.1.3 Ge quantum dot and spin qubit 58
4.2 Simulation of Band Structures by an EPM Theory 60
4.2.1 Introduction to Empirical Pseudopotentials 60
4.2.2 Nonlocal Corrections to the Pseudopotentials 62
4.2.3 Effects of Spin-Orbit Coupling 63
4.2.4 Alloys and the Virtual Crystal Approximation 65
4.2.5 Simulation of Band Structures of Ge and GeSn Quantum Wells 68
4.3 Simulation Results of Quantum Dots 71
4.4 Comparison between Si-Based and Ge-Based Quantum Dots 75
4.5 Summary 77
Chapter 5 Conclusion and Future Work 79
5.1 Conclusion 79
5.2 Future Work 80
REFERENCE 81
-
dc.language.isoen-
dc.subject庫倫阻隔zh_TW
dc.subject經驗贗勢法zh_TW
dc.subject四族半導體zh_TW
dc.subject閘極定義量子點zh_TW
dc.subject電容模型zh_TW
dc.subject主方程式zh_TW
dc.subject電荷穩定圖zh_TW
dc.subjectCoulomb blockadeen
dc.subjectCapacitance modelen
dc.subjectGate-defined quantum dotsen
dc.subjectGroup-IV semiconductorsen
dc.subjectEmpirical pseudopotential methoden
dc.subjectStability diagramen
dc.subjectMaster equationen
dc.title四族半導體異質結構量子點之元件模擬zh_TW
dc.titleSimulation of Quantum Dots on Group-IV Heterostructuresen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee卓大鈞;張書維;梁啟德zh_TW
dc.contributor.oralexamcommitteeDa-Jun Zhou;Shu-Wei Chang;Chi-Te Liangen
dc.subject.keyword四族半導體,閘極定義量子點,電容模型,主方程式,庫倫阻隔,電荷穩定圖,經驗贗勢法,zh_TW
dc.subject.keywordGroup-IV semiconductors,Gate-defined quantum dots,Capacitance model,Master equation,Coulomb blockade,Stability diagram,Empirical pseudopotential method,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202404759-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-12-20-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2028-01-01-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2028-01-01
6.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved