Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96775
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明zh_TW
dc.contributor.advisorChung-Ming Chenen
dc.contributor.author王柔云zh_TW
dc.contributor.authorRou-Yun Wangen
dc.date.accessioned2025-02-21T16:29:51Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2025-
dc.date.submitted2025-01-13-
dc.identifier.citationK. S. Kaye, et al., "Current epidemiology, etiology, and burden of acute skin infections in the United States," Clinical Infectious Diseases, vol. 68, no. Suppl 3, pp. S193–S199, 2019. DOI: 10.1093/cid/ciy697.
L. G. Miller, et al., "Incidence of skin and soft tissue infections in ambulatory and inpatient settings, 2005–2010," BMC Infectious Diseases, vol. 15, p. 362, 2015. DOI: 10.1186/s12879-015-1029-6.
A. L. Hersh, H. F. Chambers, J. H. Maselli, and R. Gonzales, "National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections," Archives of Internal Medicine, vol. 168, no. 14, pp. 1585–1591, 2008. DOI: 10.1001/archinte.168.14.1585.
K. Levit, L. Wier, E. Stranges, K. Ryan, and A. Elixhauser, "HCUP facts and figures: Statistics on hospital-based care in the United States, 2009," U.S. Department of Health and Human Services, 2009.
K. Tun, J. F. Shurko, L. Ryan, and G. C. Lee, "Age-based health and economic burden of skin and soft tissue infections in the United States, 2000 and 2012," PLoS One, vol. 13, no. 11, p. e0206893, 2018. DOI: 10.1371/journal.pone.0206893.
B. A. Lipsky, M. H. Silverman, and W. S. Joseph, "A proposed new classification of skin and soft tissue infections modeled on the subset of diabetic foot infection," Open Forum Infectious Diseases, vol. 4, no. 1, p. ofw255, 2017. DOI: 10.1093/ofid/ofw255.
A. K. May, R. E. Stafford, E. M. Bulger, D. Heffernan, O. Guillamondegui, G. Bochicchio, and S. R. Eachempati, "Treatment of complicated skin and soft tissue infections," Surgical Infections, vol. 10, pp. 467–499, 2009. DOI: 10.1089/sur.2009.9935.
D. L. Stevens, A. L. Bisno, H. F. Chambers, E. P. Dellinger, E. J. C. Goldstein, S. L. Gorbach, J. V. Hirschmann, S. L. Kaplan, J. G. Montoya, and J. C. Wade, "Clinical practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by IDSA," Clinical Infectious Diseases, vol. 59, no. 2, pp. e10–e52, 2014. DOI: 10.1093/cid/ciu296.
M. R. Dunbar and K. A. MacCarthy, "Use of infrared thermography to detect signs of rabies infection in raccoons (Procyon lotor)," Journal of Zoo and Wildlife Medicine, vol. 37, no. 4, pp. 518–523, 2006. DOI: 10.1638/05-063.1.
B. F. Jones, "A reappraisal of the use of infrared thermal image analysis in medicine," IEEE Transactions on Medical Imaging, vol. 17, no. 6, pp. 1019–1027, 1998. DOI: 10.1109/42.746635.
H. Peregrina-Barreto, L. A. Morales-Hernandez, J. J. Rangel-Magdaleno, and P. D. Vazquez-Rodriguez, "Thermal image processing for quantitative determination of temperature variations in plantar angiosomes," in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2013, pp. 1–6. DOI: 10.1109/I2MTC.2013.6555430.
J. P. Tabja Bortesi, J. Ranisau, S. Di, M. McGillion, L. Rosella, A. Johnson, P. J. Devereaux, and J. Petch, "Machine learning approaches for the image-based identification of surgical wound infections: Scoping review," Journal of Medical Internet Research, vol. 26, p. e52880, 2024. DOI: 10.2196/52880. PMID: 38236623. PMCID: PMC10835585.
V. N. Shenoy, et al., "Deepwound: Automated postoperative wound assessment and surgical site surveillance through convolutional neural networks," in 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2018, pp. 1017–1021. DOI: 10.1109/BIBM.2018.8621285.
M. S. Tahir, A. Naeem, H. Malik, J. Tanveer, R. A. Naqvi, and S.-W. Lee, "DSCC_Net: Multi-classification deep learning models for diagnosing of skin cancer using dermoscopic images," Cancers, vol. 15, 2023, pp. 1–14. DOI: 10.3390/cancers15040978.
D. M. Anisuzzaman, Y. J. Patel, J. A. Niezgoda, S. Gopalakrishnan, and Z. Yu, "A mobile app for wound localization using deep learning," IEEE Access, vol. 8, pp. 1–10, 2020. DOI: 10.1109/ACCESS.2020.3032497.
M. V. Baron, P. R. H. Martins, C. Brandenburg, J. Koepp, I. C. Reinheimer, A. C. dos Santos, M. P. dos Santos, A. F. M. Santamaria, T. Miliou, and B. E. P. da Costa, "Accuracy of thermographic imaging in the early detection of pressure injury: A systematic review," Advances in Skin & Wound Care, vol. 36, pp. 158–167, 2023. DOI: 10.1097/01.ASW.0000900001.56234.b3.
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431–3440. DOI: 10.1109/CVPR.2015.7298965.
O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," in Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), vol. 9351, 2015, pp. 234–241. DOI: 10.1007/978-3-319-24574-4_28.
N. B. LeDuy Huynh, "A U-net++ with pre-trained efficientnet backbone for segmentation of diseases and artifacts in endoscopy images and videos," in CEUR Workshop Proceedings, vol. 2730, 2020, pp. 13–17.
D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D. Johansen, "DoubleU-Net: A deep convolutional neural network for medical image segmentation," in 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), 2020, pp. 558–564. DOI: 10.1109/CBMS49503.2020.00101.
D. Jha, et al., "ResUNet++: An advanced architecture for medical image segmentation," in 2019 IEEE International Symposium on Multimedia (ISM), 2019, pp. 225–255. DOI: 10.1109/ISM.2019.00047.
V. Badrinarayanan, A. Kendall, and R. Cipolla, "SegNet: A deep convolutional encoder-decoder architecture for image segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017. DOI: 10.1109/TPAMI.2016.2644615.
C.-H. Huang, H.-Y. Wu, and Y.-L. Lin, "HarDNet-MSEG: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean Dice and 86 FPS," arXiv preprint, arXiv:2101.07172, 2021.
P. Chao, C.-Y. Kao, Y.-S. Ruan, C.-H. Huang, and Y.-L. Lin, "HarDNet: A low memory traffic network," in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 3552–3561. DOI: 10.1109/ICCV.2019.00365.
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4700–4708. DOI: 10.1109/CVPR.2017.243.
Z. Wu, L. Su, and Q. Huang, "Cascaded partial decoder for fast and accurate salient object detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 3907–3916. DOI: 10.1109/CVPR.2019.00402.
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. DOI: 10.1109/CVPR.2016.90.
T.-Y. Liao, et al., "HarDNet-DFUS: An enhanced harmonically-connected network for diabetic foot ulcer image segmentation and colonoscopy polyp segmentation," arXiv preprint, arXiv:2209.07313, 2022.
J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 7132–7141. DOI: 10.1109/CVPR.2018.00745.
E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, "SegFormer: Simple and efficient design for semantic segmentation with transformers," in Advances in Neural Information Processing Systems (NeurIPS), vol. 34, 2021, pp. 12077–12090.
I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, et al., "MLP-Mixer: An all-MLP architecture for vision," in Advances in Neural Information Processing Systems (NeurIPS), vol. 34, 2021, pp. 24261–24272.
K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904–1916, 2015. DOI: 10.1109/TPAMI.2015.2389824.
H. Yan, C. Zhang, and M. Wu, "Lawin Transformer: Improving semantic segmentation transformer with multi-scale representations via large window attention," arXiv preprint, arXiv:2201.01615, 2022.
S. Liu, D. Huang, et al., "Receptive field block net for accurate and fast object detection," in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 385–400. DOI: 10.1007/978-3-030-01237-3_24.
H. Basak, R. Kundu, and R. Sarkar, "MFSNet: A multi-focus segmentation network for skin lesion segmentation," Pattern Recognition, vol. 128, p. 108673, 2022. DOI: 10.1016/j.patcog.2022.108673.
S. Gao, M. M. Cheng, K. Zhao, X. Y. Zhang, M. H. Yang, and P. H. Torr, "Res2Net: A new multi-scale backbone architecture," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 652–662, 2019. DOI: 10.1109/TPAMI.2019.2938758.
Z. Zhang, H. Fu, H. Dai, J. Shen, Y. Pang, and L. Shao, "ET-Net: A generic edge-attention guidance network for medical image segmentation," in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, 2019, pp. 442–450. DOI: 10.1007/978-3-030-32254-0_49.
Z. Wu, L. Su, and Q. Huang, "Cascaded partial decoder for fast and accurate salient object detection," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 3907–3916. DOI: 10.1109/CVPR.2019.00402.
S. Chen, X. Tan, B. Wang, and X. Hu, "Reverse attention for salient object detection," in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 234–250. DOI: 10.1007/978-3-030-01219-9_15.
A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, and R. Girshick, "Segment anything," in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 4015–4026. DOI: 10.1109/ICCV.2023.00447.
T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., "Language models are few-shot learners," in Advances in Neural Information Processing Systems (NeurIPS), vol. 33, 2020, pp. 1877–1901.
A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al., "PaLM: Scaling language modeling with pathways," arXiv preprint, arXiv:2204.02311, 2022.
Diabetic Foot Ulcer Grand Challenge, "DFU segmentation dataset," 2022. [Online]. Available: https://dfu-challenge.github.io/dfuc2022.html.
國家衛生研究院 (National Health Research Institutes), [Online]. Available: https://www.nhri.org.tw.
AI Care, "Cellulitis: Causes, symptoms, and treatment," [Online]. Available: https://ai-care.id/healthpedia-diseases/cellulitis-en.
Symetria Recovery, "Track marks: Recognizing the signs," [Online]. Available: https://www.symetriarecovery.com/blog/track-marks/.
Yufung Chinese Medicine Clinic, "蜂窩性組織炎驗案一則," [Online]. Available: https://www.yufungcmc.com/single-post/蜂窩性組織炎驗案一則.
Core EM, "SSTI: Skin and soft tissue infections," [Online]. Available: https://coreem.net/tag/ssti/.
Hello Yishi, "What is MRSA?" [Online]. Available: https://helloyishi.com.tw/infectious-diseases/other-bacterial-infection/what-is-mrsa/.
Dr. Kalkidan Ayalew, "Joint and bone infections," [Online]. Available: https://drkalkidanayalew.com/service/joint-bone-infections/.
Vinmec International Hospital, "Folliculitis," [Online]. Available: https://www.vinmec.com/eng/tag/folliculitis-4520a13c/page_4.
Yale Medicine, "Cellulitis: Causes, diagnosis, and treatment," [Online]. Available: https://www.yalemedicine.org/conditions/cellulitis.
Pinnacle Skin, "Cellulitis: Overview," [Online]. Available: https://www.pinnacleskin.com/conditions/celulitis.
Hello Yishi, "What is erythema nodosum?" [Online]. Available: https://helloyishi.com.tw/skin-health/dermatitis/what-is-erythema-nodosum/.
KKNews, "蜂窩性組織炎的健康知識," [Online]. Available: https://kknews.cc/health/9jaa4zl.html.
Podiatry.com, "Practice Perfect 651: The top 10 myths about cellulitis," [Online]. Available: https://www.podiatry.com/news/116/PracticePerfect651TheTop10MythsAboutCellulitis.
Wikimedia Commons, "Cellulitis of the leg," [Online]. Available: https://pt.m.wikipedia.org/wiki/Ficheiro:Cellulitis_Of_The_Leg.jpg.
NHS, "Cellulitis," [Online]. Available: https://www.nhs.uk/conditions/cellulitis/.
Hello Yishi, "Be aware of the symptoms of cellulitis," [Online]. Available: https://helloyishi.com.tw/skin-health/dermatitis/be-aware-of-the-syptoms-of-cellulitis/.
Cram, "Dermatology flashcards," [Online]. Available: https://www.cram.com/flashcards/dermatology-flashcards-5239889.
DermNet, "Skin disease information," [Online]. Available: https://dermnet.com/.
Wikimedia Commons, "Erysipelas in a foot," [Online]. Available: https://eo.m.wikipedia.org/wiki/Dosiero:Erysipelas_in_a_foot.jpg.
SpringerLink, "Skin infections: Clinical insights," [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-56978-5_3.
Read01, "蜂窩性組織炎相關知識," [Online]. Available: https://read01.com/AJR2PAy.html.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96775-
dc.description.abstract皮膚軟組織感染(Skin and Soft Tissue Infection, SSTI)是臨床上常見的感染類型,每年有超過 1400 萬人次因 SSTI 就診、急診或住院,其發生率遠超過肺炎與泌尿道感染,是泌尿道感染的兩倍且是肺炎的十倍。根據美國感染症學會(Infectious Diseases Society of America, IDSA)於 2014 年公布的治療指引,SSTI 的診斷主要依賴醫師的臨床經驗,透過紅、腫、熱、痛等理學檢查觀察病灶。然而,傳統方法存在主觀性高、判讀耗時且難以標準化的問題。在同一觀察者間易出現前後不一致(Intra-rater bias),不同觀察者間亦缺乏一致性(Inter-rater bias)。隨著人工智慧技術的發展,深度學習(Deep learning, DL)開始在自動化診斷皮膚感染中扮演重要角色,可以產生與以往人工判讀或是傳統演算法截然不同的計算方式,不僅為手術後傷口診斷提供了有效的診斷支持,也在其他皮膚病症影像診斷方面已被證實具有高度的效能,能夠識別和分類各種皮膚病變。現今手機攝影的影像品質也已足以應用在臨床案例的量化分析,提供模型大量的影像資料學習以分辨皮膚病變的細微差異,從而判斷 SSTI 感染範圍,提供醫師更快速、客觀及精準的參考資料。
本研究為前瞻性觀察研究,於臺大醫院收集 31 名 SSTI 患者的影像資料,除二位難以分類不納入資料集外,其中 12 位開放性傷口患者共 781 張影像,17 位非開放性傷口患者共 556 張影像,並採用 6-fold 交叉驗證。在開放性傷口分割中,選用 HarDNet-MSEG、HarDNet-DFUS、MFSNet 三種深度學習模型,以深度學習為基礎架構,比較加入預訓練權重,與加入預訓練權重再加上資料擴增組合兩種方法,並在這之上實驗結合 SAM 模型以遮罩點對乘及中心點座標兩種方法進行模型組合測試,探討模型組合的效能。在非開放性(紅腫)傷口分割中,由於邊界不明顯、傷口型態不易判斷等因素任務更為困難,因此採用在開放性傷口分割中表現較為良好的 HarDNet-MSEG、HarDNet-DFUS 兩種深度學習模型進行,比較加入預訓練權重,與加入預訓練權重再加上資料擴增組合兩種方法的效能。並且以 SAM 模型無法分割非開放性傷口,不加入模型組合測試。
結果顯示,於開放性傷口中,以結合預訓練權重並使用資料增強策略,於三個深度學習模型有較高的 Dice,HarDNet-MSEG 為 0.802、HarDNet-DFUS 為 0.795、MFSNet 為 0.722,其中 HarDNet-MSEG 模型達到平均 Dice 分數 0.802,顯著優於其他模型,表現出穩定且高效的分割能力。此外,在 SAM 模型組合成效上,能提升部分影像的分割成效,但在多傷口或形態複雜的傷口影像中受到限制,整體 Dice 分數下降。在非開放性傷口中,同樣以結合預訓練權重並使用資料增強策略,於兩個深度學習模型有較高的 Dice,HarDNet-MSEG 為 0.664、HarDNet-DFUS 為 0.658,同樣以 HarDNet-MSEG 展現最佳效能,其平均 Dice 分數為 0.664,雖低於開放性傷口分割結果,但已證明 HarDNet-MSEG 結合預訓練與資料增強策略有最佳的表現。
整體而言,HarDNet-MSEG 模型在分割任務中均展現了卓越效能與訓練效率,尤其在結合預訓練與資料增強策略時能有效提升分割準確性,開放性傷口達到 0.802 的 Dice,在非開放性(紅腫)傷口達到 0.664 的 Dice,這些研究成果有望在臨床上為 SSTI 患者提供更快速精準的診斷。
zh_TW
dc.description.abstractSkin and Soft Tissue Infection (SSTI) is one of the most common clinical infections, with over 14 million cases annually in the United States involving outpatient visits, emergency care, or hospitalization. According to the 2014 clinical practice guidelines from the Infectious Diseases Society of America (IDSA), SSTI diagnosis heavily relies on physicians' clinical experience, utilizing physical examination findings such as redness, swelling, heat, and pain to observe and diagnose lesions. However, traditional methods face challenges, including subjectivity, time consumption, and difficulty in standardizing assessments. Even for the same observer, intra-rater bias may arise over time, while inter-rater bias is common across different evaluators, leading to inconsistencies in diagnosis.
With advancements in artificial intelligence, deep learning (DL) has begun playing a critical role in the automated diagnosis of skin infections. Deep learning provides an alternative computational approach compared to traditional algorithms or manual interpretation. It has demonstrated exceptional performance not only in diagnosing surgical wound infections but also in identifying and classifying various dermatological conditions through medical imaging. The improved quality of smartphone cameras now enables them to capture clinical-grade images for use in quantitative analysis, providing large datasets for model training. These advancements allow the differentiation of subtle variations in skin conditions and precise delineation of SSTI-infected regions, offering physicians faster, objective, and accurate diagnostic tools.
This prospective observational study collected imaging data from 31 SSTI patients at National Taiwan University Hospital. After excluding two unclassifiable cases, the study included 781 images from 12 patients with open wounds and 556 images from 17 patients with non-open wounds. A 6-fold cross-validation approach was employed to ensure the reliability of the data. For open wounds, the study tested three deep learning models—HarDNet-MSEG, HarDNet-DFUS, and MFSNet—using deep learning frameworks and comparing the effects of incorporating pre-trained weights versus pre-trained weights combined with data augmentation. Additionally, two strategies were used to combine the models with SAM: mask multiplication and centroid-based segmentation. For non-open wounds, where boundaries are less distinct and the task is more challenging, the study applied the two best-performing models from the open wound experiments—HarDNet-MSEG and HarDNet-DFUS. The models were evaluated using pre-trained weights alone and with data augmentation. The SAM model was excluded due to its inability to segment non-open wounds.
The results showed that for open wounds, combining pre-trained weights with data augmentation achieved higher Dice scores across all three deep learning models. HarDNet-MSEG achieved the highest performance with an average Dice score of 0.802, significantly outperforming the other models (HarDNet-DFUS: 0.795, MFSNet: 0.722). While the SAM combination improved segmentation for some images, its performance declined in cases with multiple or complex wound morphologies, resulting in an overall drop in Dice scores. For non-open wounds, combining pre-trained weights with data augmentation also yielded better results, with HarDNet-MSEG achieving a Dice score of 0.664, outperforming HarDNet-DFUS (0.658). Although the scores were lower than those for open wounds, the findings demonstrated that HarDNet-MSEG combined with pre-training and data augmentation produced the best results.
In summary, the HarDNet-MSEG model demonstrated outstanding performance and training efficiency in segmentation tasks, particularly when incorporating pre-trained weights and data augmentation strategies. It achieved Dice scores of 0.802 for open wounds and 0.664 for non-open wounds. These findings highlight the potential of this approach to provide faster and more accurate diagnoses for SSTI patients in clinical settings.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:29:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:29:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
摘要 ii
Abstract iv
誌謝 vii
目次 viii
圖次 xi
表次 xxiii
第一章 緒論 1
1.1研究背景 1
1.2 研究目的 4
第二章 文獻回顧 8
2.1 HarDNet-MSEG方法的相關研究 8
2.2 HarDNet-DFUS方法的相關研究 9
2.3 MFSNet方法的相關研究 9
2.4 Segment Anything Model方法的相關研究 10
第三章 研究材料及方法 12
3.1研究材料 12
3.1.1醫院收案 12
3.2研究方法 15
3.2.1 Data Augmentation資料來源 15
3.2.2 Data Augmentation組合實驗方法 17
3.2.3 Cross-validation 19
3.2.4開放性與非開放性(紅腫)傷口模型設計 19
3.2.4.1開放性傷口第一階段實驗-深度學習模型的測試與比較 20
3.2.4.1.1 HarDNet-MSEG 的架構解釋 21
3.2.4.1.2 HarDNet-DFUS 的架構解釋 23
3.2.4.1.3 MFSNet 的架構解釋 28
3.2.4.2開放性傷口第二階段實驗-深度學習模型與 SAM 模型結合 30
3.2.4.2.1以點對乘方法(Dual-model Pixel-wise Ensemble)結合 SAM 模型 32
3.2.4.2.2以中心點 Bounding Box 方法結合 SAM模型 34
3.2.5非開放性傷口實驗-深度學習模型的測試與比較 35
3.2.6損失函數(Loss Function)與效能評估指標(Performance Indices) 37
第四章 研究結果及討論 40
4.1資料分配 40
4.2資料擴增組合實驗結果 42
4.3 Pre-train結果 47
4.3.1開放性傷口Pre-train結果 47
4.3.2非開放性(紅腫)傷口Pre-train結果 50
4.4 ROC Curve結果 53
4.4.1開放性傷口ROC Curve結果 53
4.4.2非開放性(紅腫)傷口ROC Curve結果 57
4.5結果與討論 60
4.5.1開放性傷口結果與討論 60
4.5.2非開放性(紅腫)傷口結果與討論 80
4.6結果綜合比較 & 討論 88
第五章 結論 91
第六章 參考文獻(References) 94
-
dc.language.isozh_TW-
dc.subject資料增強zh_TW
dc.subject皮膚軟組織感染zh_TW
dc.subject深度學習zh_TW
dc.subject卷積神經網路zh_TW
dc.subjectSegment Anything Model(SAM)zh_TW
dc.subject醫學影像分割zh_TW
dc.subjectSkin and Soft Tissue Infection(SSTI)en
dc.subjectData Augmentationen
dc.subjectMedical Image Segmentationen
dc.subjectSegment Anything Model(SAM)en
dc.subjectConvolutional Neural Network(CNN)en
dc.subjectDeep Learningen
dc.title多型態皮膚軟組織感染傷口之深度學習分割模型zh_TW
dc.titleA Deep Learning-Based Segmentation Strategy for Prediction of Skin and Soft Tissue Infectionen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李佳燕;盤松青zh_TW
dc.contributor.oralexamcommitteeChia-Yen Lee;Sung-Ching Panen
dc.subject.keyword皮膚軟組織感染,深度學習,卷積神經網路,Segment Anything Model(SAM),醫學影像分割,資料增強,zh_TW
dc.subject.keywordSkin and Soft Tissue Infection(SSTI),Deep Learning,Convolutional Neural Network(CNN),Segment Anything Model(SAM),Medical Image Segmentation,Data Augmentation,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202500059-
dc.rights.note未授權-
dc.date.accepted2025-01-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
55.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved