Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9674
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹幸之(Shing-Jy Tsao)
dc.contributor.authorDai-Yu Changen
dc.contributor.author張玳瑜zh_TW
dc.date.accessioned2021-05-20T20:34:53Z-
dc.date.available2008-12-24
dc.date.available2021-05-20T20:34:53Z-
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation方怡丹. 2003. 大蒜產銷現階段問題及因應輔導措施. 農政與農情135:73-77.
行政院農業委員會. 2006. 95年版農業統計年報. p.50. 行政院農業委員會.
吳香霖、周繼中、鍾志明、陳右人. 2007. 以葉片揮發性成分組成鑑別酪梨單純品系間之親源關係. 台灣園藝53:363-379.
李文汕. 2005. 大蒜. p.335-344. 台灣農家要覽. 行政院農業委員會.
林巧玟、顏永福. 1995. 大蒜栽培管理與採收後貯藏技術. 台南區農業專訊14:11-14.
林昭雄. 1993. 四十年來之台灣大蒜產業. 台灣蔬菜產業演進四十年專輯.台灣省農試所專刊30:107-133.
林滄澤. 2000. 大蒜栽培生產技術. 台南區農業改良場技術專刊.
林慧貞. 2001. 大蒜有機含硫成分及脂肪酸調控初代肝細胞色素2B1及胎盤型麩胱甘肽硫轉移酶表現之探討. 中山醫學院營養科學硏究所碩士論文.
邱阿昌、曾紹均. 1983. 專業栽培蔬菜30種. 豐年社.
張武男、黃鵬. 1998. 台灣蔥科蔬菜品種改良之研究. p.305-317. 農試所特刊第73號蔬菜育種技術研習會專刊.
許涵鈞. 2005. 以RAPD、ISSR分子標誌探討台灣大蒜品種(系)間之遺傳相關性. 國立台灣大學園藝研究所碩士論文.
陳信君. 2006. 番石榴揮發性香氣化合物分析之硏究. 國立台灣大學園藝研究所博士論文.
廖麗雲. 2003. 台灣二十四種大蒜品系之精油組成及其對人類肝癌細胞株HepG2與大白鼠正常初代肝細胞生存力的影響. 國立台灣大學食品科技研究所碩士論文.
劉春香. 2003. 黃瓜風味品質的構成因素及部分因素遺傳參數的研究. 山東農業大學博士論文.
鄧汀欽、陳麗能. 2005. 利用氣生鱗莖培育青蒜優質健康種蒜. 農業世界263:38-51.
鄧汀欽. 2007. 蒜頭結球異常現象及其預防. 農業試驗所技術服務70:19-22.
蕭政弘. 2004. 大蒜促成栽培技術. 台中區農業技術專刊No. 168. 行政院農委會台中區農業改良場.
薛明. 2002. 寄主植物中的活性物質對韭菜遲眼蕈蚊的生物效應及作用機制. 中國農業大學博士論文.
Abu-Lafi, S., J. W. Dembicki, P. Goldshlag, L. O. Hanŭs, and V. M. Dembitsky. 2004. The use of the ‘Cryogenic’ GC/MS and on-column injection for study of organosulfur compounds of the Allium sativum. J. Food Compos. Anal. 17: 235-245.
Agarwal, K. C. 1996. Therapeutic actions of garlic constituents. Med. Res. Rev. 16:111-124.
Agarwal, M. K., M. Iqbal., and M. Athar. 2007. Garlic oil ameliorates ferric nitrilotriacetate (Fe-NTA)-induced damage and tumor promotion: Implications for cancer prevention. Food Chem. Toxicol. 45:1634-1640.
Arthur, C. L., and J. Pawliszyn. 1990. Solid phase microextration with thermal desorption using fused silica optical fibers. Anal. Chem. 62: 2145-2148.
Bacon, J. R., G. K. Moates, A. Ng, M. J. C. Rhodes, A. C. Smith, and K. W. Waldron. 1999. Quantitative analysis of flavour precursors and pyruvate levels in different tissues and cultivars of onion (Allium cepa). Food Chem. 64: 257-261.
Baghalian, K., S. A. Ziai, M. R. Naghavi, H. N. Badi, and A. Khalighi. 2005. Evaluation of allicin content and botanical traits in Iranian garlic (Allium sativum L.) ecotype. Sci. Hort. 103: 155-166.
Block, E. 1985. The chemistry of garlic and onions. Sci. Am. 252: 94-103.
Block, E., S. Naganathan, D. Putman, and S. H. Zhao. 1993. Organosulfur chemistry of garlic and onion: recent results. Pure Appl. Chem. 65: 625-632.
Boscher, J., J. Auger, N. Mandon, and S. Ferary. 1995. Qualitative and Quantitative comparison of volatile sulphides and flavor precursors in different organs of some wild and cultivated garlics. Biochem. Syst. Ecol. 23: 787-791.
Brewster, J. L. 1990. Physiology of crop growth and bulbing. p.53-88. In: Rabinowitch, H. D. (eds.) Onions and allied crops. v.1: botany, physiology, and genetics. CRP Press, Florida.
Brewster, J. L. 1994. Structure of edible Alliums. p.19-40. In: Brewster, J. L. (ed.) Onions and other vegetable alliums. CAB Intl., UK.
Calvey, E. M., J. E. Matusik, K. D. White, J. M. Betz, E. Block, M. H. Littlejohn, S. Naganathan, D. Putman. 1994. Off-line supercritical fluid extraction of thiosulfinates from garlic and onion. J. Agric. Food Chem. 42: 1335-1341.
Chen, Z., H. Zhang, B. Liu, G. Yang, H. Y. Aboul-Enein, W. Wang, R. Ding, H. Du, and H. Li. 2007. Determination of herbicide residues in garlic by gc-ms. Chromatographia. 66: 887-891.
Cheng, J. Y., C. L. Meng, C. C. Tzeng, and J. C. Lin. 1995. Optimal dose of garlic to inhibit dimethylhydrazine-induced colon cancer. World J. Surg. 19: 621-626.
Chia, M. and J. Pawliszyn. 1995. Analysis of environmental air samples by solid-phase microextractiona and gas chromatography/ion trap mass spectrometry. Environ. Sci. Technol. 29: 293-701.
Chin, H. W., R. A. Bernhard, and M. Rosenberg. 1996. Solid phase microextraction for cheese volatile compound analysis. J. Food Sci. 61: 1118-1123.
Corzo-Martínez, M., N. Corzo, and M. Villamiel. 2007. Biological properties of onions and garlic. Trends Food Sci. Technol. 18: 609-625.
DeMason., D. A. 1990. Morphology and anatomy of Allium. p.27-51. In: Rabinowitch, H. D. (ed.) Onions and allied crops. v.1: botany, physiology, and genetics. CRP Press, Florida.
Dorant, E., van den P. A. Brandt, R. A. Goldbohm, R. J. Hermus, and F. Sturmans. 1993. Garlic and its significance for the prevention of cancer in humans: a critical view. Br. J. Cancer 67: 424-429.
Edris, A. E. and H. M. Fadel. 2002. Investigation of the volatile aroma components of garlic leaves essential oil. Possibility of utilization to enrich garlic bulb oil. Eur. Food Res. Technol. 214: 105-107.
Etoh, T. and H. Ogura. 1977. A morphological observation on the formation of abnormal flowers in garlic (Allium sativum L.) Mem. Fac. Agric., Kagoshima Univ. 13:77-88.
Harris, D. C. 2003a. Mass spectrometry. p. 517-547. In: Harris D. C. (ed.) Quantitative chemical analysis. 6th ed. W. H. Freeman and Company, New York.
Harris, D. C. 2003b. High-performance liquid chromatography. p. 607-639. In: Harris D. C. (ed.) Quantitative chemical analysis. 6th ed. W. H. Freeman and Company, New York.
Harris, D. C. 2003c. Gas Chromatography. p. 578-606. In: Harris D. C. (ed.) Quantitative chemical analysis. 6th ed. W. H. Freeman and Company, New York.
Harris, J. C., S. L. Cottrell, S. Plummer, and D. Lloyd. 2001. Antimicrobial properties of Allium sativum (garlic). Appl. Microbiol. Biotechnol. 57: 282-286.
Huang, M. K., C. Liu, and S. D. Huang. 2002. One step and highly sensitive headspace solid-phase microextraction sample preparation approach for the analysis of methamphetamine and amphetamine in human urine. Analyst. 127: 1203-1206.
Ichikawa, M., N. Ide, J. Yoshida, H. Yamagauchi, and K. Ono. 2006. Determination of seven organosulfur compounds in garlic by high-performance liquid chromatography. J. Agric. Food Chem. 54: 1535-1540.
Ide, N. and B. H. S. Lau. 1999. S-allylcysteine attenuates oxidative stress in endothelial cells. Drug Dev. Ind. Pharm. Acol. 25: 619-624.
Jirovetz, L., D. Smith, and G. Buchbauer. 2002. Aroma compoundd analysis of Eruca satica (Brassicaceae) SPME headspace leaf sample using GC, GC-MS, and olfactometry. J. Agric Food Chem. 50: 4643-4646.
Jones, M. G., J. Hughes, A. Tregova, J. Milne, A. B. Tomsett, and H. A. Collin. 2004. Biosynthesis of the flavour precursors of onion and garlic. J. Exp. Bot. 55: 1903-1918.
Kamenetsky, R. 2007. Garlic: botany and horticulture. Hortic. Rev. 33: 123-172.
Keusgen, M. 2002. Health and Alliums. p.357-378. In: Rabinowitch, H. D. (eds.) Allium crop science: recent advances. CABI. New York.
Keusgen, M., H. Schulz, J. Glodek, I. Krest, H. Krüger, N. Herchert, and J. Keller. 2002. Characterization of some Allium hybrids by aroma precursors, aroma profiles, and alliinase activity. J. Agric. Food Chem. 50: 2884-2890.
Kubec, R., J. Velíšek, M. Doležal, and V. Kubelka. 1997. Sulfur-containing volatiles arising by thermal degradation of alliin and deoxyalliin. J. Agric. Food Chem. 45: 3580-3585.
Lahtinen, M., K. Lempa, J. P. Salminen, and K. Pihlaja. 2006. HPLC analysis of leaf surface flavonoids for the preliminary classification of birch species. Phytochem. Anal. 17: 197-203.
Lancaster, J. E., B. J. McCallion, and M. L. Shaw. 1986. The dynamics of the flavour precursors, the S-alk(en)yl-L-cysteine sulphoxides, during leaf blade and scale development in the onion (Allium cepa). Physiol. Plant. 66: 293-297.
Langenfeld, J. J., S. B. Hawthorne, and D. J. Miller. 1996. Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction. Anal. Chem. 68: 144-155.
Lee, J. and J. M. Harnly. 2005. Free amino acid and cysteine sulfoxide composition of 11 garlic (Allium sativum L.) cultivars by gas chromatography with flame ionization and mass selective detection. J. Agric. Food Chem. 53: 9100-9104.
Lee, S. N., N. S. Kim, and D. S. Lee. 2003. Comparative study of extraction techniques for determination of garlic flavor components by gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 377: 749-756.
Mann, L. K. and P. A. Minges. 1958. Growth and bulbing of garlic in response to storage temperature of planting stocks, day length, and planting date. Hilgardia 15: 385-410.
Martín-Lagos, R. A., M. F. Olea-Serrano, and M. D. Ruiz-Lopez. 1995. Determination of organic sulphur compounds in garlic extracts by gas chromatography and mass spectrometry. Food Chem. 53:91-93.
Miller, M. E. and J. D. Stuart. 1999. Comparison of gas-sampled and spme-sampled static headspace for the determination of volatile flavor components. Anal. Chem. 71: 23-27.
Mindrup, R. and R. E. Shirey. 2001. Improved performance of SPME fibers and applications. Sigma-Aldrich Co.
Muoio, R., P. Casoria, and B. Menale. 2004. A comparative study of sulphur content of some Allium species. Econ. Bot. 58: 227-230.
Ng, L. K., M. Hupé, J. Harnois, and D. Moccia. 1996. Characterisation of commercial vodkas by solid-phase microextraction and gas chromatography/mass spectrometry analysis. J. Sci. Food Agric. 70: 380-388.
Ohsumi, C., T. Hayashi, K. Kubota, and A. Kobayashi. 1993. Volatile flavor compounds formed in an interspecific hybrid between onion and garlic. J. Agric. Food Chem. 41: 1808-1810.
Pino, J. A. 1992. Headspace sampling methods for the volatile components of garlic (Allium sativum). J. Sci. Food Agric. 59: 131-133.
Poliakoff M., N. J. Meehan, and S. K. Ross. 1989. A supercritical success story. Chem. Indus. 19: 750-52.
Randle, W. M. and J. E. Lancaster. 2002. Sulphur compounds in Alliums in relation to flavour quality. p.329-356. In: Rabinowitch, H. D. (eds.) Allium crop science: recent advances. CABI. New York.
Rohloff, J. 1999. Monoterpene composition of essential oil from peppermint (Mentha x piperita L.) with regard to leaf position using solid-phase microextraction and gas chromatography/mass spectrometry analysis. J. Agric. Food chem. 47:3782-3786.
Schmitt, B., H. Schulz, J. Storsberg, and M. Keusgen. 2005. Chemical characterization of Allium ursineum L. depending on harvesting time. J. Agric. Food Chem. 53: 7288-7294.
Shukla, Y. and N. Kalra. 2007. Cancer chemoprevention with garlic and its constituents. Cancer Letters 247:167-181.
Sofia, P. K., R. Prasad, V. K. Vijay, and A. K. Srivastava. 2007. Evaluation of antibacterial activity of Indian spice against common foodborne pathogens. Int. J. Food Sci. Technol. 42:910-915.
Song K. and J. A. Milner. 2001. The influence of heating on the anticancer properties of garlic. J. Nutr. 131:1054-1057.
Storsberg, J., H. Schulz, M. Keusgen, F. Tannous, K. J. Dehmer, E. R. Joachim, and E. R. J. Keller. 2004. Chemical characterization of interspecific hybrids between Allium cepa L. and Allium kermesinum Rchb. J. Agric. Food Chem. 52: 5499-5505.
Supelco. 1998. Instructions of the supelco solid phase microextraction fiber holder for manual use. Catalog No. 57330-U.
Thomas, S. P., R. S. Ranjan, G. R. B. Webster, and L. P. Sarna. 1996. Protocol for the analysis of high concentrations of benzene, toluene, ethylbenzene, and xyleme isomers in water using automated solid-phase microextraction-gc-fid. Environ. Sci. Technol. 30: 1521-1526.
Wang, L. S., F. Hashimoto, A. Shiraishi, N. Aoki, J. J. Li, and Y. Sakata. 2004. Chemical taxonomy of the Xibei tree peony from China by floral pigmentation. J. Plant Res. 117: 47-55.
Young, J. C., C. L. G. Chu, X. Lu, and H. Zhu. 2004. Ester variability in apple varieties as determined by solid-phase microextraction and gas chromatography-mass spectrometry. J. Agric. Food Chem. 52: 8086-8093.
Yu, T. H., C. M. Wu, R. T. Robert, T. G. Hartman, and C. T. Ho. 1994. Volatile compounds generated from thermal degradation of alliin and deoxyalliin in an aqueous solution. J. Agric. Food Chem. 42: 146-153.
Yu, T. H., C. M. Wu, and S. Y. Chen. 1989A. Effects of pH adjustment and heat treatment on the stability and the formation of volatile compounds of garlic. J. Agric. Food Chem. 37: 730-734.
Yu, T. H., C. M. Wu, and Y. C. Liou. 1989B. Volatile compounds from garlic. J. Agric. Food Chem. 37: 725-730.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9674-
dc.description.abstract大蒜為世界上重要的香辛蔬菜,由於含有特殊氣味常用以食物調味,其氣味來源多屬含硫揮發性或半揮發性含硫化合物。本研究利用固相微萃取-氣相層析質譜儀(SPME-GC/MS)及溶劑萃取-GC/MS兩種方法,分析由台中區農業改良場所提供之大蒜品種30種,其中包括22個大陸品種、4個台灣品種、2個韓國品種和2個越南品種的揮發性成分,各品種進行了型態調查。蒜球周徑介於10.17 cm- 18.27cm,蒜瓣數介於6 ~ 23。供試品種4種為軟骨蒜,26種為硬骨蒜。型態特徵上,‘和美’與‘大片黑’比與‘宜蘭白’或‘芳苑’有較多相似。使用SPME-GC/MS分析‘和美’、‘大片黑’和‘宜蘭白’三個品種葉齡20、40及60天之葉片含硫化合物種類及含量,皆表現葉片隨著葉齡增加、揮發性含硫化合物的種類及含量逐漸減少。分析葉身、葉鞘及鱗莖三個不同部位的結果顯示,‘和美’和‘宜蘭白’兩品種表現相同的趨勢,即葉片中的揮發性含硫化合物最少,葉鞘中的含硫化合物種類較多,而以蒜球中的含硫化合物種類最多。在含硫化合物的相對含量上,以發育中的蒜球最高,其次為葉鞘,而葉片中的含量最低。‘大片黑’以葉鞘中的含硫化合物種類最多,多數含硫化合物的相對含量也以葉鞘最高,葉片的含硫化合物種類最少,含量最低。分析‘和美’和‘大片黑’ 蒜瓣和蒜皮中的揮發性含硫化合物組成及相對含量都同樣以蒜皮中的揮發性含硫化合物遠較蒜瓣為少,量也較低。以SPME-GC/MS分析30個大蒜品種葉片及鱗莖,各偵測到17和20種揮發性化合物,葉片氣味主要由一硫(1種)、二硫(5種)及三硫(2種)化合物組成,鱗莖中化合物種類及含量較葉片多,四硫(1種)化合物亦為主要化合物之一。以溶劑-GC/MS分析30個大蒜品種鱗莖,共偵測到18種揮發性化合物,成分皆為一硫(1種)、二硫(6種)及三硫(1種)化合物;相較於SPME所得之結果,溶劑法偵測到的化合物中除了3-vinyl-1,2-dithiacyclohex-4-ene和3-vinyl-1,2-dithiacyclohex-5-ene兩個環狀化合物含量大量增加外,其他成分皆顯著減少,並且增加了2-vinyl-1,3-dithiane,而這三種化合物應為萃取時產生之人為產物。以SPME-GC/MS分析大蒜葉片、鱗莖和溶劑萃取-GC/MS分析大蒜鱗莖的群聚分析結果,各品種依化合物的種類及成分含量高低而可分群。由SPME分析,台灣四個品種中‘和美’歸為葉片及鱗莖含硫化合物種類及含量均少的一群,‘大片黑’ 歸為葉片及鱗莖含硫化合物種類均少的一群,‘芳苑花蒜’葉片中含硫化合物種類多,但鱗莖屬於化合物種類少的一群,‘宜蘭白’屬於葉片及鱗莖含硫化合物種類均多的一群。以溶劑萃取分析,四個品種之鱗莖,除‘芳苑花蒜’外,其餘三品種皆屬硫化合物種類多的一群。比較兩個不同生產地的‘和美’蒜球揮發性化合物,有產地差異,但兩個不同產地的‘大片黑’則成分相似。zh_TW
dc.description.abstractGarlic (Allium sativum L.) is an important vegetable of the world for its culinary value as a flavoring agent. Its volatile or partially-volatile sulfur-containing compounds contribute to the characteristic flavors. In this study both solid-phase microextraction -gas chromatography/mass spectrometry (SPME-GC/MS) and solvent extraction-GC/ MS are employed to analyze the flavor compounds of 30 garlic cultivars. All cultivars are grown at Taichung District Agricultural Research and Extension Station, Chang-Hua, including 4 cultivars of Taiwan, 22 of China, 2 of Korea and 2 from Vietnam. The result of field plant characters of 30 garlic cultivars indicated that 4 cultivars are soft-neck with the rest being hard-neck which produced a flower stalk. The perimeter of the bulb ranges from 10.17 to 18.27 cm and the cloves number from 6 to 23. Morphologically, cvs. ‘He-Mei’ and ‘Large-Black-Leaf’ showed more similarities than they are to either ‘Fan-Yuan’ or ‘Yi-Lan White’. Both the number and amount of arising sulfur-containing volatiles collected by SPME- GC/MS in leaf blades decreased with leaf age increasing from 20 d, 40 d to 60 days after labeling in cvs. ‘He-Mei’, ‘Large-Black-Leaf’, and ‘Yi-Lan-White’. Both cvs. ‘He-Mei’ and ‘Yi-Lan-White’ had the least volatile sulfur-containing compounds in leaf blades followed by leaf sheath and the developing bulb having the most and the highest content of sulfur volatiles, while cv. ‘Large-Black-Leaf’ had the most and highest amount of total volatile compounds in leaf sheath and the least in leaf blades. The cloves had more and higher amount of sulfur-containing volatiles than clove peels did in both cvs. ‘He-Mei’ and ‘Large-Black-Leaf’ tested. In SPME-GC/MS analyses, 17 and 20 volatile compounds were detected in leaf blades and cloves of 30 cultivars, respectively. The major compounds of leaf blades were sulfide (one compound), di-sulfide (5 compounds) and tri-sulfide (one compound). In addition to these compounds, the cloves contain also tetra-sulfide and with higher contents of sulfur volatiles than those of leaf blade. In solvent-GC/MS analyses, 18 volatile compounds were detected in garlic cloves. The major ones were di- and tri-sulfide with contents being much decreased as compared with the results of SPME-GC/MS, except for 3-vinyl-1,2-dithiacyclohex-4-ene and 3-vinyl-1,2-dithiacyclohex-5-ene. Compound of 2-vinyl-1,3-dithiane was only detected in solvent-GC/MS. These latter three compounds might be artifacts. The dendrogram based on leaf or bulb sulfur-containing volatiles extracted either by SPME- GC/MS or solvent-extraction GC/MS indicate that all 30 garlic cultivars can be grouped by the number and level of compounds they contain. From the results of SPME-GC/MS, ‘He-Mei’, the early variety in Taiwan is low in volatile sulfur-containing compounds in both leaves and bulbs; ‘Large-Black-Leaf’, the main bulb variety of Taiwan follows and contains relatively low volatile sulfur compounds in both leaves and bulbs. In comparison with ‘Large-Black-Leaf’, ‘Fang-Yuan’ has more volatile compounds in number in leaves but not in cloves. Cultivar ‘Yi-Lan-White’ is high in volatile-sulfur containing compounds in both leaves and in bulbs. The results of solvent-extraction GC/MS indicates garlic cultivars of Taiwan, except cv. ‘Fang-Yuan’ contain high number of volatile sulfur compounds. Variations in volatile sulfur compounds were detected in cv. ‘He-Mei’ but not in ‘Large-Black-Leaf’ of two different sources.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:34:53Z (GMT). No. of bitstreams: 1
ntu-97-R94628122-1.pdf: 15318576 bytes, checksum: 841b8e2d65376cc21e871f37801c971f (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄
口試委員會審定書.....................................................................................................................i
誌謝............................................................................................................................................ii
中文摘要...................................................................................................................................iii
英文摘要.....................................................................................................................................v
第一章 前言.............................................................................................................................1
第二章 前人研究.....................................................................................................................3
一、 大蒜生產及種原........................................................................................................3
二、 大蒜成分....................................................................................................................5
三、 大蒜成分之分析方法................................................................................................7
(一) 分析樣品製備法...........................................................................................8
(二) 分析方法.....................................................................................................10
(三) 萃取時影響大蒜成分分析之因子.............................................................11
四、 化學分類法..............................................................................................................12
第三章 材料與方法...............................................................................................................15
一、 試驗材料..................................................................................................................15
二、 試藥與儀器設備......................................................................................................15
(一) 試藥及溶劑................................................................................................15
(二) 儀器及設備.................................................................................................15
三、 試驗方法..................................................................................................................16
(一) 大蒜品種基本性狀.....................................................................................16
1. 性狀調查...................................................................................................16
2. 數據分析...................................................................................................17
(二) 揮發性化合物分析.....................................................................................17
1. 樣品準備...................................................................................................17
2. 樣品切碎以水為酵素反應媒介,再以SPME吸附................................18
3. 溶劑萃取...................................................................................................18
4. 數據分析...................................................................................................19
第四章 結果...........................................................................................................................21
一、 大蒜之園藝性狀......................................................................................................21
(一) 園藝性狀....................................................................................................21
(二) 品種間之相似度與群聚分析.....................................................................22
(三) 主成分分析.................................................................................................24
二、 大蒜之含硫化合物組成..........................................................................................24
(一) 試驗之重複性.............................................................................................24
(二) 不同葉齡葉片含硫揮發性化合物的變化.................................................27
(三) 不同葉部含硫化合物的變化.....................................................................27
(四) 不同產地來源蒜瓣之含硫化合物變化.....................................................29
三、 大蒜30個品種的含硫揮發性化合物變化............................................................30
(一) 葉片含硫化合物的變化與群聚分析.........................................................30
1. 葉片含硫化合物的組成.............................................................................30
2. 大蒜30個品種之群聚分析.......................................................................30
3. 主成分分析.................................................................................................32
(二) 鱗莖中含硫化合物的變化與群聚分析.....................................................33
1. 固相微萃取.................................................................................................33
(1) 鱗莖中的含硫化合物..................................................................33
(2) 群聚分析......................................................................................34
(3) 主成分分析..................................................................................36
2. 溶劑萃取.....................................................................................................36
(1) 鱗莖中的含硫化合物..................................................................36
(2) 群聚分析......................................................................................37
(3) 主成分分析..................................................................................38
第五章 討論...........................................................................................................................87
一、 分析方法及儀器的穩定性......................................................................................87
二、 比較 SPME及溶劑萃取法.....................................................................................87
三、 大蒜含硫揮發性成分..............................................................................................89
四、 以植株性狀及揮發性含硫化合物探討不同大蒜品種..........................................92
第六章 結論...........................................................................................................................94
參考文獻...................................................................................................................................95
圖目錄
圖1、供試30個大蒜品種之性狀調查.....................................................................................42
圖2、以12個性狀分析30個供試大蒜品種...........................................................................44
圖3、以12個園藝性狀分析30個大蒜品種之主成分分析...................................................46
圖4、含氘內標準品之結構式..................................................................................................47
圖5、大蒜中揮發性含硫化合物結構式..................................................................................61
圖6、大蒜‘和美’、‘大片黑’和‘宜蘭白’新葉標示後20天、40天和60天之葉長度及葉位變化.................................................................................................................................66
圖7、以固相微萃取所得之17種葉片揮發性含硫化合物分析30個大蒜品種之樹狀圖...74
圖8、以固相微萃取法吸附大蒜葉片所得之含硫揮發性化合物分析30個大蒜品種之主成分分析.............................................................................................................................76
圖9、以20種固相微萃取所得之鱗莖揮發性含硫化合物分析30個大蒜品種的樹狀圖...79
圖10、以固相微萃取法吸附大蒜鱗莖所得之揮發性含硫化合物分析30個大蒜品種之主成分分析.........................................................................................................................81
圖11、以溶劑萃取鱗莖所得之18種揮發性含硫化合物分析30個大蒜品種的樹狀圖.....84
圖12、以溶劑萃取大蒜鱗莖所得之揮發性含硫化合物分析30個大蒜品種之主成分分析.....................................................................................................................................86
表目錄
表1、參試30種大蒜之編號、材料名稱、來源國家及提供來源........................................ 20
表2、30個大蒜品種之植株性狀比較..................................................................................... 39
表3、30個大蒜品種之葉部性狀比較......................................................................................40
表4、30個大蒜品種之鱗莖性狀比較......................................................................................41
表5、30種大蒜12個園藝性狀的主成分分析........................................................................45
表6、大蒜‘大片黑’葉片以固相微萃取法重複試驗所得之揮發性含硫化合物變異量......48
表7、大蒜‘廣西崇左市扶綏縣’葉片以固相微萃取法重複試驗所得之揮發性含硫化合物變異量...........................................................................................................................49
表8、大蒜‘和美’蒜瓣以固相微萃取法重複試驗所得之揮發性含硫化合物變異量.........50
表9、大蒜‘大片黑’蒜瓣以固相微萃取法所重複試驗得之揮發性含硫化合物變異量.......51
表10、大蒜‘宜蘭白’蒜瓣以固相微萃取法重複試驗所得之揮發性含硫化合物變異量.....52
表11、大蒜‘和美’蒜瓣以溶劑萃取法重複試驗所得之揮發性含硫化合物變異量.............53
表12、大蒜‘大片黑’蒜球以溶劑萃取法重複試驗所得之揮發性含硫化合物變異量.........54
表13、使用‘宜蘭白’蒜球以溶劑萃取法重複試驗所得之揮發性含硫化合物變異量.........55
表14、大蒜‘和美’蒜瓣中以溶劑萃取法所得之揮發性含硫化合物變異量.........................56
表15、大蒜‘大片黑’蒜瓣中以溶劑萃取法所得之揮發性含硫化合物變異量.....................57
表16、大蒜‘宜蘭白’蒜瓣中以溶劑萃取法所得之揮發性含硫化合物變異量.....................58
表17、以固相微萃取法所得之大蒜揮發性含硫化合物及內標準品....................................59
表18、固相微萃取法所用之內標準品及其對應量之含硫揮發性化合物............................62
表19、以溶劑萃取法所得之大蒜揮發性含硫化合物及內標準品........................................63
表20、溶劑萃取法所用之內標準品及其對應量之含硫揮發性化合物................................65
表21、‘和美’、‘大片黑’和‘宜蘭白’於葉齡20、40及60天葉片以SPME-GC/MS測定之葉身揮發性含硫化合物校正量.....................................................................................67
表22、‘和美’、‘大片黑’ 和‘宜蘭白’之葉身、葉鞘和鱗莖以SPME-GC/MS測定之揮發性含硫化合物校正量.....................................................................................................68
表23、‘和美’和‘大片黑’之蒜皮和蒜瓣以SPME-GC/MS測定之揮發性含硫化合物校正量.....................................................................................................................................70
表24、不同來源之‘和美’和‘大片黑’之蒜瓣以SPME-GC/MS測定之揮發性含硫化合物校正量揮發性含硫化合物校正量....................................................................................71
表25、大蒜30個品種葉片以SPME-GC/MS測定之揮發性含硫化合物相對量.................72
表26、以固相微萃取法分析30種大蒜葉片揮發性含硫成分之主成分分析.......................75
表27、大蒜30個品種鱗莖以SPME-GC/MS測定之揮發性含硫化合物相對量.................77
表28、以固相微萃取法分析30種大蒜蒜瓣揮發性含硫成分之主成分分析.......................80
表29、大蒜30個品種鱗莖以溶劑萃取-GC/MS測定之揮發性含硫化合物相對量.............82
表30、以溶劑萃取法分析30種大蒜蒜瓣揮發性含硫成分之主成分分析..........................85
附錄
附錄1、世界重要大蒜生產國與台灣之大蒜產量................................................................103
附錄2、大蒜100克鮮重所含之成分及含量.........................................................................104
附錄3、大蒜中有機含硫化合物之結構式............................................................................105
附錄4、固相微萃取裝置........................................................................................................106
附錄5、固相微萃取使用方式................................................................................................107
附錄6、氣相層析裝置............................................................................................................108
附錄7、以12個性狀分析30大蒜品種間之相似性矩陣.....................................................109
附錄8、大蒜‘大片黑’葉片揮發性成分以固相微萃取法重複試驗所得之總離子層析圖.110
附錄9、大蒜‘廣西崇左市扶綏縣’葉片揮發性成分以固相微萃取法重複試驗所得之總離子層析圖.......................................................................................................................111
附錄10、大蒜‘和美’鱗莖揮發性成分以固相微萃取法重複試驗所得之總離子層析圖...112
附錄11、大蒜‘大片黑’鱗莖揮發性成分以固相微萃取法重複試驗所得之總離子層析圖............................................................................................................................113
附錄12、大蒜‘宜蘭白’鱗莖揮發性成分以固相微萃取法重複試驗所得之總離子層析圖............................................................................................................................114
附錄13、大蒜‘和美’鱗莖揮發性成分以溶劑萃取法重複試驗所得之總離子層析圖.......115
附錄14、大蒜‘大片黑’鱗莖揮發性成分以溶劑萃取法重複試驗所得之總離子層析圖...116
附錄15、大蒜‘宜蘭白’鱗莖揮發性成分以溶劑萃取法重複試驗所得之總離子層析圖.117
附錄16、大蒜‘和美’鱗莖揮發性成分以溶劑萃取法重複試驗所得之總離子層析圖.......118
附錄17、大蒜‘大片黑’鱗莖揮發性成分以溶劑萃取法重複試驗所得之總離子層析圖...119
附錄18、大蒜‘宜蘭白’鱗莖揮發性成分以溶劑萃取法重複試驗所得之總離子層析圖...120
附錄19、大蒜‘和美’葉身揮發性成分於葉齡20、40及60天以固相微萃取法測定之總離子層析圖.......................................................................................................................121
附錄20、大蒜‘大片黑’葉身揮發性成分於葉齡20、40及60天以固相微萃取法測定之總離子層析圖...................................................................................................................122
附錄21、大蒜‘宜蘭白’葉身揮發性成分於葉齡20、40及60天以固相微萃取法測定之總離子層析圖...................................................................................................................123
附錄22、大蒜‘和美’葉身、葉鞘和鱗莖揮發性成分以固相微萃取法測定之總離子層析圖................................................................................................................................124
附錄23、大蒜‘大片黑’葉身、葉鞘和鱗莖揮發性成分以固相微萃取法測定之總離子層析圖................................................................................................................................125
附錄24、大蒜‘宜蘭白’葉身、葉鞘和鱗莖揮發性成分以固相微萃取法測定之總離子層析圖................................................................................................................................126
附錄25、大蒜‘和美’蒜皮和蒜瓣揮發性成分以固相微萃取法測定之總離子層析圖.......127
附錄26、大蒜‘大片黑’蒜皮和蒜瓣揮發性成分以固相微萃取法測定之總離子層析圖...128
附錄27、兩個不同來源的大蒜‘和美’鱗莖揮發性成分以固相微萃取法所測得之總離子層析圖………...................................................................................................................129
附錄28、兩個不同來源的大蒜‘大片黑’鱗莖揮發性成分以固相微萃取法所測得之總離子層析圖...........................................................................................................................130
附錄29、大蒜‘和美’和‘古宅大蒜’葉身揮發性成分以固相微萃取法測定之總離子層析圖................................................................................................................................131
附錄30、大蒜‘混香蒜’和‘大片黑’葉身揮發性成分以固相微萃取法測定之總離子層析圖................................................................................................................................132
附錄31、大蒜‘廣西仁東玉林’和‘四川南蒜’葉身揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................................133
附錄32、大蒜‘四川新都紫皮蒜’和‘正月早新繁市場’葉身揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................134
附錄33、大蒜‘越南紅膜早熟’和‘廣西崇左市扶綏縣’葉身揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................135
附錄34、大蒜‘越南’和‘雲南昆明瓣蒜’葉身揮發性成分以固相微萃取法測定之總離子層析圖...............................................................................................................................136
附錄35、大蒜‘大里彌度獨蒜’和‘廣州江南洱沅獨蒜’葉身揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................137
附錄36、大蒜‘嘉定2號’和‘雲南昆明王旗營紫蒜’葉身揮發性成分以固相微萃取法測定之總離子層析圖...........................................................................................................138
附錄37、大蒜‘廣東梯雲獨蒜’和‘河南白蒜’葉身揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................................139
附錄38、大蒜‘北京新發地’和‘彭州正月早’葉身揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................................140
附錄39、大蒜‘彭州丹景山二月早’和‘雲南昆明王旗營三瓣蒜’葉身揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................141
附錄40、大蒜‘彭州溫二早’和‘韓國暖地型’葉身揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................................142
附錄41、大蒜‘韓國昌寧’和‘蒼山蒲蒜’葉身揮發性成分以固相微萃取法測定之總離子層析圖...............................................................................................................................143
附錄42、大蒜‘芳苑花蒜’和‘宜蘭白’葉身揮發性成分以固相微萃取法測定之總離子層析圖................................................................................................................................144
附錄43、大蒜‘四色菊府’和‘正月早彭州’葉身揮發性成分以固相微萃取法測定之總離子層析圖...........................................................................................................................145
附錄44、大蒜30個品種以SPME-GC/MS測定葉片揮發性含硫化合物之校正量............146
附錄45、以固相微萃取法所得之17個葉片揮發性含硫化合物分析30個大蒜品種間之相似性矩陣................................................................................................................147
附錄46、大蒜‘和美’和‘古宅大蒜’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖................................................................................................................................148
附錄47、大蒜‘混香蒜’和‘大片黑’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖................................................................................................................................149
附錄48、大蒜‘廣西仁東玉林’和‘四川南蒜’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖.....................................................................................................................150
附錄49、大蒜‘四川新都紫皮蒜’和‘正月早新繁市場’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................151
附錄50、大蒜‘越南紅膜早熟’和‘廣西崇左市扶綏縣’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................152
附錄51、大蒜‘越南’和‘雲南昆明瓣蒜’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖...............................................................................................................................153
附錄52、大蒜‘大里彌度獨蒜’和‘廣州江南洱沅獨蒜’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................154
附錄53、大蒜‘嘉定2號’和‘雲南昆明王旗營紫蒜’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖...........................................................................................................155
附錄54、大蒜‘廣東梯雲獨蒜’和‘河南白蒜’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................................156
附錄55、大蒜‘北京新發地’和‘彭州正月早’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................................................157
附錄56、大蒜‘彭州丹景山二月早’和‘雲南昆明王旗營三瓣蒜’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖.......................................................................................158
附錄57、大蒜‘彭州溫二早’和‘韓國暖地型’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖,化合物編號對照表.....................................................................................159
附錄58、大蒜‘韓國昌寧’和‘蒼山蒲蒜’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖...............................................................................................................................160
附錄59、大蒜‘芳苑花蒜’和‘宜蘭白’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖................................................................................................................................161
附錄60、大蒜‘四色菊府’和‘正月早彭州’鱗莖揮發性成分以固相微萃取法測定之總離子層析圖...........................................................................................................................162
附錄61、大蒜30個品種以SPME-GC/MS測定鱗莖揮發性含硫化合物之校正量............163
附錄62、以固相微萃取法所得之20個鱗莖揮發性含硫化合物分析30大蒜品種間之相似性矩陣.......................................................................................................................164
附錄63、大蒜‘和美’和‘古宅大蒜’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖................................................................................................................................165
附錄64、大蒜‘混香蒜’和‘大片黑’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖................................................................................................................................166
附錄65、大蒜‘廣西仁東玉林’和‘四川南蒜’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...........................................................................................................................167
附錄66、大蒜‘四川新都紫皮蒜’和‘正月早新繁市場’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖..........................................................................................................168
附錄67、大蒜‘越南紅膜早熟’和‘廣西崇左市扶綏縣’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...........................................................................................................169
附錄68、大蒜‘越南’和‘雲南昆明瓣蒜’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...................................................................................................................................170
附錄69、大蒜‘大里彌度獨蒜’和‘廣州江南洱沅獨蒜’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...........................................................................................................171
附錄70、大蒜‘‘嘉定2號’和‘雲南昆明王旗營紫蒜’’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...............................................................................................................172
附錄71、大蒜‘廣東梯雲獨蒜’和‘河南白蒜’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...........................................................................................................................173
附錄72、大蒜‘北京新發地’和‘彭州正月早’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖..........................................................................................................................174
附錄73、大蒜‘彭州丹景山二月早’和‘雲南昆明王旗營三瓣蒜’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...........................................................................................175
附錄74、大蒜‘彭州溫二早’和‘韓國暖地型’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...........................................................................................................................176
附錄75、大蒜‘韓國昌寧’和‘蒼山蒲蒜’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...................................................................................................................................177
附錄76、大蒜‘芳苑花蒜’和‘宜蘭白’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...................................................................................................................................178
附錄77、大蒜‘四色菊府’和‘正月早彭州’鱗莖揮發性成分以溶劑萃取法測定之總離子層析圖...............................................................................................................................179
附錄78、大蒜30個品種以溶劑萃取-GC/MS測定蒜瓣揮發性含硫化合物之校正量.......180
附錄79、以溶劑萃取法-GC/MS所得之18個鱗莖揮發性含硫化合物分析30個大蒜品種間的相似性矩陣.....................................................................................................................181
dc.language.isozh-TW
dc.title30種大蒜的園藝性狀及含硫化合物質量分析zh_TW
dc.titleMorphological characteristics and sulfur-containing compounds analyses in 30 garlic (Allium sativum) cultivarsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor許圳塗(Chou-Tou Shii)
dc.contributor.oralexamcommittee陳開憲,宋妤
dc.subject.keyword含硫揮發性化合物,固相微萃取,溶劑萃取,氣相層析質譜儀,主成分分析,大蒜品種群聚分析,zh_TW
dc.subject.keywordvolatile sulfur-containing compounds,solid-phase microextraction (SPME),solvent-extraction,gas chromatography/mass spectrometry(GC/MS),cluster analysis of garlic cultivars,en
dc.relation.page101
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf14.96 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved