請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96789完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁禹喬 | zh_TW |
| dc.contributor.advisor | Yu-Chiao Liang | en |
| dc.contributor.author | 周詩倪 | zh_TW |
| dc.contributor.author | Shih-Ni Zhou | en |
| dc.date.accessioned | 2025-02-21T16:33:35Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-21 | - |
| dc.identifier.citation | [1] Alexeev, V. A. & Jackson, C. H. (2013), ‘Polar amplification: is atmospheric heat transport important?’, Climate Dynamics 41, 533–547.
[2] Alexeev, V., Langen, P. & Bates, J. (2005), ‘Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks’, Climate Dynamics 24, 655–666. [3] Armour, K. C., Bitz, C. M. & Roe, G. H. (2013), ‘Time-varying climate sensitivity from regional feedbacks’, Journal of Climate 26(13), 4518–4534. [4] Armour, K. C., Siler, N., Donohoe, A. & Roe, G. H. (2019), ‘Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion’, Journal of Climate 32(12), 3655–3680. [5] Barnes, E. A. (2013), ‘Revisiting the evidence linking arctic amplification to extreme weather in midlatitudes’, Geophysical research letters 40(17), 4734–4739. [6] Barnes, E. A. & Screen, J. A. (2015), ‘The impact of arctic warming on the midlatitude jet-stream: Can it? has it? will it?’, Wiley Interdisciplinary Reviews: Climate Change 6(3), 277–286. [7] Beer, E. & Eisenman, I. (2022), ‘Revisiting the role of the water vapor and lapse rate feedbacks in the arctic amplification of climate change’, Journal of Climate 35(10), 2975–2988. [8] Blackport, R. & Kushner, P. J. (2017), ‘Isolating the atmospheric circulation response to arctic sea ice loss in the coupled climate system’, Journal of Climate 30(6), 2163–2185. [9] Blackport, R. & Screen, J. A. (2020a), ‘Insignificant effect of arctic amplification on the amplitude of midlatitude atmospheric waves’, Science Advances 6(8), eaay2880. [10] Blackport, R. & Screen, J. A. (2020b), ‘Weakened evidence for mid-latitude impacts of arctic warming’, Nature Climate Change 10(12), 1065–1066. [11] Blackport, R., Screen, J. A., van der Wiel, K. & Bintanja, R. (2019), ‘Minimal influence of reduced arctic sea ice on coincident cold winters in mid-latitudes’, Nature Climate Change 9(9), 697–704. [12] Block, K. & Mauritsen, T. (2013), ‘Forcing and feedback in the mpi-esm-lr coupled model under abruptly quadrupled CO2’, Journal of Advances in Modeling Earth Systems 5(4), 676–691. [13] Boer, G. (2011), ‘The ratio of land to ocean temperature change under global warming’, Climate Dynamics 37(11), 2253–2270. [14] Bonan, D., Armour, K., Roe, G., Siler, N. & Feldl, N. (2018), ‘Sources of uncertainty in the meridional pattern of climate change’, Geophysical Research Letters 45(17), 91319140. [15] Bône, C., Gastineau, G., Thiria, S., Gallinari, P. & Mejia, C. (2023), ‘Detection and attribution of climate change using a neural network’, Journal of Advances in Modeling Earth Systems 15(10), e2022MS003475. [16] Bône, C., Gastineau, G., Thiria, S., Gallinari, P. & Mejia, C. (2024), ‘Separation of internal and forced variability of climate using a u-net’, Journal of Advances in Modeling Earth Systems 16(6), e2023MS003964. [17] Bonnet, R., Boucher, O., Deshayes, J., Gastineau, G., Hourdin, F., Mignot, J., Servonnat, J. & Swingedouw, D. (2021), ‘Presentation and evaluation of the ipslcm6a-lr ensemble of extended historical simulations’, Journal of Advances in Modeling Earth Systems 13(9), e2021MS002565. [18] Byrne, M. P. & O’Gorman, P. A. (2013), ‘Land–ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations’, Journal of Climate 26(12), 4000–4016. [19] Caballero, R. & Langen, P. L. (2005), ‘The dynamic range of poleward energy transport in an atmospheric general circulation model’, Geophysical Research Letters 32(2). [20] Caesar, L., Rahmstorf, S. & Feulner, G. (2020), ‘On the relationship between atlantic meridional overturning circulation slowdown and global surface warming’, Environmental Research Letters 15(2), 024003. [21] Cassou, C., Kushnir, Y., Hawkins, E., Pirani, A., Kucharski, F., Kang, I.-S. & Caltabiano, N. (2018), ‘Decadal climate variability and predictability: Challenges and opportunities’, Bulletin of the American Meteorological Society 99(3), 479–490. [22] Chalmers, J., Kay, J. E., Middlemas, E. A., Maroon, E. A. & DiNezio, P. (2022), ‘Does disabling cloud radiative feedbacks change spatial patterns of surface greenhouse warming and cooling?’, Journal of Climate 35(6), 1787–1807. [23] Chen, X., Luo, D., Wu, Y., Dunn-Sigouin, E. & Lu, J. (2021), ‘Nonlinear response of atmospheric blocking to early winter barents–kara seas warming: An idealized model study’, Journal of Climate 34(6), 2367–2383. [24] Chen, X. & Tung, K.-K. (2014), ‘Varying planetary heat sink led to global-warming slowdown and acceleration’, Science 345(6199), 897–903. [25] Chen, X. & Tung, K.-K. (2018), ‘Global surface warming enhanced by weak atlantic overturning circulation’, Nature 559(7714), 387–391. [26] Chiang, J. C. & Friedman, A. R. (2012), ‘Extratropical cooling, interhemispheric thermal gradients, and tropical climate change’, Annual Review of Earth and Planetary Sciences 40(1), 383–412. [27] Chung, E.-S., Ha, K.-J., Timmermann, A., Stuecker, M. F., Bodai, T. & Lee, S.-K. (2021), ‘Cold-season arctic amplification driven by arctic ocean-mediated seasonal energy transfer’, Earth’s Future 9(2), e2020EF001898. [28] Chylek, P., Folland, C., Klett, J. D., Wang, M., Hengartner, N., Lesins, G. & Dubey, M. K. (2022), ‘Annual mean arctic amplification 1970–2020: observed and simulated by cmip6 climate models’, Geophysical Research Letters 49(13), e2022GL099371. [29] Cohen, J., Pfeiffer, K. & Francis, J. A. (2018), ‘Warm arctic episodes linked with increased frequency of extreme winter weather in the united states’, Nature Communications 9(1), 869. [30] Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J. et al. (2014), ‘Recent arctic amplification and extreme mid-latitude weather’, Nature Geoscience 7(9), 627–637. [31] Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T., Bhatt, U., Chen, H., Coumou, D. et al. (2020), ‘Divergent consensuses on arctic amplification influence on midlatitude severe winter weather’, Nature Climate Change 10(1), 20–29. [32] Coumou, D., Di Capua, G., Vavrus, S., Wang, L. & Wang, S. (2018), ‘The influence of arctic amplification on mid-latitude summer circulation’, Nature Communications 9(1), 2959. [33] Crook, J. A., Forster, P. M. & Stuber, N. (2011), ‘Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification’, Journal of Climate 24(14), 3575–3592. [34] Dai, A., Huang, D., Rose, B. E., Zhu, J. & Tian, X. (2020), ‘Improved methods for estimating equilibrium climate sensitivity from transient warming simulations’, Climate Dynamics 54, 4515–4543. [35] Dai, A., Luo, D., Song, M. & Liu, J. (2019), ‘Arctic amplification is caused by sea-ice loss under increasing co2’, Nature Communications 10(1), 121. [36] Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E. et al. (2020), ‘Insights from earth system model initial-condition large ensembles and future prospects’, Nature Climate Change 10(4), 277–286. [37] Deser, C., Phillips, A., Bourdette, V. & Teng, H. (2012), ‘Uncertainty in climate change projections: the role of internal variability’, Climate Dynamics 38, 527–546 [38] Deser, C., Phillips, A. S., Alexander, M. A. & Smoliak, B. V. (2014), ‘Projecting north american climate over the next 50 years: Uncertainty due to internal variability’, Journal of Climate 27(6), 2271–2296. [39] Deser, C., Tomas, R. A. & Sun, L. (2015), ‘The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to arctic sea ice loss’, Journal of Climate 28(6), 2168–2186. [40] Deser, C., Tomas, R., Alexander, M. & Lawrence, D. (2010), ‘The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century’, Journal of Climate 23(2), 333–351. [41] Dunne, J. P., Winton, M., Bacmeister, J., Danabasoglu, G., Gettelman, A., Golaz, J.-C., Hannay, C., Schmidt, G. A., Krasting, J. P., Leung, L. R. et al. (2020), ‘Comparison of equilibrium climate sensitivity estimates from slab ocean, 150-year, and longer simulations’, Geophysical Research Letters 47(16), e2020GL088852. [42] Enfield, D. B. & Cid-Serrano, L. (2010), ‘Secular and multidecadal warmings in the north atlantic and their relationships with major hurricane activity’, International Journal of Climatology: A Journal of the Royal Meteorological Society 30(2), 174184. [43] England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A. & Santoso, A. (2014), ‘Recent intensification of wind-driven circulation in the pacific and the ongoing warming hiatus’, Nature Climate Change 4(3), 222–227. [44] England, M. R., Eisenman, I., Lutsko, N. J., & Wagner, T. J. (2021), ‘The recent emergence of Arctic amplification’, Geophysical Research Letters, 48(15), e2021GL094086. [45] Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J. & Taylor, K. E. (2016), ‘Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design and organization’, Geoscientific Model Development 9(5), 19371958. [46] Eyring, V., Gillett, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor, S. et al. (2021), ‘Human influence on the climate system (chapter 3)’. [47] Fabiano, F., Davini, P., Meccia, V. L., Zappa, G., Bellucci, A., Lembo, V., Bellomo, K. & Corti, S. (2024), ‘Multi-centennial evolution of the climate response and deep-ocean heat uptake in a set of abrupt stabilization scenarios with ec-earth3’, Earth System Dynamics 15(2), 527–546. [48] Fan, Y., Liu, W., Zhang, P., Chen, R. & Li, L. (2023), ‘North atlantic oscillation contributes to the subpolar north atlantic cooling in the past century’, Climate Dynamics 61(11), 5199–5215. [49] Feichter, J., Roeckner, E., Lohmann, U. & Liepert, B. (2004), ‘Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing’, Journal of Climate 17(12), 2384–2398. [50] Feldl, N., Bordoni, S. & Merlis, T. M. (2017), ‘Coupled high-latitude climate feedbacks and their impact on atmospheric heat transport’, Journal of Climate 30(1), 189–201. [51] Feldl, N., Po-Chedley, S., Singh, H. K., Hay, S. & Kushner, P. J. (2020), ‘Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback’, Npj Climate and Atmospheric Science 3(1), 41. [52] Francis, J. A. & Vavrus, S. J. (2012), ‘Evidence linking arctic amplification to extreme weather in mid-latitudes’, Geophysical Research Letters 39(6). [53] Francis, J. & Skific, N. (2015), ‘Evidence linking rapid arctic warming to mid-latitude weather patterns’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373(2045), 20140170. [54] Frankcombe, L. M., England, M. H., Mann, M. E. & Steinman, B. A. (2015), ‘Separating internal variability from the externally forced climate response’, Journal of Climate 28(20), 8184–8202. [55] Frankignoul, C., Gastineau, G. & Kwon, Y.-O. (2017), ‘Estimation of the sst response to anthropogenic and external forcing and its impact on the atlantic multidecadal oscillation and the pacific decadal oscillation’, Journal of Climate 30(24), 9871–9895. [56] Gillett, N. P., Stone, D. A., Stott, P. A., Nozawa, T., Karpechko, A. Y., Hegerl, G. C., Wehner, M. F. & Jones, P. D. (2008), ‘Attribution of polar warming to human influence’, Nature Geoscience 1(11), 750–754. [57] Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., Jonko, A., Kushner, P. J., Lecomte, O., Massonnet, F. et al. (2018), ‘Quantifying climate feedbacks in polar regions’, Nature Communications 9(1), 1919. [58] Graversen, R. G., Langen, P. L. & Mauritsen, T. (2014), ‘Polar amplification in ccsm4: Contributions from the lapse rate and surface albedo feedbacks’, Journal of Climate 27(12), 4433–4450. [59] Graversen, R. G. & Wang, M. (2009), ‘Polar amplification in a coupled climate model with locked albedo’, Climate Dynamics 33, 629–643. [60] Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M. & Donohoe, A. (2021), ‘Contributions to polar amplification in cmip5 and cmip6 models’, Frontiers in Earth Science 9, 710036. [61] Hall, A. (2004), ‘The role of surface albedo feedback in climate’, Journal of Climate 17(7), 1550–1568. [62] Ham, Y.-G., Kim, J.-H., Min, S.-K., Kim, D., Li, T., Timmermann, A. & Stuecker, M. F. (2023), ‘Anthropogenic fingerprints in daily precipitation revealed by deep learning’, Nature 622(7982), 301–307. [63] Harzallah, A. & Sadourny, R. (1995), ‘Internal versus sst-forced atmospheric variability as simulated by an atmospheric general circulation model’, Journal of Climate 8(3), 474–495. [64] Hawkins, E. & Sutton, R. (2009), ‘The potential to narrow uncertainty in regional climate predictions’, Bulletin of the American Meteorological Society 90(8), 10951108. [65] Henry, M. & Merlis, T. M. (2019), ‘The role of the nonlinearity of the stefan–boltzmann law on the structure of radiatively forced temperature change’, Journal of Climate 32(2), 335–348. [66] Hoffert, M. I. & Covey, C. (1992), ‘Deriving global climate sensitivity from palaeoclimate reconstructions’, Nature 360(6404), 573–576. [67] Hu, X., Liu, Y., Kong, Y. & Yang, Q. (2022), ‘A quantitative analysis of the source of inter-model spread in arctic surface warming response to increased CO2 concentration’, Geophysical Research Letters 49(18), e2022GL100034. [68] Hwang, Y.-T. & Frierson, D. M. (2010), ‘Increasing atmospheric poleward energy transport with global warming’, Geophysical Research Letters 37(24). [69] Hwang, Y.-T., Frierson, D. M. & Kay, J. E. (2011), ‘Coupling between arctic feedbacks and changes in poleward energy transport’, Geophysical Research Letters 38(17). [70] Jansen, M. F. (2017), ‘Glacial ocean circulation and stratification explained by reduced atmospheric temperature’, Proceedings of the National Academy of Sciences 114(1), 45–50. [71] Jeffrey, S., Rotstayn, L., Collier, M., Dravitzki, S., Hamalainen, C., Moeseneder, C., Wong, K. & Syktus, J. (2013), ‘Australia’s cmip5 submission usingthe csiro-mk3. 6 model’, Australian Meteorological and Oceanographic Journal 63(1), 1–13. [72] Jenkins, M. & Dai, A. (2021), ‘The impact of sea-ice loss on arctic climate feedbacks and their role for arctic amplification’, Geophysical Research Letters 48(15), e2021GL094599. [73] Jiang, Y., Yang, X.-Q., Liu, X., Qian, Y., Zhang, K., Wang, M., Li, F., Wang, Y. & Lu, Z. (2020), ‘Impacts of wildfire aerosols on global energy budget and climate: The role of climate feedbacks’, Journal of Climate 33(8), 3351–3366. [74] Jones, G. S., Stott, P. A. & Christidis, N. (2013), ‘Attribution of observed historical near–surface temperature variations to anthropogenic and natural causes using cmip5 simulations’, Journal of Geophysical Research: Atmospheres 118(10), 4001–4024. [75] Jonko, A. K., Shell, K. M., Sanderson, B. M. & Danabasoglu, G. (2013), ‘Climate feedbacks in ccsm3 under changing co 2 forcing. part ii: Variation of climate feedbacks and sensitivity with forcing’, Journal of Climate 26(9), 2784–2795. [76] Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M. & Johns, T. C. (2008), ‘Mechanisms for the land/sea warming contrast exhibited by simulations of climate change’, Climate dynamics 30, 455–465. [77] Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S., Danabasoglu, G., Edwards, J. et al. (2015), ‘The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability’, Bulletin of the American Meteorological Society 96(8), 1333–1349. [78] Kay, J. E., Liang, Y.-C., Zhou, S.-N. & Maher, N. (2024), ‘Sea ice feedbacks cause more greenhouse cooling than greenhouse warming at high northern latitudes on multicentury timescales’, Environmental Research: Climate 3(4), 041003. [79] Kosaka, Y. & Xie, S.-P. (2013), ‘Recent global-warming hiatus tied to equatorial pacific surface cooling’, Nature 501(7467), 403–407. [80] Kug, J.-S., Jeong, J.-H., Jang, Y.-S., Kim, B.-M., Folland, C. K., Min, S.-K. & Son, S.-W. (2015), ‘Two distinct influences of arctic warming on cold winters over north america and east asia’, Nature Geoscience 8(10), 759–762. [81] Kumar, A., Yadav, J. & Mohan, R. (2021), ‘Spatio-temporal change and variability of barents-kara sea ice, in the arctic: Ocean and atmospheric implications’, Science of The Total Environment 753, 142046. [82] Langen, P. L., Graversen, R. G. & Mauritsen, T. (2012), ‘Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet’, Journal of Climate 25(8), 3010–3024. [83] Lenssen, N. J., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy, R. & Zyss, D. (2019), ‘Improvements in the gistemp uncertainty model’, Journal of Geophysical Research: Atmospheres 124(12), 6307–6326. [84] Liang, Y.-C., Polvani, L. M. & Mitevski, I. (2022a), ‘Arctic amplification, and its seasonal migration, over a wide range of abrupt co2 forcing’, Npj Climate and Atmospheric Science 5(1), 14. [85] Liang, Y.-C., Polvani, L. M., Previdi, M., Smith, K. L., England, M. R. & Chiodo, G. (2022b), ‘Stronger arctic amplification from ozone-depleting substances than from carbon dioxide’, Environmental Research Letters 17(2), 024010. [86] Long, D. J. & Collins, M. (2013), ‘Quantifying global climate feedbacks, responses and forcing under abrupt and gradual co 2 forcing’, Climate Dynamics 41, 2471–2479. [87] Ma, J., Xie, S.-P. & Kosaka, Y. (2012), ‘Mechanisms for tropical tropospheric circulation change in response to global warming’, Journal of Climate 25(8), 2979–2994. [88] Manabe, S. & Wetherald, R. T. (1975), ‘The effects of doubling the co 2 concentration on the climate of a general circulation model’, Journal of Atmospheric Sciences 32(1), 315. [89] Mauritsen, T., Graversen, R. G., Klocke, D., Langen, P. L., Stevens, B. & Tomassini, L. (2013), ‘Climate feedback efficiency and synergy’, Climate Dynamics 41, 2539–2554. [90] Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J. & Trenberth, K. E. (2013), ‘Externally forced and internally generated decadal climate variability associated with the interdecadal pacific oscillation’, Journal of Climate 26(18), 7298–7310. [91] Meredith, M. P., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A. A., Hollowed, A. B., Kofinas, G., Mackintosh, A. N., Muelbert, M. M. C., Melbourne-Thomas, J. et al. (2019), ‘Polar regions’, in The Ocean and Cryosphere in a Changing Climate: Summary for Policymakers, Intergovernmental Panel on Climate Change, pp. 3–1. [92] Middlemas, E., Kay, J., Medeiros, B. & Maroon, E. (2020), ‘Quantifying the influence of cloud radiative feedbacks on arctic surface warming using cloud locking in an earth system model’, Geophysical Research Letters 47(15), e2020GL089207. [93] Miller, G. H., Alley, R. B., Brigham-Grette, J., Fitzpatrick, J. J., Polyak, L., Serreze, M. C. & White, J. W. (2010), ‘Arctic amplification: can the past constrain the future?’, Quaternary Science Reviews 29(15-16), 1779–1790. [94] Ming, Y. & Ramaswamy, V. (2009), ‘Nonlinear climate and hydrological responses to aerosol effects’, Journal of Climate 22(6), 1329–1339. [95] Mitevski, I., Orbe, C., Chemke, R., Nazarenko, L. & Polvani, L. M. (2021), ‘Non-monotonic response of the climate system to abrupt CO2 forcing’, Geophysical Research Letters 48, e2020GL090861. [96] Mitevski, I., Polvani, L. M. & Orbe, C. (2022), ‘Asymmetric warming/cooling response to CO2 increase/decrease mainly due to non-logarithmic forcing, not feedbacks’, Geophysical Research Letters 49, e2021GL097133. [97] Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. (2014), ‘Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades’, Nature Geoscience 7, 869–873. [98] Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., Mantua, N. J., Miller, A. J., Minobe, S., & Nakamura, H. (2016). ‘The Pacific Decadal Oscillation, Revisited.’ Journal of Climate, 29(12), 4399–4427. [99] Oudar, T., Sanchez-Gomez, E., Chauvin, F., Cattiaux, J., Terray, L. & Cassou, C. (2017), ‘Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the northern hemisphere atmospheric circulation’, Climate Dynamics 49, 3693–3713. [100] Overland, J. E., Dethloff, K., Francis, J. A., Hall, R. J., Hanna, E., Kim, S.-J., Screen, J. A., Shepherd, T. G. & Vihma, T. (2016), ‘Nonlinear response of mid-latitude weather to the changing Arctic’, Nature Climate Change 6, 992–9. [101] Overland, J., Francis, J. A., Hall, R., Hanna, E., Kim, S.-J. & Vihma, T. (2015), ‘The melting Arctic and midlatitude weather patterns: are they connected?’, Journal of Climate 28, 7917–32. [102] Palter, J. B. (2015), ‘The role of the gulf stream in European climate’, Annual Review of Marine Science 7, 113–137. [103] Pendergrass, A. G., Conley, A. & Vitt, F. M. (2018), ‘Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5’, Earth System Science Data 10(1), 317–324. [104] Penland, C. & Matrosova, L. (1994). ‘A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation.’ Journal of Climate, 7(9), 1352–1372. [105] Penland, C. & Matrosova, L. (2006). ‘Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter.’ Journal of Climate, 19(22), 5796–5815. [106] Pithan, F. & Mauritsen, T. (2014), ‘Arctic amplification dominated by temperature feedbacks in contemporary climate models’, Nature geoscience 7, 181–4. [107] Polvani, L. M., Previdi, M., England, M. R., Chiodo, G. & Smith, K. L. (2020), ‘Substantial twentieth-century Arctic warming caused by ozone-depleting substances’, Nature Climate Change 10(2), 130–133. [108] Previdi, M., Polvani, L. M., Smith, K. L. & Wills, R. C. J. (2020), ‘Arctic amplification: A rapid response to radiative forcing’, Geophysical Research Letters 47(17), e2020GL089933. [109] Rantanen, Mika, et al. (2022), ‘The Arctic has warmed nearly four times faster than the globe since 1979’. Communications Earth & Environment 3(1), 168. [110] Rodgers, K. B., Lin, J., & Frölicher, T. L. (2015). ‘Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model.’ Biogeosciences 12(11), 3301–3320. [111] Roe, G. H. & Baker, M. B. (2007), ‘Why is climate sensitivity so unpredictable?’, Science 318(5850), 629–632. [112] Roe, G. H., Feldl, N., Armour, K. C., Hwang, Y.-T. & Frierson, D. M. W. (2015), ‘The remote impacts of climate feedbacks on regional climate predictability’, Nature Geoscience 8(2), 135–139. [113] Rose, B. E. J., Armour, K. C., Battisti, D. S., Feldl, N. & Koll, D. D. B. (2014), ‘The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake’, Geophysical Research Letters 41(4), 1071–1078. [114] Rugenstein, M. A. A., Sedláček, J. & Knutti, R. (2016), ‘Nonlinearities in patterns of long-term ocean warming’, Geophysical Research Letters 43(7), 3380–3388. [115] Rugenstein, M. A. A., Winton, M., Stouffer, R. J., Griffies, S. M. & Hallberg, R. (2013), ‘Northern high-latitude heat budget decomposition and transient warming’, Journal of Climate 26(2), 609–621. [116] Rugenstein, M. et al. (2020), ‘Equilibrium climate sensitivity estimated by equilibrating climate models’, Geophysical Research Letters 47(4), e2019GL083898. [117] Russotto, R. D. & Biasutti, M. (2020), ‘Polar amplification as an inherent response of a circulating atmosphere: results from the tracmip aquaplanets’, Geophysical Research Letters 47, e2019GL086771. [118] Schmidt, A., Mills, M. J., Ghan, S., Gregory, J. M., Allan, R. P., Andrews, T., Forster, P. M., Jones, A., Kravitz, B., Lamb, K., Mann, G. W., Marshall, L., & Robock, A. (2018). ‘Volcanic Radiative Forcing From 1979 to 2015.’ Journal of Geophysical Research: Atmospheres, 123(22), 12,491–12,508. [119] Screen, J. A. & Simmonds, I. (2010), ‘Increasing fall-winter energy loss from the arctic ocean and its role in arctic temperature amplification’, Geophysical research letters 37(16). [120] Serreze, M. C., Barrett, A., Stroeve, J., Kindig, D. & Holland, M. (2009), ‘The emergence of surface-based arctic amplification’, The Cryosphere 3(1), 11–19. [121] Serreze, M. C. & Francis, J. A. (2006), ‘The arctic amplification debate’, Climatic Change 76(3), 241–264. [122] Sévellec, F., Fedorov, A. V. & Liu, W. (2017), ‘Arctic sea-ice decline weakens the atlantic meridional overturning circulation’, Nature Climate Change 7(8), 604–610. [123] Smith, D. M., Eade, R., Andrews, M., Ayres, H., Clark, A., Chripko, S., Deser, C., Dunstone, N., García-Serrano, J., Gastineau, G. et al. (2022), ‘Robust but weak winter atmospheric circulation response to future arctic sea ice loss’, Nature Communications 13(1), 727. [124] Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T. & Shields, C. A. (2008), ‘Quantifying climate feedbacks using radiative kernels’, Journal of Climate 21(14), 3504–3520. [125] Solomon, S., Daniel, J. S., Neely III, R. R., Vernier, J.-P., Dutton, E. G. & Thomason, L. W. (2011), ‘The persistently variable “background” stratospheric aerosol layer and global climate change’, Science 333(6044), 866–870. [126] Stouffer, R., Weaver, A. & Eby, M. (2004), ‘A method for obtaining pre-twentieth century initial conditions for use in climate change studies’, Climate Dynamics 23, 327–339. [127] Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M., Xie, S.P., Kim, D., McGregor, S., Zhang, W., Zhao, S. et al. (2018), ‘Polar amplification dominated by local forcing and feedbacks’, Nature Climate Change 8(12), 1076–1081. [128] Sumata, H., de Steur, L., Divine, D. V., Granskog, M. A. & Gerland, S. (2023), ‘Regime shift in arctic ocean sea ice thickness’, Nature 615(7952), 443–449. [129] Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E. & Jahn, A. (2015), ‘Influence of internal variability on arctic sea-ice trends’, Nature Climate Change 5(2), 86–89. [130] Sweeney, A. J., Fu, Q., Po-Chedley, S., Wang, H. & Wang, M. (2023), ‘Internal variability increased arctic amplification during 1980–2022’, Geophysical Research Letters 50(24), e2023GL106060. [131] Taylor, P. C., Boeke, R. C., Boisvert, L. N., Feldl, N., Henry, M., Huang, Y., Langen, P. L., Liu, W., Pithan, F., Sejas, S. A. et al. (2022), ‘Process drivers, inter-model spread, and the path forward: A review of amplified arctic warming’, Frontiers in Earth Science 9, 758361. [132] Ting, M., Kushnir, Y., Seager, R. & Li, C. (2009), ‘Forced and internal twentieth-century sst trends in the north atlantic’, Journal of Climate 22(6), 1469–1481. [133] Trenberth, K. E. & Shea, D. J. (2006), ‘Atlantic hurricanes and natural variability in 2005’, Geophysical Research Letters 33(12). [134] Trossman, D., Palter, J., Merlis, T., Huang, Y. & Xia, Y. (2016), ‘Large-scale ocean circulation-cloud interactions reduce the pace of transient climate change’, Geophysical Research Letters 43(8), 3935–3943. [135] Vallis, G. K., Zurita-Gotor, P., Cairns, C. & Kidston, J. (2015), ‘Response of the largescale structure of the atmosphere to global warming’, Quarterly Journal of the Royal Meteorological Society 141(690), 1479–1501. [136] Vavrus, S. J. (2018), ‘The influence of arctic amplification on mid-latitude weather and climate’, Current Climate Change Reports 4, 238–249. [137] Vincent, L. A., Zhang, X., Brown, R., Feng, Y., Mekis, E., Milewska, E., Wan, H. & Wang, X. (2015), ‘Observed trends in canada’s climate and influence of low-frequency variability modes’, Journal of Climate 28(11), 4545–4560. [138] Wang, C., Deser, C., Yu, J.-Y., DiNezio, P. & Clement, A. (2017), ‘El Niño and Southern Oscillation (ENSO): A review’, Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment, Springer, pp. 85–106. [139] Wang, C. & Picaut, J. (2004), ‘Understanding ENSO physics—a review’, in Earth’s Climate: The Ocean–Atmosphere Interaction, Geophysical Monograph 147, American Geophysical Union, pp. 21–48. [140] Winton, M., Griffies, S. M., Samuels, B. L., Sarmiento, J. L. & Frölicher, T. L. (2013), ‘Connecting changing ocean circulation with changing climate’, Journal of Climate 26(7), 2268–2278. [141] Wu, Y.-T., Liang, Y.-C., Kuo, Y.-N., Lehner, F., Previdi, M., Polvani, L. M., Lo, M.H. & Lan, C.-W. (2023), ‘Exploiting smiles and the cmip5 archive to understand arctic climate change seasonality and uncertainty’, Geophysical Research Letters 50(2), e2022GL100745. [142] Yang, H. & Zhu, J. (2011), ‘Equilibrium thermal response timescale of global oceans’, Geophysical Research Letters 38(14). [143] Zappa, G., Ceppi, P. & Shepherd, T. G. (2021), ‘Eurasian cooling in response to arctic sea-ice loss is not proved by maximum covariance analysis’, Nature Climate Change 11(2), 106–108. [144] Zeiler, M. (2014), Visualizing and understanding convolutional networks, in ‘European conference on computer vision/arXiv’, Vol. 1311. [145] Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y.-O., Marsh, R., Yeager, S. G., Amrhein, D. E. & Little, C. M. (2019), ‘A review of the role of the atlantic meridional overturning circulation in atlantic multidecadal variability and associated climate impacts’, Reviews of Geophysics 57(2), 316–375. [146] Zhong, L., Hua, L. & Luo, D. (2018), ‘Local and external moisture sources for the arctic warming over the barents–kara seas’, Journal of Climate 31(5), 1963–1982. [147] Zhou, S.-N., Liang, Y.-C., Mitevski, I. & Polvani, L. M. (2023), ‘Stronger arctic amplification produced by decreasing, not increasing, co2 concentrations’, Environmental Research: Climate 2(4), 045001. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96789 | - |
| dc.description.abstract | 北極放大效應指北極表面溫度變化幅度相較於全球其他區域更為顯著的現象,且在二氧化碳濃度降低和增加的情境下皆會出現,意指在二氧化碳減少造成全球冷卻的情境中,北極冷卻將比全球平均冷卻更顯著。本研究探討反饋交互作用對北極放大效應的影響,我們分析受到一系列廣泛的二氧化碳濃度(從工業化前的1/8倍到8倍)強迫的氣候模型模擬,結果表明北極放大效應確實在二氧化碳濃度下降的情況下發生,且冷卻北極放大效應的強度比二氧化碳濃度增加情境中的強度更強。反饋分析顯示,普朗克、失效率和反照率反饋是產生二氧化碳增加和減少情境中北極放大效應的主要因素,但與二氧化碳濃度減少最相關的是失效率反饋,其在冷卻情境中的強度比暖化情境中更強,不對稱的作用使得冷卻情境中有更強的北極放大效應。我們也藉由逐一關閉濕能量平衡模型中各項反饋,分析各反饋機制、大氣熱傳輸及其交互作用的貢獻。我們發現,在二氧化碳減少的冷卻模擬中,反饋交互作用對北極放大效應的貢獻比二氧化碳增加的模擬中的貢獻更強。特別的是,當二氧化碳濃度增加時,溫度垂直遞減率反饋的交互作用會導致負的北極溫度變化;而在二氧化碳濃度降低的情境下,則會產生正的溫度變化。這表明,溫度垂直遞減率反饋與其他反饋及大氣熱傳輸的交互作用是導致氣候冷卻情境下的北極放大效應比暖化情境更強的重要過程。反饋與大氣熱傳輸的交互作用通常會抵銷反饋間的交互作用。我們的結果突顯了非線性過程在產生北極放大效應對冷卻與暖化氣候不對稱反應中的重要性。 | zh_TW |
| dc.description.abstract | The Arctic amplification (AA), the phenomenon of amplified surface temperature response in the Arctic compared with the response elsewhere, can emerge under both reduced and increased carbon dioxide (CO2) forcings. In this study, we investigate the roles of feedback interactions contributing to AA. We analyze climate model simulations forced by a wide range of CO2 concentrations (from 1/8 to 8 times preindustrial level). Our results show that AA occurs not only under increasing CO2 but also under decreasing CO2, with the Arctic exhibiting an even stronger cooling-induced AA than the warming-induced counterpart. Moreover, the Planck, lapse-rate, and surface albedo feedbacks are identified as the primary contributors to AA in both scenarios. Among these, the lapse-rate feedback, in particular, demonstrates a stronger influence under CO2 reduction, thus reinforcing the asymmetric nature of AA in cooling versus warming climates. We also use a moist energy balance model (MEBM) to emulate the contributions of each feedback, atmospheric heat transport (AHT), and their interactions by locking the effect of each of them. We find that the contribution of feedback interactions to polar amplification is overall stronger in the CO2 reduction runs than in the CO2 increase runs. In particular, the lapse-rate feedback interaction in the CO2 increase runs leads to negative Arctic temperature change, whereas in the CO2 decrease runs leads to positive temperature change. This result indicates that the interaction of lapse-rate feedback and other feedbacks and AHT is a crucial process that gives rise to stronger AA in a cold climate state than that in a warm one. The feedback interaction with AHT generally counteracts the effect of feedback-feedback interactions. Our results highlight the importance of the nonlinear processes in producing AA asymmetric response to cooling and warming forcing agents. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:33:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:33:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES vii Chapter 1 Introduction 1 Chapter 2 Data and Methods 8 2.1 Feedback Analysis using Radiative Kernels 8 2.2 Feedback Locking Analysis 10 Chapter 3 Results 13 3.1 Asymmetric Climate Response under CO2 Forcing 13 3.2 Long-term Climate Asymmetry in Warming and Cooling Experiments 21 3.3 Asymmetric Interaction and AHT Contributions 24 Chapter 4 Discussion 35 Chapter 5 Conclusion 38 APPENDIX 41 REFERENCES 58 | - |
| dc.language.iso | en | - |
| dc.subject | 氣候反饋交互作用 | zh_TW |
| dc.subject | 非線性過程 | zh_TW |
| dc.subject | 反饋鎖定 | zh_TW |
| dc.subject | 二氧化碳強迫 | zh_TW |
| dc.subject | 冷北極放大效應 | zh_TW |
| dc.subject | nonlinear processes | en |
| dc.subject | cold Arctic amplification | en |
| dc.subject | CO2 forcing | en |
| dc.subject | feedback locking | en |
| dc.subject | climate feedback interactions | en |
| dc.title | 理解反饋與熱量傳送對北極放大效應的貢獻 | zh_TW |
| dc.title | Understanding the Contributions of Feedbacks and Heat Transport to Asymmetric Arctic Amplification | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅敏輝;黃彥婷;李時雨 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Hui Lo;Yen-Ting Hwang;Shih-Yu Lee | en |
| dc.subject.keyword | 冷北極放大效應,二氧化碳強迫,反饋鎖定,氣候反饋交互作用,非線性過程, | zh_TW |
| dc.subject.keyword | cold Arctic amplification,CO2 forcing,feedback locking,climate feedback interactions,nonlinear processes, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202404648 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-12-23 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| dc.date.embargo-lift | 2025-02-22 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 13.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
