請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96784完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林建中 | zh_TW |
| dc.contributor.advisor | Chien-Chung Lin | en |
| dc.contributor.author | 鄧韜 | zh_TW |
| dc.contributor.author | Tao Deng | en |
| dc.date.accessioned | 2025-02-21T16:32:14Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-01-13 | - |
| dc.identifier.citation | [1] Ş. Oktik, "The Holy Triangle of Science, Technology and Industry for Photovoltaic Solar Energy Conversion," in Renewable Energy Based Solutions, T. S. Uyar and N. Javani Eds. Cham: Springer International Publishing, 2022, pp. 51-80.
[2] G. Raisbeck, "THE SOLAR BATTERY," Scientific American, vol. 193, no. 6, pp. 102-111, 1955. [Online]. Available: http://www.jstor.org/stable/24943814. [3] E. G. Peter, "The Development of Solar Power Satellites," in Advances in Energy Systems and Technology, P. Auer Ed.: Academic Press, 1979, pp. 1-48. [4] D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, vol. 28, no. 11, pp. 671-673, 1976, doi: 10.1063/1.88617. [5] C. Becker et al., "Polycrystalline silicon thin-film solar cells: Status and perspectives," Solar Energy Materials and Solar Cells, vol. 119, pp. 112-123, 2013. [6] R. C. Knechtli, R. Y. Loo, and G. S. Kamath, "High-efficiency GaAs solar cells," IEEE Transactions on electron devices, vol. 31, no. 5, pp. 577-588, 1984. [7] M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, "Multi-junction III–V solar cells: current status and future potential," Solar Energy, vol. 79, no. 1, pp. 78-85, 2005. [8] K.-L. Liang et al., "Highly Efficient Fine-Pitch Quantum Dot/Titanium Oxide Nanocomposites for Ultrahigh-Resolution Full-Color Micro-Light Emitting Diode Displays," ACS Photonics, vol. 11, no. 8, pp. 2981-2991, 2024. [9] E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, "Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review," Solar energy materials and solar cells, vol. 93, no. 8, pp. 1182-1194, 2009. [10] H.-C. Chen et al., "Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film," Solar Energy Materials and Solar Cells, vol. 104, pp. 92-96, 2012/09/01/ 2012, doi: https://doi.org/10.1016/j.solmat.2012.05.003. [11] S.-C. Hsu, Y.-M. Huang, Y.-C. Kao, H.-C. Kuo, R.-H. Horng, and C.-C. Lin, "The analysis of dual-junction tandem solar cells enhanced by surface dispensed quantum dots," IEEE Photonics Journal, vol. 10, no. 5, pp. 1-11, 2018. [12] P. Würfel and U. Würfel, Physics of solar cells: from basic principles to advanced concepts. John Wiley & Sons, 2016. [13] J. Nelson, "The physics of solar cells," Imperial College Press google schola, vol. 2, pp. 62-68, 2003. [14] F. A. Lindholm, J. G. Fossum, and E. L. Burgess, "Application of the superposition principle to solar-cell analysis," IEEE transactions on electron devices, vol. 26, no. 3, pp. 165-171, 1979. [15] G. Araujo and E. Sanchez, "Analytical expressions for the determination of the maximum power point and the fill factor of a solar cell," Solar Cells, vol. 5, no. 4, pp. 377-386, 1982. [16] H. Bayhan and M. Bayhan, "A simple approach to determine the solar cell diode ideality factor under illumination," Solar Energy, vol. 85, no. 5, pp. 769-775, 2011. [17] R. Handy, "Theoretical analysis of the series resistance of a solar cell," Solid-State Electronics, vol. 10, no. 8, pp. 765-775, 1967. [18] T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, "Resistance to edge recombination in GaAs-based dots-in-a-well solar cells," Applied Physics Letters, vol. 95, no. 26, 2009. [19] Y.-Y. Cho et al., "The Luminescent Down Shifting Effect of Single-Junction GaAs Solar Cell with Perovskite Quantum Dots," in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), 2019: IEEE, pp. 2600-2602. [20] M. Tong, K. Nummila, A. Ketterson, I. Adesida, L. Aina, and M. Mattingly, "Selective wet etching characteristics of lattice‐matched InGaAs/InAlAs/InP," Journal of The Electrochemical Society, vol. 139, no. 10, p. L91, 1992. [21] S. Sioncke et al., "Etch rates of Ge, GaAs and InGaAs in acids, bases and peroxide based mixtures," ECS Transactions, vol. 16, no. 10, p. 451, 2008. [22] W. Lim et al., "Investigation of GaAs dry etching in a planar inductively coupled BCl3 plasma," Journal of the Electrochemical Society, vol. 151, no. 3, p. G163, 2004. [23] P. Vigneron, F. Joint, N. Isac, R. Colombelli, and E. Herth, "Advanced and reliable GaAs/AlGaAs ICP-DRIE etching for optoelectronic, microelectronic and microsystem applications," Microelectronic Engineering, vol. 202, pp. 42-50, 2018. [24] A. Belghachi and S. Khelifi, "Modelling of the perimeter recombination effect in GaAs-based micro-solar cell," Solar energy materials and solar cells, vol. 90, no. 1, pp. 1-14, 2006. [25] C. Pellegrino, A. Gagliardi, and C. G. Zimmermann, "Impact of proton and electron irradiation-induced defects on the dark current of GaAs solar cells," IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1661-1667, 2019. [26] Y. Zhang, G. Wu, F. Liu, C. Ding, Z. Zou, and Q. Shen, "Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices," Chemical Society Reviews, vol. 49, no. 1, pp. 49-84, 2020. [27] W. P. Gomes, "Wet etching of III–V semiconductors," in Handbook of Advanced Electronic and Photonic Materials and Devices: Elsevier, 2001, pp. 221-256. [28] A. Clawson, "Guide to references on III–V semiconductor chemical etching," Materials Science and Engineering: R: Reports, vol. 31, no. 1-6, pp. 1-438, 2001. [29] N. H. Karam et al., "Recent developments in high-efficiency Ga0. 5In0. 5P/GaAs/Ge dual-and triple-junction solar cells: steps to next-generation PV cells," Solar Energy Materials and Solar Cells, vol. 66, no. 1-4, pp. 453-466, 2001. [30] T. Stellwag, M. R. Melloch, M. S. Lundstrom, M. Carpenter, and R. Pierret, "Orientation-dependent perimeter recombination in GaAs diodes," Applied physics letters, 1990. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96784 | - |
| dc.description.abstract | 在我的研究中做出了1mm,2mm3mm三種尺寸以及square,hollow square, cross及u-shape四種形狀的砷化鎵(GaAs)太陽能電池,分別用了兩種anti-reflection coating(ALD+PECVD/PECVD)並研究其在側面加上量子點光阻(QDPR)後的各種特性改變,包含了短路電流、開路電壓、暗電流、量子效率、填充因子、理想因子跟串聯電阻等。期望可以利用Luminescent down-shifting效應來幫助元件達成更高的效率。
其中在回字形2000um的元件我們觀察到最佳的表現,短路電流密度從13.6mA/〖cm〗^2上升到19.8 mA/〖cm〗^2。相當於45%的提升,其他形狀的元件也有一定的提升,我們從中看到了很大的潛力,未來會朝著優化製程找到最佳參數以及嘗試更多層量子點光阻繼續努力,我們也嘗試了triple junctionSolar cell的製程,目前尚未找到正確的製程方法。我們討論了試過的方法,並持續搜尋可能的解答。 | zh_TW |
| dc.description.abstract | In this study, we fabricated GaAs solar cells of three different sizes and four different shapes, applying two types of anti-reflection coatings (ALD+PECVD/PECVD). We investigated the changes in various characteristics after adding quantum dot photoresist (QDPR) to the sidewalls, including short-circuit current, open-circuit voltage, dark current, quantum efficiency, fill factor, ideality factor, and series resistance. The goal is to enhance device efficiency using the luminescent down-shifting (LDS) effect.
Among the devices, the 2000 µm ring-shaped cell demonstrated the best performance, with the short-circuit current density increasing from 13.6 mA/cm² to 19.8 mA/cm², representing a 45% improvement. Other device shapes also showed significant improvements, indicating great potential. In the future, we aim to optimize the fabrication process to determine the best parameters and explore the use of multiple layers of quantum dot photoresist. We also attempted to fabricate triple-junction solar cells but have not yet identified the correct process. Finally, we discussed the methods we tried and continue to explore possible solutions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:32:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:32:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要……………………………………………………………………………………………I
Abstract......................................................................................................................................II 致謝...........................................................................................................................................III List of figure.............................................................................................................................VI List of table..............................................................................................................................VIII CHAPTER 1 INTRODUCTION 1 1.1 HISTORY OF SOLAR CELLS 1 1.2 GALLIUM ARSENIDE SOLAR CELL 1 1.3 QUANTUM DOTS PHOTORESIST 2 1.4 LUMINESCENT DOWN-SHIFTING(LDS) 2 1.5 MOTIVATION 2 CHAPTOR 2 WORKING PRINCIPLE AND INDEX OF SOLAR CELL 4 2.1 SOLAR RADIATION 4 2.2 WORKING PRINCIPLE 4 2.2.1 Parameters of Solar Cells 5 2.2.2 Short-Circuit Current 5 2.2.3 Open Circuit Voltage 6 2.2.4 Fill Factor 6 2.2.5 Conversion Efficiency 6 2.2.6 External Quantum Efficiency 7 2.2.7 Ideality Factor 7 2.2.8 Series Resistance 8 2.3 PAPER REVIEW 8 2.3.1 Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film. 8 2.3.2 Resistance to edge recombination in GaAs-based dots-in-a well Solar cells 10 2.3.3 The luminescent down shifting effect of single-junction GaAs Solar cell with perovskite Quantum Dots 11 CHAPTOR 3 EXPERIMENT PROCESS AND MEASUREMENT SET UP 13 3.1 PROCESS FLOW OF GAAS SOLAR CELL 13 3.2 GAAS SOLAR CELL WITH QDPR 15 3.3 EXPERIMENTAL INSTRUMENT 16 3.3.1 Spin coater 16 3.3.2 Hot plate 16 3.3.3 Ultrasonic cleaner 18 3.3.4 Surface profiler 18 3.3.5 Inductively Coupled Plasma(ICP) 19 3.3.6 Plasma Enhanced Chemical Vapor Deposition(PECVD) 20 3.3.7 Atomic layer Deposition(ALD) 21 3.3.8 Mask Aligner 22 3.3.9 E-beam Evaporator and Thermal Evaporator 23 3.3.10 Solar Simulator 23 CHAPTOR 4 ANALYSIS OF SOLAR CELL 25 4.1 CURRENT DENSITY 27 4.2 DARK CURRENT 28 4.3 SOLAR CELL WITH QDPR 32 4.3.1 IV-curve 34 4.3.2 EQE 38 4.3.3 Fill Factor 43 4.3.4 Series Resistance 44 4.3.5 Ideality Factor 45 4.3.6 PCE 46 CHAPTOR 5 TRIPLE JUNCTION SOLAR CELL 48 5.1 MATERIAL ANALYSIS 48 5.2 RESULTS 50 CHAPTOR 6 CONCLUSION AND FUTURE WORK 51 6.1 CONCLUSION 51 6.2 FUTURE WORK 51 REFERENCE 53 | - |
| dc.language.iso | en | - |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | solar cell | en |
| dc.title | 量子點光阻對於新穎砷化鎵太陽能電池之影響及應用 | zh_TW |
| dc.title | The application and effects of quantum dots photoresist on the novel GaAs-based solar cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃建璋;陳國平 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Jang Huang;Kuo-Ping Chen | en |
| dc.subject.keyword | 太陽能電池, | zh_TW |
| dc.subject.keyword | solar cell, | en |
| dc.relation.page | 55 | - |
| dc.identifier.doi | 10.6342/NTU202500081 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-02-22 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 5.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
