Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96776
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡振國zh_TW
dc.contributor.advisorJenn-Gwo Hwuen
dc.contributor.author林俊億zh_TW
dc.contributor.authorJun-Yi Linen
dc.date.accessioned2025-02-21T16:30:07Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2024-
dc.date.submitted2025-01-13-
dc.identifier.citation[1] Kung-Chu Chen, Kuan-Wun Lin, & Jenn-Gwo Hwu, “Role of Schottky Barrier Height Modulation on the Reverse Bias Current Behavior of MIS(p) Tunnel Diodes,” IEEE Access 9: 163929–163937, 2021, doi:10.1109/ACCESS.2021.3133575.
[2] Kuan-Wun Lin & Jenn-Gwo Hwu, “Improved Low-Voltage Sensing Performance in MIS(p) Tunnel Diodes by Oxide Thickening at the Gate Fringe,” IEEE Transactions on Electron Devices 67 (4): 1845–1851, 2020, doi:10.1109/TED.2020.2974963.
[3] 林軒毅. “閘極外圍氧化層移除之金氧半穿隧二極體之強化暫態電流行為及側向電流研究,” . Master’s thesis, 國立臺灣大學, Jan 2023.
[4] Szu-WeiHuang&Jenn-GwoHwu,“Lateralnonuniformityofeffectiveoxidecharges in MOS capacitors with Al/sub 2/O/sub 3/ gate dielectrics,” IEEE Transactions on Electron Devices 53 (7): 1608–1614, 2006, doi:10.1109/TED.2006.875816.
[5] Chang-Feng Yang, Bo-Jyun Chen, Wei-Chen Chen, Kuan-Wun Lin, & Jenn-Gwo Hwu, “Gate Oxide Local Thinning Mechanism-Induced Sub-60 mV/Decade Subthreshold Swing on Charge-Coupled MIS(p) Tunnel Transistor,” IEEE Transactions on Electron Devices 66 (1): 279–285, 2019, doi:10.1109/TED.2018.2879654.
[6] M.Y. Doghish & F.D. Ho, “A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices,” IEEE Trans. Electron Devices 39 (12): 2771–2780, 1992, doi:10.1109/16.168723.
[7] M.A. Green, F.D. King, & J. Shewchun, “Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—I. Theory,” Solid-State Electron. 17 (6): 551–561, 1974, doi:https://doi.org/10.1016/00381101(74)90172-5.
[8] Jen-Yuan Cheng, Chiao-Ti Huang, & Jenn-Gwo Hwu, “Comprehensive study on the deep depletion capacitance-voltage behavior for metal-oxide-semiconductor capacitor with ultrathin oxides,” J. Appl. Phys. 106 (7): 074507, 10 2009, doi:10.1063/1.3226853.
[9] Tzu-Yueh Chang, Chun-Lung Chang, Hsin-Yu Lee, & Po-Tsung Lee, “A Metal-Insulator-Semiconductor Solar Cell With High Open-Circuit Voltage Using a Stacking Structure,” IEEE Electron Device Lett. 31 (12): 1419–1421, 2010, doi:10.1109/LED.2010.2073437.
[10] C.W. Liu, W.T. Liu, M.H. Lee, W.S. Kuo, & B.C. Hsu, “A novel photodetector using MOS tunneling structures,” IEEE Electron Device Lett. 21 (6): 307–309, 2000, doi:10.1109/55.843159.
[11] Tzu-Yu Chen & Jenn-Gwo Hwu, “Two States Phenomenon in the Current Behavior of Metal-Oxide-Semiconductor Capacitor Structure with Ultra-Thin SiO2,” Appl. Phys. Lett. 101 (7): 073506, Aug. 2012.
[12] Jian-Yu Lin & Jenn-Gwo Hwu, “Enhanced Transient Behavior in MIS(p) Tunnel Diodes by Trench Forming at the Gate Edge,” IEEE Trans. Electron Devices 68 (9): 4189–4194, 2021, doi:10.1109/TED.2021.3095052.
[13] Ting-Hao Hsu & Jenn-Gwo Hwu, “Prolonged Transient Behavior of Ultrathin Oxide MIS-Tunneling Diode Induced by Deep Depletion of Surrounded Coupling Electrode,” IEEE Trans. Electron Devices 67 (8): 3411–3416, 2020, doi:10.1109/TED.2020.2998099.
[14] Kuan-Hao Tseng, Chien-Shun Liao, & Jenn-Gwo Hwu, “Enhancement of Transient Two-States Characteristics in Metal-Insulator-Semiconductor Structure by Thinning Metal Thickness,” IEEE Trans. Nanotechnol. 16 (6): 1011–1015, 2017, doi:10.1109/TNANO.2017.2740943.
[15] Young-Ho Gong & Sung Woo Chung, “Exploiting Refresh Effect of DRAM Read Operations: A Practical Approach to Low-Power Refresh,” IEEE Transactions on Computers 65 (5): 1507–1517, 2016, doi:10.1109/TC.2015.2448079.
[16] Kung-Chu Chen & Jenn-Gwo Hwu, “Schottky Barrier Height Modulation (SBHM) Induced Photon Current Gain in MIS(p) Tunnel Diodes for Low Operation Voltage,” IEEE Sensors Journal 22 (4): 3164–3171, 2022, doi:10.1109/JSEN.2022.3141409.
[17] Yu-CinLin&Jenn-GwoHwu,“CurrentPolarityChangeableConcentricMISTunnel Photodiode With Linear Photodetectivity via Inner Gate Biasing and Outer Ring Short-Circuit Operation,” IEEE Transactions on Electron Devices 70 (10): 51845189, 2023, doi:10.1109/TED.2023.3306320.
[18] G. C. Jain, A. Prasad, & B. C. Chakravarty, “On the Mechanism of the Anodic Oxidation of Si at Constant Voltage,” Journal of The Electrochemical Society 126 (1): 89, jan 1979, doi:10.1149/1.2128996.
[19] M. Grecea, C. Rotaru, N. Nastase, & G. Craciun, “Physical properties of SIO2 thin films obtained by anodic oxidation,” Journal of Molecular Structure 480-481: 607610, 1999, doi:10.1016/S0022-2860(99)00017-4.
[20] Yen-Po Lin & Jenn-Gwo Hwu, “Oxide-Thickness-Dependent Suboxide Width and Its Effect on Inversion Tunneling Current,” Journal of The Electrochemical Society 151 (12): G853, oct 2004, doi:10.1149/1.1813653.
[21] Kuan-Wun Lin & Jenn-Gwo Hwu, “Improved Low-Voltage Sensing Performance in MIS(p) Tunnel Diodes by Oxide Thickening at the Gate Fringe,” IEEE Trans. Electron Devices 67 (4): 1845–1851, 2020, doi:10.1109/TED.2020.2974963.
[22] Kung-Chu Chen, Kuan-Wun Lin, Sung-Wei Huang, Jian-Yu Lin, & Jenn-Gwo Hwu, “Comprehensive Study of Inversion Capacitance in Metal-Insulator-Semiconductor Capacitor With Existing Oxide Charges,” IEEE J. Electron Devices Soc. 10: 960969, 2022, doi:10.1109/JEDS.2022.3215771.
[23] Sung-Wei Huang & Jenn-Gwo Hwu, “Improved Two States Characteristics in MIS Tunnel Diodes by Oxide Local Thinning Enhanced Transient Current Behavior,” IEEE Trans. Electron Devices 69 (12): 7107–7112, 2022, doi:10.1109/TED.2022.3215103.
[24] E.H.Nicollian&A.Goetzberger,“LateralACcurrentflowmodelformetal-insulatorsemiconductor capacitors,” IEEE Trans.Electron Devices 12 (3): 108–117, 1965, doi:10.1109/T-ED.1965.15465.
[25] C.H. Chen, Y.K. Fang, C.W. Yang, S.F. Ting, Y.S. Tsair, M.F. Wang, L.G. Yao, S.C. Chen, C.H. Yu, & M.S. Liang, “Determination of deep ultrathin equivalent oxide thickness (EOT) from measuring flat-band C-V curve,” IEEE Trans. Electron Devices 49 (4): 695–698, 2002, doi:10.1109/16.992882. doi: 10.1109/16.992882.
[26] Hsuan-Yi Lin &Jenn-GwoHwu,“EnhancementofTransientCurrent in MIS(p) Tunneling Diode with Reduced Reversed Bias Current by Oxide Removal at the Gate Edge,” ECS Trans 111 (1): 229, may 2023, doi:10.1149/11101.0229ecst.
[27] Ming-Han Yang & Jenn-Gwo Hwu, “Influence of neighboring coupling on metalinsulator-semiconductor (MIS) deep-depletion tunneling current via Schottky barrier height modulation mechanism,” J. Appl. Phys. 121 (15): 154504, 04 2017, doi:10.1063/1.4981891.
[28] MinjongLee,DongjoonRhee,JihyunKim,ChangYongPark,Min-guKim,Joohoon Kang, & Young Tack Lee, “Solution-Processed MoS2-Based Back-to-Back Diodes Circuit Applications for Signal Demodulators and Envelope Detectors,” ACS Mater. Lett. 4 (8): 1556–1564, 2022, doi:10.1021/acsmaterialslett.2c00515.
[29] Adenilson J Chiquito, Cleber A Amorim, Olivia M Berengue, Luana S Araujo, Eric P Bernardo, & Edson R Leite, “Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices,” J. Phys.: Condens. Matter 24 (22): 225303, may 2012, doi:10.1088/09538984/24/22/225303.
[30] Zuo Wang, Wanyu Zang, Yeming Shi, Xingyu Zhu, Gaofeng Rao, Yang Wang, Junwei Chu, Chuanhui Gong, Xiuying Gao, Hui Sun, Sibo Huanglong, Dingyu Yang, &Peihua Wangyang, “Extraction and Analysis of the Characteristic Parameters in Back-to-Back Connected Asymmetric Schottky Diode,” Phys. Status Solidi A 217 (8): 1901018, 2020, doi:https://doi.org/10.1002/pssa.201901018.
[31] Yen-HaoShih&Jenn-GwoHwu,“Anon-chiptemperaturesensorbyutilizingaMOS tunneling diode,” IEEE Electron Device Letters 22 (6): 299–301, 2001.
[32] Glen Dennis, Maurice A. de Gosson, & Basil J. Hiley, “Bohm’s quantum potential as an internal energy,” Phys. Lett. A 379 (18): 1224–1227, 2015, doi:10.1016/j.physleta.2015.02.038
[33] W. Shockley & W. T. Read, “Statistics of the Recombinations of Holes and Electrons,” Phys. Rev. 87: 835–842, Sep 1952, doi:10.1103/PhysRev.87.835.
[34] R. N. Hall, “Electron-Hole Recombination in Germanium,” Phys. Rev. 87: 387–387, Jul 1952, doi:10.1103/PhysRev.87.387.
[35] Chang-FengYang&Jenn-GwoHwu,“Light-to-DarkCurrentRatioEnhancementon MISTunnel Diode Ambient Light Sensor by Oxide Local Thinning Mechanism and Near Power-Free Neighboring Gate,” IEEE Trans. Electron Devices 65 (5): 18101816, 2018, doi:10.1109/TED.2018.2818187.
[36] Hung-Yu Chen & Jenn-Gwo Hwu, “Photo Sensitivity Enhanced by the Modulation of Oxide Thickness in MIS(p) Structure,” ECS Trans 85 (13): 1441, jun 2018, doi:10.1149/08513.1441ecst.
[37] Yu-HsuanChen&Jenn-GwoHwu,“LightSensingEnhancementandEnergySaving Improvement in Concentric Double-MIS(p) Tunnel Diode Structure With Inner Gate Outer Sensor Operation,” IEEE Trans. Electron Devices 65 (11): 4910–4915, 2018, doi:10.1109/TED.2018.2871071.
[38] Kuan-Wun Lin & Jenn-Gwo Hwu, “Improved Low-Voltage Sensing Performance in MIS(p) Tunnel Diodes by Oxide Thickening at the Gate Fringe,” IEEE Trans. Electron Devices 67 (4): 1845–1851, 2020, doi:10.1109/TED.2020.2974963.
[39] Chu-Hsuan Lin & Chee Wee Liu, “Metal-Insulator-Semiconductor Photodetectors,” Sensors 10 (10): 8797–8826, 2010, doi:10.3390/s101008797.
[40] Gabriel Omar Mendoza Conde, José Alberto Luna López, Zaira Jocelyn Hernández Simón, José Álvaro David Hernández de la Luz, Godofredo García Salgado, Erick Gastellou Hernández, HaydeePatriciaMartínezHernández, &JavierFloresMéndez, “MIS-Like Structures with Silicon-Rich Oxide Films Obtained by HFCVD: Their Response as Photodetectors,” Sensors 22 (10), 2022, doi:10.3390/s22103904.
[41] Tao Ji, Qian Liu, Rujia Zou, Yongfang Zhang, Lili Wang, Liwen Sang, Meiyong Liao, & Junqing Hu, “Enhanced UV-visible light photodetectors with a TiO2/Si heterojunction using band engineering,” J. Mater. Chem. C 5: 12848–12856, 2017, doi:10.1039/C7TC04811D.
[42] Chih-Yang Chen, Chrong-Jung Lin, & Ya-Chin King, “A New Sensing Scheme for Sensitivity Enhancement of Low-Temperature Polycrystalline Silicon Photodetecors,” IEEE Sensors J. 11 (6): 1478–1483, 2011, doi:10.1109/JSEN.2010.2098437.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96776-
dc.description.abstract這篇碩士論文深入探討閘極區域外氧化層電荷對於p型金屬-絕緣層-半導體穿隧二極體電流特性的影響,涵蓋暫態電流及光感應電流。其中,暫態電流是通過在閘極上施加不同的寫入電壓後,再統一施加讀取電壓來測得。根據不同的寫入電壓,元件可讀取到不同的暫態電流,具備雙態記憶體的應用潛力;而光感應電流則探討了元件作為感光元件的潛力。
論文的第一章回顧了先前研究中的特殊結構金氧半穿隧二極體特性及其暫態電流的相關研究。第二章專注於研究閘極外部氧化層電荷對暫態電流的影響,藉由厚氧化層提供不同程度氧化層電荷,並結合實驗結果和TCAD模擬,探討氧化層電荷如何影響暫態電流。研究對比了具厚氧化層的超厚邊緣氧化層(UET) 元件與僅具薄氧化層的平面元件,發現UET元件的暫態電流是平面元件的100倍,顯示氧化層電荷與暫態電流成正相關,而此現象在先前研究中未曾被提及。
論文對於UET元件的穩態電流進行分析,結果顯示當閘極電壓低於平帶電壓時,元件的閘極電流與薄氧化層區域面積成正比;當閘極處於正偏壓時,UET 元件的閘極電流高於平面元件。此外,隨著薄氧化層面積的增大,UET元件的暫態電流也增強,但當薄氧化層與厚氧化層面積接近時,暫態電流趨於飽和。UET元件的暫態電流在從寫入狀態切換至0伏特後的60毫秒內取樣,並且在1000次寫入-讀取循環後,電流變化極小。為了更好理解穩態與暫態電流的機制,論文進行了TCAD模擬,結果顯示閘極外氧化層電荷在暫態行為中扮演了重要角色,這些電荷在閘極電壓切換時可汲取電子。
第三章探討移除閘極外部氧化層電荷後,背對背金氧半穿隧二極體結構(MISIM) 的光感應特性變化。先前研究發現氧化層電荷會增加MISIM電流,降低光感應度,因此,本研究透過移除邊緣氧化層(ER)技術降低氧化層電荷,成功降低MISIM暗電流,接著,進一步透過分壓特性減少暗電流,透過這兩種方式,成功將光感應度提升了300倍。此外,本研究也對ERMISIM元件在不同光強度下的電流與敏感度進行探討,結果顯示光電流與光強度幾乎呈線性變化,展示了ERMISIM元件的感光潛力。此外,ERMISIM元件的光照反應時間約為30毫秒,顯示元件對光的快速反應。
第四章總結了上述研究,展示了氧化層電荷對元件特性的影響,並提出了未來改進的方向及進一步的研究可能性。
zh_TW
dc.description.abstractThis master thesis delves into the influence of oxide charges outside the gate area on the current characteristic of p-type metal-insulator-semiconductor (MIS) tunnel diode (TD), including transient current and photo-induced current. The transient current is measured by applying different write voltages to the gate, followed by an unified read voltage after the writing process. The gate can read different transient currents based on the applied write voltage, enabling the device to function as a two-state memory. The photo-induced current is explored to assess the device's potential as a photosensitive element.
In the first chapter, the characteristics of previously studied special-structured MIS TD and some researches on transient currents in such devices were discussed. The second chapter investigates the impact of oxide layer charges outside the gate on transient current. Using ultra-edge-thickened (UET) oxide in MIS TD, which features thick oxide layers with more oxide charges, a considerable amount of oxide charges is supplied from outside the gate. Combining experimental results and TCAD simulations, the study explores how these charges affect the transient current. Additionally, it distinguishes the UET device from planar devices that only have thin oxide layers and lack significant oxide charges outside the gate, serving as control in the experiments. The findings reveal that UET devices exhibit transient currents over 100 times greater than planar devices, demonstrating a positive correlation between the number of oxide charges and the transient current. This mechanism was not addressed in previous research. The steady-state current behavior of the UET devices was also analyzed, particularly focusing on the influence of the thin oxide area under the gate on the gate current. When the gate voltage is less than the flat-band voltage, i.e., in forward bias, the gate current is proportional to the area of the thin oxide, causing planar devices with only thin oxide to exhibit larger gate currents. Conversely, under positive gate bias, where the device is in reverse bias, UET devices show higher gate currents than planar devices. Furthermore, UET devices with larger thin oxide areas display greater transient currents. However, when the thin and thick oxide areas are nearly equal, the enhancement of transient current becomes saturated. The transient currents of UET devices are sampled 60 milliseconds after switching the gate voltage from the write state to 0 V. Endurance characteristics were also measured, showing minimal changes after 1000 write and read cycles. To clarify the mechanism behind the steady-state and transient current behaviors, TCAD simulations were conducted for both scenarios, revealing that the oxide charges outside the gate play a key role in transient behavior. These charges serve as electron reservoirs, drawing electrons when the gate voltage is switched.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:30:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:30:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments (Chinese) v
Abstract (Chinese) vii
Abstract (English) ix
Table of Contents xi
List of Figures xv
1 Introduction 1
1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic Electrical Characteristics of MISTD . . . . . . . . . . . . .2
1.3 Lateral Nonuniformity of Oxide Thickness of MISTD . . . . . . . .2
1.4 Edge-removed Device Characteristic . . . . . . . . . . . . . . .3
1.5 Metal-Insulator-Semiconductor-Insulator-Metal (MISIM) . . . . . . .4
1.6 Application . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Experimental Methodology . . . . . . . . . . . . . . . . . . . 5
2 Influence of Oxide Charge on The Transient Currents of MISTD 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Experimental. . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Steady-state and Transient Current Characteristics of UET Device . 19
2.3.2 Mechanism of Current Behavior of UET Device . . . . . . . . 20
2.3.3 Mechanism of Transient Current Behavior of UET Device . . . . 21
2.3.4 Simulation Result . . . . . . . . . . . . . . . . . . . . 24
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Influence of Oxide Charge On The Photo Sensitivity of MISIM 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Experimental. . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Dark Currrent and Photo Current of Planar and ER MISIM Device. 41
3.3.2 ModelofTheCurrentBehaviorofER MISIM Device . . . . . . 43
3.3.3 Photo Sensitivity of ERMISIMDevice. . . . . . . . . . . . 46
3.3.4 Time Response Toward Visible Light of ERMISIM Device. . . . 48
3.3.5 Simulation of Oxide Charge Effecton Current . . . . . . . . . 48
3.3.6 Benchmark . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4 Conclusion 59
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Future Works. . . . . . . . . . . . . . . . . . . . . . . . . 60
References 63
-
dc.language.isoen-
dc.subject金氧半電容zh_TW
dc.subject動態記憶體zh_TW
dc.subject暫態電流zh_TW
dc.subject暫態行為zh_TW
dc.subject光感測特性zh_TW
dc.subject厚薄氧化層zh_TW
dc.subject金氧半穿隧二極體zh_TW
dc.subjectthick-thin oxideen
dc.subjectMIS tunnel diodeen
dc.subjectMIS capacitoren
dc.subjectDynamic memoryen
dc.subjectTransient currenten
dc.subjectTransient behavioren
dc.subjectPhoto sensing characteristicen
dc.title氧化層電荷對金氧半穿隧二極體暫態電流行為及光感應特性的影響zh_TW
dc.titleEffect of The Oxide Charge on The Transient Current Behavior and Photo Sensing Characteristic of MIS(p) Tunnel Diodeen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡壁合;陳奕君zh_TW
dc.contributor.oralexamcommitteeVita Pi-Ho Hu;I-Chun Chengen
dc.subject.keyword金氧半穿隧二極體,金氧半電容,動態記憶體,暫態電流,暫態行為,光感測特性,厚薄氧化層,zh_TW
dc.subject.keywordMIS tunnel diode,MIS capacitor,Dynamic memory,Transient current,Transient behavior,Photo sensing characteristic,thick-thin oxide,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202500072-
dc.rights.note未授權-
dc.date.accepted2025-01-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
11.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved