Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96759
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱靜雯zh_TW
dc.contributor.advisorChing-Wen Chiuen
dc.contributor.author涂峻瑋zh_TW
dc.contributor.authorJun-Wei Tuen
dc.date.accessioned2025-02-21T16:25:35Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2024-
dc.date.submitted2024-12-31-
dc.identifier.citation1. Nori, V.; Pesciaioli, F.; Sinibaldi, A.; Giorgianni, G.; Carlone, A., Boron-based Lewis acid catalysis: Challenges and perspectives. Catalysts 2021, 12 (1), 5.
2. Carden, J. L.; Dasgupta, A.; Melen, R. L., Halogenated triarylboranes: synthesis, properties and applications in catalysis. Chemical Society Reviews 2020, 49 (6), 1706-1725.
3. Massey, A.; Park, A., Perfluorophenyl derivatives of the elements: I. Tris (pentafluorophenyl) boron. Journal of Organometallic Chemistry 1964, 2 (3), 245-250.
4. Ma, Y.; Wang, B.; Zhang, L.; Hou, Z., Boron-catalyzed aromatic C–H bond silylation with hydrosilanes. Journal of the American Chemical Society 2016, 138 (11), 3663-3666.
5. Rao, B.; Kinjo, R., Boron‐based catalysts for C− C bond‐formation reactions. Chemistry–An Asian Journal 2018, 13 (10), 1279-1292.
6. Zhang, S.; Han, Y.; He, J.; Zhang, Y., B (C6F5) 3-catalyzed C3-selective C–H borylation of indoles: synthesis, intermediates, and reaction mechanism. The Journal of Organic Chemistry 2018, 83 (3), 1377-1386.
7. Koelle, P.; Noeth, H., The chemistry of borinium and borenium ions. Chemical Reviews 1985, 85 (5), 399-418.
8. Piers, W. E.; Bourke, S. C.; Conroy, K. D., Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. Angewandte Chemie International Edition 2005, 44 (32), 5016-5036.
9. Curran, D. P.; Solovyev, A.; Makhlouf Brahmi, M.; Fensterbank, L.; Malacria, M.; Lacôte, E., Synthesis and reactions of N‐heterocyclic carbene boranes. Angewandte Chemie International Edition 2011, 50 (44), 10294-10317.
10. Tan, X.; Wang, H., Recent advances in borenium catalysis. Chemical Society Reviews 2022, 51 (7), 2583-2600.
11. Clarke, J. J.; Devaraj, K.; Bestvater, B. P.; Kojima, R.; Eisenberger, P.; DeJesus, J. F.; Crudden, C. M., Hydrosilylation and Mukaiyama aldol-type reaction of quinolines and hydrosilylation of imines catalyzed by a mesoionic carbene-stabilized borenium ion. Organic & Biomolecular Chemistry 2021, 19 (31), 6786-6791.
12. Xu, Y.; Yang, Y.; Liu, Y.; Li, Z. H.; Wang, H., Boron-catalysed hydrogenolysis of unactivated C (aryl)–C (alkyl) bonds. Nature Catalysis 2023, 6 (1), 16-22.
13. Cava, M.; Litle, R.; Napier, D., Condensed cyclobutane aromatic systems. V. The synthesis of some α-diazoindanones: ring contraction in the indane series. Journal of the American Chemical Society 1958, 80 (9), 2257-2263.
14. Noeth, H.; Staudigl, R.; Wagner, H. U., Contributions to the chemistry of boron. 121. Dicoordinate amidoboron cations. Inorganic Chemistry 1982, 21 (2), 706-716.
15. Higashi, J.; Eastman, A. D.; Parry, R., Synthesis and characterization of salts of the bis (diisopropylamido) boron (III) cation and attempted reactions to make the corresponding bis (dimethylamido) boron (III) cation. Inorganic Chemistry 1982, 21 (2), 716-720.
16. Franz, D.; Szilvási, T.; Pöthig, A.; Inoue, S., Isolation of an N‐Heterocyclic Carbene Complex of a Borasilene. Chemistry–A European Journal 2019, 25 (47), 11036-11041.
17. Courtenay, S.; Mutus, J. Y.; Schurko, R. W.; Stephan, D. W., The extended borinium cation:[(tBu3PN) 2B]+. Angewandte Chemie International Edition 2002, 41 (3), 498-501.
18. Shoji, Y.; Tanaka, N.; Mikami, K.; Uchiyama, M.; Fukushima, T., A two-coordinate boron cation featuring C–B+–C bonding. Nature chemistry 2014, 6 (6), 498-503.
19. Chen, P.-H.; Hsu, C.-P.; Tseng, H.-C.; Liu, Y.-H.; Chiu, C.-W., [Mes-B-TMP]+ borinium cation initiated cyanosilylation and catalysed hydrosilylation of ketones and aldehydes. Chemical Communications 2021, 57 (100), 13732-13735.
20. Tseng, H.-C.; Shen, C.-T.; Matsumoto, K.; Shih, D.-N.; Liu, Y.-H.; Peng, S.-M.; Yamaguchi, S.; Lin, Y.-F.; Chiu, C.-W., [η5-Cp* B-Mes]+: A Masked Potent Boron Lewis Acid. Organometallics 2019, 38 (22), 4516-4521.
21. Lin, Y.-J.; Liu, W.-C.; Liu, Y.-H.; Lee, G.-H.; Chien, S.-Y.; Chiu, C.-W., A linear Di-coordinate boron radical cation. Nature Communications 2022, 13 (1), 7051.
22. Gutmann, V., Empirical parameters for donor and acceptor properties of solvents. Electrochimica Acta 1976, 21 (9), 661-670.
23. Perez, M.; Qu, Z. W.; Caputo, C. B.; Podgorny, V.; Hounjet, L. J.; Hansen, A.; Dobrovetsky, R.; Grimme, S.; Stephan, D. W., Hydrosilylation of ketones, imines and nitriles catalysed by electrophilic phosphonium cations: functional group selectivity and mechanistic considerations. Chemistry–A European Journal 2015, 21 (17), 6491-6500.
24. Raya-Baron, A.; Ona-Burgos, P.; Fernandez, I., Iron-catalyzed homogeneous hydrosilylation of ketones and aldehydes: advances and mechanistic perspective. ACS Catalysis 2019, 9 (6), 5400-5417.
25. Denmark, S. E.; Ueki, Y., Lewis base activation of Lewis acids: group 13. In situ generation and reaction of borenium ions. Organometallics 2013, 32 (22), 6631-6634.
26. Andersson, P. G.; Munslow, I. J., Modern reduction methods. John Wiley & Sons: 2008.
27. Du, P.; Zhao, J., Comparative DFT study of metal-free Lewis acid-catalyzed C–H and N–H silylation of (hetero) arenes: mechanistic studies and expansion of catalyst and substrate scope. RSC advances 2019, 9 (64), 37675-37685.
28. Mkhalid, I. A.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F., C− H activation for the construction of C− B bonds. Chemical Reviews 2010, 110 (2), 890-931.
29. Yin, Q.; Klare, H. F.; Oestreich, M., Catalytic Friedel–Crafts C− H Borylation of Electron‐Rich Arenes: Dramatic Rate Acceleration by Added Alkenes. Angewandte Chemie International Edition 2017, 56 (13), 3712-3717.
30. Liu, L.; Tang, Y.; Wang, K.; Huang, T.; Chen, T., Transition-metal-free and base-promoted carbon–heteroatom bond formation via C–N cleavage of benzyl ammonium salts. The Journal of Organic Chemistry 2021, 86 (5), 4159-4170.
31. Do, Y.; Han, J.; Rhee, Y. H.; Park, J., Highly Efficient and Chemoselective Ruthenium‐Catalyzed Hydrosilylation of Aldehydes. Advanced Synthesis & Catalysis 2011, 353 (18), 3363-3366.
32. Ugarte, R. A.; Devarajan, D.; Mushinski, R. M.; Hudnall, T. W., Antimony (V) cations for the selective catalytic transformation of aldehydes into symmetric ethers, α, β-unsaturated aldehydes, and 1, 3, 5-trioxanes. Dalton Transactions 2016, 45 (27), 11150-11161.
33. Sarkar, N.; Sahoo, R. K.; Mukhopadhyay, S.; Nembenna, S., Organoaluminum Cation Catalyzed Selective Hydrosilylation of Carbonyls, Alkenes, and Alkynes. European Journal of Inorganic Chemistry 2022, 2022 (8), e202101030.
34. Reeves, J. T.; Tan, Z.; Marsini, M. A.; Han, Z. S.; Xu, Y.; Reeves, D. C.; Lee, H.; Lu, B. Z.; Senanayake, C. H., A practical procedure for reduction of primary, secondary and tertiary amides to amines. Advanced Synthesis & Catalysis 2013, 355 (1), 47-52.
35. Tsuchimoto, T.; Iketani, Y.; Sekine, M., Zinc‐Catalyzed Dehydrogenative N‐Silylation of Indoles with Hydrosilanes. Chemistry–A European Journal 2012, 31 (18), 9500-9504.
36. Liu, Y. L.; Kehr, G.; Daniliuc, C. G.; Erker, G., Metal‐Free Arene and Heteroarene Borylation Catalyzed by Strongly Electrophilic Bis‐boranes. Chemistry–A European Journal 2017, 23 (50), 12141-12144.
37. Neese, F., The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (1), 73-78.
38. Brandenburg, J. G.; Bannwarth, C.; Hansen, A.; Grimme, S., B97-3c: A revised low-cost variant of the B97-D density functional method. The Journal of chemical physics 2018, 148 (6).
39. Grimme, S., Supramolecular binding thermodynamics by dispersion‐corrected density functional theory. Chemistry–A European Journal 2012, 18 (32), 9955-9964.
40. Lu, T.; Chen, Q., Shermo: A general code for calculating molecular thermochemistry properties. Computational and Theoretical Chemistry 2021, 1200, 113249.
41. Goerigk, L.; Grimme, S., Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Journal of chemical theory and computation 2011, 7 (2), 291-309.
42. Piers, W. E.; Bourke, S. C.; Conroy, K. D., Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. Angewandte Chemie International Edition 2005, 44 (32), 5016-5036.
43. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics 2010, 132 (15).
44. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. Journal of computational chemistry 2011, 32 (7), 1456-1465.
45. Weigend, F., Accurate Coulomb-fitting basis sets for H to Rn. Physical chemistry chemical physics 2006, 8 (9), 1057-1065.
46. Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W., Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theoretical Chemistry Accounts 2007, 117 (4), 587-597.
47. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378-6396.
48. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical chemistry accounts 2008, 120, 215-241.
49. Hehre, W. J.; Ditchfield, R.; Pople, J. A., Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics 1972, 56 (5), 2257-2261.
50. Dill, J. D.; Pople, J. A., Self‐consistent molecular orbital methods. XV. Extended Gaussian‐type basis sets for lithium, beryllium, and boron. The Journal of Chemical Physics 1975, 62 (7), 2921-2923.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96759-
dc.description.abstract低配位數硼陽離子因硼上的空p軌域與正電荷的存在,而展現出相較中性硼烷化合物有更強的路易士酸性,因此,近期有許多研究都著重在以硼陽離子為中心的路易士酸催化反應。根據硼中心的配位數,硼陽離子可分為三類,包括四配位的boronium ion、三配位的borenium ion、以及雙配位的borinium ion。其中,以雙取代的borinium ion表現出最強的路易士酸性,反應性最高,是高度不穩定的分子,因此borinium ion在催化劑的應用上,至今仍然非常稀少,這也是我們想要在硼化學上突破的地方。
在這項研究中,我們合成了兩個五甲基茂(Cp*)所穩定的超配位硼陽離子(hypercoordinate boron cation),包含[Cp*BMes]+ 和 [Cp*BCbz]+,並將其應用於路易士酸催化反應中,如:醛、酮、以及醯胺的矽氫化反應,以及吲哚、吡咯的雜環芳烴C(sp2)–H鍵硼化反應。透過催化反應的實驗結果分析,搭配上硼陽離子與Et3PO配位反應之競爭實驗與理論計算,證實了通過將mesityl取代基改為carbazole可以透過將氮上的電子對貢獻電子到缺電的硼中心上,來穩定超配位硼陽離子轉換成雙取代硼陽離子時的過渡態,進而降低超配位硼陽離子催化劑的反應活化能,達到提升催化反應速率的效果。
zh_TW
dc.description.abstractBoron cations have been well-recognized as strong Lewis acids because of the positive charge on the intrinsically electron deficient boron atom. Therefore, there are substantial works applying boron cations in Lewis acid catalysis. Depending on the coordination number of the boron center, boron cations can be divided into three classes, including tetra-coordinate boronium ion, tri-coordinate borenium ion, and di-coordinate borinium ion. Among these, the di-substituted borinium ion exhibits the highest reactivity towards all sources of electron donor, making it a challenging compound to handle and unsuitable for catalytic transformations. Due to the limited availability of borinium ion-based catalysts, we aimed to explore ways to overcome this challenge.
In this study, we synthesized and characterized two hypercoordinate boron cations, [Cp*BMes]+ and [Cp*BCbz]+, which can be viewed as masked borinium ions. We also examined their catalytic performance in hydrosilylation of aldehydes, ketones, and amide; N-silylation of indole; and the C-H borylation of electron-rich heteroarenes. In all cases, the carbazole-functionalized hypercoordinate boron cation, [Cp*BCbz]+, exhibits significantly enhanced reaction kinetics, suggesting that the catalytic performance of hypercoordinate boron cations can be improved by manipulating the interaction between the Cp* and the boron center. Computational and experimental investigations into the base-binding reaction of hypercoordinate boron cations reveal that the coordination of Et3PO to [Cp*BCbz]+ has a lower energy barrier than that of [Cp*BMes]+. The presence of a π-donating carbazole ligand at boron stabilizes the transition state involved in the η5–η1 transformation step, leading to a markedly lowered activation energy of the reactions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:25:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:25:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
List of Figures VII
List of Schemes IX
List of Tables X
Chapter 1. Introduction 1
1.1 Boron-Based Lewis Acid Catalysis 1
1.2 Boron Cations 3
1.3 Molecular Design 8
Chapter 2. Synthesis and characterization of Cp*-Substituted Boron Cations 11
2.1. Synthesis and characterization of [Cp*BMes][B(C6F5)4] 11
2.2 Synthesis and characterization of [Cp*BCbz][B(C6F5)4] 12
2.3 Synthesis of [Cp*BTMP][B(C6F5)4] 13
2.4 Lewis acidity determination 14
Chapter 3. Catalytic Applications of Cp*-Substituted Boron Cations 17
3.1 Hydrosilylation of Aldehyde 17
3.2 Hydrosilylation of Ketone 20
3.3 Reduction of amide 22
3.4 N-Silylation of indole 24
3.5 C-H bond activation and borylation of heteroarenes 32
Chapter 4. Binding Kinetic of Cp*-Substituted Boron Cations 35
4.1 Density Functional Theory (DFT) Calculation 35
4.2 Competitive Experiment of Cp*-Substituted Boron Cations 37
Chapter 5. Conclusion 39
Chapter 6. Experimental section 40
6.1 General consideration 40
6.2 Synthesis of [Cp*BCarbazole][B(C6F5)4] 41
6.3 General procedure of catalytic reaction: 42
6.3.1 General procedure of hydrosilylation reaction: 42
6.3.2 General procedure of N-Silylation reaction 43
6.3.3 General procedure of C-H borylation reaction 44
6.4 Characterization data of products 45
References 51
Appendix 57
Crystal Data 57
Theoretical Calculation 61
References 63
NMR Spetrum 79
-
dc.language.isoen-
dc.title五甲基茂取代基硼陽離子的催化反應性探討zh_TW
dc.titleCatalytic Studies of Cp*-Substituted Boron Cationsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁文傑;陳喧應zh_TW
dc.contributor.oralexamcommitteeMan-kit Leung;Hsuan-Ying Chenen
dc.subject.keyword主族催化反應,超配位,雙配位硼陽離子,五甲基茂取代基,zh_TW
dc.subject.keywordLewis acid,boron cations,main group catalysis,hypercoordinate,borinium,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202404792-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-12-31-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2029-12-27-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
3.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved