請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96785
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林建中 | zh_TW |
dc.contributor.advisor | Chien-Chung Lin | en |
dc.contributor.author | 張皓任 | zh_TW |
dc.contributor.author | Hao-Jen Chang | en |
dc.date.accessioned | 2025-02-21T16:32:30Z | - |
dc.date.available | 2025-02-22 | - |
dc.date.copyright | 2025-02-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2025-01-09 | - |
dc.identifier.citation | [1] N. Zheludev, "The life and times of the LED — a 100-year history," Nature Photonics, vol. 1, no. 4, pp. 189-192, 2007/04/01 2007, doi: 10.1038/nphoton.2007.34.
[2] E. F. Schubert, Light-emitting diodes (2018). E. Fred Schubert, 2018. [3] T. Taguchi, "Present Status of Energy Saving Technologies and Future Prospect in White LED Lighting," IEEJ Transactions on Electrical and Electronic Engineering, vol. 3, no. 1, pp. 21-26, 2008, doi: https://doi.org/10.1002/tee.20228. [4] H. X. Jiang and J. Y. Lin, "Nitride micro-LEDs and beyond - a decade progress review," Opt. Express, vol. 21, no. S3, pp. A475-A484, 2013/05/06 2013, doi: 10.1364/OE.21.00A475. [5] J. Day, J. Li, D. Y. C. Lie, C. Bradford, J. Y. Lin, and H. X. Jiang, "III-Nitride full-scale high-resolution microdisplays," Applied Physics Letters, vol. 99, no. 3, 2011, doi: 10.1063/1.3615679. [6] H. Inagaki, A. Saito, H. Sugiyama, T. Okabayashi, and S. Fujimoto, "Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation," (in eng), Emerg Microbes Infect, vol. 9, no. 1, pp. 1744-1747, Dec 2020, doi: 10.1080/22221751.2020.1796529. [7] P. Tian et al., "AlGaN Ultraviolet Micro-LEDs," IEEE Journal of Quantum Electronics, vol. 58, no. 4, pp. 1-14, 2022, doi: 10.1109/JQE.2022.3159854. [8] H.-V. Han et al., "Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology," Opt. Express, vol. 23, no. 25, pp. 32504-32515, 2015/12/14 2015, doi: 10.1364/OE.23.032504. [9] Y. Li et al., "Effective suppression of interface states in recessed-gate MIS-HEMTs by TMAH wet etching," Applied Physics Express, vol. 17, no. 1, p. 011004, 2023/12/29 2024, doi: 10.35848/1882-0786/ad1199. [10] Y. J. Yoon et al., "TMAH-based wet surface pre-treatment for reduction of leakage current in AlGaN/GaN MIS-HEMTs," Solid-State Electronics, vol. 124, pp. 54-57, 2016/10/01/ 2016, doi: https://doi.org/10.1016/j.sse.2016.06.009. [11] M. Cinquino et al., "Light-Emitting Textiles: Device Architectures, Working Principles, and Applications," Micromachines, vol. 12, no. 6, doi: 10.3390/mi12060652. [12] "Light Emitting Diode (LED)." https://byjus.com/physics/light-emitting-diode/ (accessed. [13] G. Bizjak, K. Malovrh Rebec, M. Kobav, and M. Klanjšek Gunde, Photobiological aspects of LED sources for general lighting. 2012. [14] "diode IV." https://www.allaboutcircuits.com/technical-articles/understanding-i-v-curves-of-non-linear-devices/ (accessed. [15] D. Hwang, A. Mughal, C. D. Pynn, S. Nakamura, and S. P. DenBaars, "Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs," Applied Physics Express, vol. 10, no. 3, p. 032101, 2017. [16] M. S. Wong et al., "Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments," Opt. Express, vol. 28, no. 4, pp. 5787-5793, 2020/02/17 2020, doi: 10.1364/OE.384127. [17] J. Kou et al., "Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes," Opt. Express, vol. 27, no. 12, pp. A643-A653, 2019/06/10 2019, doi: 10.1364/OE.27.00A643. [18] T.-Y. Lee et al., "Increase in the efficiency of III-nitride micro LEDs by atomic layer deposition," Opt. Express, vol. 30, no. 11, pp. 18552-18561, 2022/05/23 2022, doi: 10.1364/OE.455726. [19] R. T. Tung, "Recent advances in Schottky barrier concepts," Materials Science and Engineering: R: Reports, vol. 35, no. 1, pp. 1-138, 2001/11/09/ 2001, doi: https://doi.org/10.1016/S0927-796X(01)00037-7. [20] D. Neamen, Semiconductor Physics And Devices. McGraw-Hill Education, 2003. [21] X. Guo and E. F. Schubert, "Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates," Applied Physics Letters, vol. 78, no. 21, pp. 3337-3339, 2001, doi: 10.1063/1.1372359. [22] X. Guo and E. Schubert, "Current crowding in GaN/InGaN light emitting diodes on insulating substrates," Journal of applied Physics, vol. 90, no. 8, pp. 4191-4195, 2001. [23] J. M. Quero, F. Perdigones, and C. Aracil, "11 - Microfabrication technologies used for creating smart devices for industrial applications," in Smart Sensors and MEMs (Second Edition), S. Nihtianov and A. Luque Eds.: Woodhead Publishing, 2018, pp. 291-311. [24] A. Anbari, H. T. Chien, S. Datta, W. Deng, D. Weitz, and J. Fan, "Microfluidic Model Porous Media: Fabrication and Applications," Small, vol. 14, p. 1703575, 03/12 2018, doi: 10.1002/smll.201703575. [25] B. Chen, F. Tay, and C. Iliescu, "Development of thick film PECVD Amorphous silicon with low stress for MEMS applications," Proceedings of SPIE - The International Society for Optical Engineering, vol. 7269, 12/01 2008, doi: 10.1117/12.810441. [26] A. Bashir, T. I. Awan, A. Tehseen, M. B. Tahir, and M. Ijaz, "Chapter 3 - Interfaces and surfaces," in Chemistry of Nanomaterials, T. I. Awan, A. Bashir, and A. Tehseen Eds.: Elsevier, 2020, pp. 51-87. [27] J.-H. Park et al., "Impact of Sidewall Conditions on Internal Quantum Efficiency and Light Extraction Efficiency of Micro-LEDs," Advanced Optical Materials, vol. 11, no. 10, p. 2203128, 2023/05/01 2023, doi: https://doi.org/10.1002/adom.202203128. [28] H. Masui, "Diode ideality factor in modern light-emitting diodes," Semiconductor Science and Technology, vol. 26, no. 7, p. 075011, 2011/04/11 2011, doi: 10.1088/0268-1242/26/7/075011. [29] J. M. Shah, Y.-L. Li, T. Gessmann, and E. F. Schubert, "Experimental analysis and theoretical model for anomalously high ideality factors (n≫2.0) in AlGaN/GaN p-n junction diodes," Journal of Applied Physics, vol. 94, no. 4, pp. 2627-2630, 2003, doi: 10.1063/1.1593218. [30] M. Siva Pratap Reddy, D.-H. Son, J.-H. Lee, J.-S. Jang, and V. Rajagopal Reddy, "Influence of tetramethylammonium hydroxide treatment on the electrical characteristics of Ni/Au/GaN Schottky barrier diode," Materials Chemistry and Physics, vol. 143, no. 2, pp. 801-805, 2014/01/15/ 2014, doi: https://doi.org/10.1016/j.matchemphys.2013.10.016. [31] T. Gotow, T. Arai, T. Aota, and Y. Miyamoto, "Evaluation of TMAH treatment for isolation process of N-polar GaN HEMTs," in 2022 Compound Semiconductor Week (CSW), 1-3 June 2022 2022, pp. 1-2, doi: 10.1109/CSW55288.2022.9930366. [32] D. Anis and O. François, "InGaN/GaN µLED SPICE modelling with size-dependent ABC model integration," in Proc.SPIE, 2019, vol. 10912, p. 109120E, doi: 10.1117/12.2509382. [Online]. Available: https://doi.org/10.1117/12.2509382 [33] Z. Gong et al., "Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes," Journal of Applied Physics, vol. 107, no. 1, 2010, doi: 10.1063/1.3276156. [34] V. M. Krasnov, A. Yurgens, D. Winkler, and P. Delsing, "Self-heating in small mesa structures," Journal of Applied Physics, vol. 89, no. 10, pp. 5578-5580, 2001, doi: 10.1063/1.1367880. [35] H.-S. Chen et al., "Mesa-size-dependent color contrast in flip-chip blue/green two-color InGaN∕GaN multi-quantum-well micro-light-emitting diodes," Applied Physics Letters, vol. 89, no. 9, 2006, doi: 10.1063/1.2339034. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96785 | - |
dc.description.abstract | 使用在光鋐科技股份有限公司購買之紫外光波長的InGaN/AlGaN磊晶片製造方形發光區域的微米等級發光二極體,本實驗製程的元件有多個尺寸,發光區域的邊長有3µm、5µm、10µm、15µm、20µm、25µm、50µm、75µm以及100µm。整套實驗包含了元件及光罩設計、製程,還有最後的電性和光學量測。
在p型電極及p型半導體之間加入一層氧化銦錫透明導電層來增加電流流經元件的均勻性,同時可以縮小p型電極在發光區域上覆蓋的面積,以減少被電極遮住的光子。在乾蝕刻元件以後,我們將晶片泡入氫氧化四甲基銨(TMAH)中濕蝕刻,可以消除感應耦合式電漿蝕刻(ICP-RIE)對元件造成的側壁缺陷,將側壁平坦化,如此一來便能減少側壁的表面非輻射複合,達到外部量子效率的提升,另外,消除缺陷的同時也可以一併使得元件的漏電流縮小。 | zh_TW |
dc.description.abstract | In this experiment, micro-scale light-emitting diodes (LEDs) with square light-emitting areas were manufactured using InGaN/AlGaN epitaxial wafers, with ultraviolet wavelengths. The devices in this experimental process come in various sizes, with the side lengths of the light-emitting areas being 3µm, 5µm, 10µm, 15µm, 20µm, 25µm, 50µm, 75µm, and 100µm. The entire experiment includes device and mask design, processing, and final electrical and optical measurements.
To increase the uniformity of current flowing through the device, indium tin oxide (ITO) transparent conductive layer was added between the p-type electrode and the p-type semiconductor. This also allows for a reduction in the area covered by the p-type electrode over the light-emitting region, minimizing the blockage of photons. After dry etching the device, the wafer was immersed in tetramethylammonium hydroxide (TMAH) for wet etching, which eliminates sidewall defects caused by inductively coupled plasma etching (ICP-RIE) and flattens the sidewalls. This reduces surface non-radiative recombination on the sidewalls, leading to an improvement in external quantum efficiency. Additionally, while eliminating defects, it also helps to reduce the leakage current of the device. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:32:30Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-21T16:32:30Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III Content V List of Figure VIII List of Tables XIV Chapter 1 Introduction 1 1.1 Introduction and evolution of Light emitting diode (LED) 1 1.2 Motivation 3 1.3 Operational principles of a light-emitting-diode (LED) 5 1.4 Reference Review 8 Chapter 2 Experiment principles and instruments 14 2.1 Schottky contact and ohmic contact 14 2.2 current crowding effect 16 2.3 Photolithography 17 2.4 Etching 20 2.5 Plasma Enhanced Chemical Vapor Deposition (PECVD) 21 2.6 Electron Beam Evaporation 23 Chapter 3 Experiment and Process Design 24 3.1 Devices structure view 24 3.2 Experiment process flow of micro-LED 25 3.2.1 Substrate and epitaxy 26 3.2.2 ITO deposition 27 3.2.3 ITO wet etching 28 3.2.4 Mesa dry etching 29 3.2.5 TMAH wet etching 30 3.2.6 N metal deposition 31 3.2.7 Passivation layer deposition 32 3.2.8 Open contact 33 3.2.9 P metal deposition 34 Chapter 4 Results and Discussion 35 4.1 Electrical properties 35 4.1.1 JV characteristics 35 4.1.2 IV characteristics 37 4.1.3 Leakage current 42 4.1.4 Ideality factor 44 4.1.5 Series resistant 46 4.2 External Quantum Efficiency (EQE) 48 4.2.1 Current density at peak EQE (Jpeak) 59 4.3 Spectrum 60 4.3.1 Wavelength shift 66 Chapter 5 Conclusion and Future Work 72 5.1 Conclusion 72 5.2 Future work 73 Reference 74 | - |
dc.language.iso | en | - |
dc.title | 氫氧化四甲基銨側壁處理之微米級氮化銦鎵/氮化鋁鎵紫外光發光二極體研究 | zh_TW |
dc.title | Investigation of micron-sized InGaN/AlGaN ultraviolet light emitting diode with tetramethylazanium hydroxide sidewall treatment | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃建璋;陳國平 | zh_TW |
dc.contributor.oralexamcommittee | Jian-Jang Huang;Kuo-Ping Chen | en |
dc.subject.keyword | 紫外光發光二極體,氧化銦錫,側壁缺陷,外部量子效率,漏電流, | zh_TW |
dc.subject.keyword | Ultraviolet light-emitting diodes,indium tin oxide,sidewall defects,external quantum efficiency,leakage current,tetramethylammonium hydroxide, | en |
dc.relation.page | 78 | - |
dc.identifier.doi | 10.6342/NTU202500064 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-01-09 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
dc.date.embargo-lift | 2025-02-22 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 3.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。