Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96741
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓仁毓zh_TW
dc.contributor.advisorJen-Yu Hanen
dc.contributor.author黃瀞儀zh_TW
dc.contributor.authorJing-Yi Huangen
dc.date.accessioned2025-02-21T16:20:36Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2024-
dc.date.submitted2024-12-27-
dc.identifier.citationAl-Hasnawi, A. N. A., Hussein, H. A. H. A., Faraj, A. K., and Salih, A. K. (2023). Penetration rate prediction utilizing machine learning technique for rumaila oilfield, southern of iraq. Iraqi Journal of Oil and Gas Research, 3(2).
Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media.
Breiman, L. (2001). Random forests. Machine learning, 45:5–32.
Cai, Z., La Sorte, F. A., Chen, Y., and Wu, J. (2023). The surface urban heat island effect decreases bird diversity in chinese cities. Science of the Total Environment, 902:166200.
Cevik Degerli, B. and Cetin, M. (2023). Evaluation of utfvi index effect on climate change in terms of urbanization. Environmental Science and Pollution Research, 30(30):75273–75280.
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.
Chun, B. and Guldmann, J.-M. (2018). Impact of greening on the urban heat island: Seasonal variations and mitigation strategies. Computers, Environment and Urban Systems, 71:165–176.
Deilami, K., Kamruzzaman, M., and Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures.
International journal of applied earth observation and geoinformation, 67:30–42. Dorogush, A. V., Ershov, V., and Gulin, A. (2018). Catboost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363.
Eslahi, M., Baira, M., and El Meouche, R. (2024). Simulation of urban density scenario according to the cadastral map using k-means unsupervised classification. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10:57–63.
Ghosh, S. and Das, A. (2018). Modelling urban cooling island impact of green space and water bodies on surface urban heat island in a continuously developing urban area. Modeling Earth Systems and Environment, 4(2):501–515.
Haashemi, S., Weng, Q., Darvishi, A., and Alavipanah, S. K. (2016). Seasonal variations of the surface urban heat island in a semi-arid city. Remote sensing, 8(4):352.
Han, W., Li, Z., Wu, F., Zhang, Y., Guo, J., Su, T., Cribb, M., Fan, J., Chen, T., Wei, J., et al. (2020). The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect. Atmospheric Chemistry and Physics, 20(11):6479–6493.
Imhoff, M. L., Zhang, P., Wolfe, R. E., and Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental usa. Remote sensing of environment, 114(3):504–513.
Jandaghian, Z. and Colombo, A. (2024). The role of water bodies in climate regulation: Insights from recent studies on urban heat island mitigation. Buildings, 14(9):2945.
Jiang, W., Zhao, X., and Wang, S. (2021). A survey on high performance machine learning: Challenges, current and future trends. IEEE Transactions on Industrial Informatics,17(11):7285–7296.
Kafy, A.-A., Shuvo, R. M., Naim, M. N. H., Sikdar, M. S., Chowdhury, R. R., Islam, M. A., Sarker, M. H. S., Khan, M. H. H., Kona, M. A., et al. (2021). Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of bangladesh. Remote Sensing Applications: Society and Environment, 21:100463.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
Khalil, U., Azam, U., Aslam, B., Ullah, I., Tariq, A., Li, Q., and Lu, L. (2022). Developing a spatiotemporal model to forecast land surface temperature: A way forward for better town planning. Sustainability, 14(19):11873.
Kim, Y.-H. and Baik, J.-J. (2002). Maximum urban heat island intensity in seoul. Journal of Applied Meteorology and Climatology, 41(6):651–659.
Kovats, R. S. and Hajat, S. (2008). Heat stress and public health: a critical review. Annu. Rev. Public Health, 29(1):41–55.
Li, D. and Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of applied Meteorology and Climatology, 52(9):2051–2064.
Li, J., Sun, R., Liu, T., Xie, W., and Chen, L. (2021). Prediction models of urban heat island based on landscape patterns and anthropogenic heat dynamics. Landscape Ecology, 36:1801–1815.
Li, X., Zhou, W., Ouyang, Z., Xu, W., and Zheng, H. (2012). Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area, china. Landscape ecology, 27:887–898.
Lundberg, S. (2017). A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874.
Luo, J., Xu, T., and Yan, C. (2024). Seasonal variation in vegetation cooling effect and its driving factors in a subtropical megacity. Building and Environment, 266:112065.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability/University of California Press. Magee, N., Curtis, J., and Wendler, G. (1999). The urban heat island effect at fairbanks, alaska. Theoretical and applied climatology, 64:39–47.
Martin, P., Baudouin, Y., and Gachon, P. (2015). An alternative method to characterize the surface urban heat island. International journal of biometeorology, 59:849–861.
Ming, Y., Liu, Y., Gu, J., Wang, J., and Liu, X. (2023). Nonlinear effects of urban and industrial forms on surface urban heat island: Evidence from 162 chinese prefecturelevel cities. Sustainable Cities and Society, 89:104350.
Ming, Y., Liu, Y., Li, Y., and Song, Y. (2024). Unraveling nonlinear and spatial nonstationary of urban form on surface urban heat islands using explainable spatial machine learning. Computers, Environment and Urban Systems, 114:102200.
Mokarram, M., Taripanah, F., and Pham, T. M. (2023). Investigating the effect of surface urban heat island on the trend of temperature changes. Advances in Space Research, 72(8):3150–3169.
Moon, J.-H., Park, S.-Y., and Lee, S.-H. (2022). Comparative study of spatiotemporal variation in the urban heat island core in coastal and inland basin cities. Air Quality, Atmosphere & Health, 15(8):1439–1451.
Muhammad, L., Algehyne, E. A., and Usman, S. S. (2020). Predictive supervised machine learning models for diabetes mellitus. SN Computer Science, 1(5):240.
Oke, T. (1982a). The energetic basis of urban heat island. Quarterly Journal of the Royal Meteorological Society, 108:1 – 24.
Oke, T. R. (1982b). The energetic basis of the urban heat island. Quarterly journal of the royal meteorological society, 108(455):1–24.
Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F.-M., Nan, H., Zhou, L., and Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental science & technology, 46(2):696–703.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5):206– 215.
Santamouris, M. (2014). On the energy impact of urban heat island and global warming on buildings. Energy and buildings, 82:100–113.
Schwarz, N. and Manceur, A. M. (2015). Analyzing the influence of urban forms on surface urban heat islands in europe. Journal of Urban Planning and Development, 141(3):A4014003.
Shahmohamadi, P., CHE, A. A., and Maulud, K. (2019). The impact of anthropogenic heat on formation of urban heat island and energy consumption balance.
Stewart, I. D. and Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12):1879–1900.
Tanoori, G., Soltani, A., and Modiri, A. (2024). Machine learning for urban heat island (uhi) analysis: Predicting land surface temperature (lst) in urban environments. Urban Climate, 55:101962.
Tian, L., Li, Y., Lu, J., and Wang, J. (2021). Review on urban heat island in china: Methods, its impact on buildings energy demand and mitigation strategies. Sustainability, 13(2):762.
Voogt, J. A. (2004). Urban heat islands: hotter cities. America Institute of Biological Sciences, pages 4–7.
Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301):236–244.
Yuan, X. and Jing (2018). Research progress on the thermal environment of the urban surfaces. Acta Ecologica Sinica, 38.
Zeng, P., Zong, C., Duan, Z., and Wei, X. (2023). Exploring the spatial interplay between built-up environments and surface urban heat island phenomena in the main urban area of shanghai. Energy and Buildings, 301:113739.
Zhang, J., Tu, L., and Shi, B. (2023). Spatiotemporal patterns of the application of surface urban heat island intensity calculation methods. Atmosphere, 14(10):1580.
Zhang, Y., Yu, T., Gu, X., Zhang, Y.-x., and Chen, L.-f. (2006). Land surface temperature retrieval from cbers-02 irmss thermal infrared data and its applications in quantitative analysis of urban heat island effect. JOURNAL OF REMOTE SENSING-BEIJING-, 10(5):789. 66
Zhao, L., Lee, X., Smith, R. B., and Oleson, K. (2014). Strong contributions of local background climate to urban heat islands. Nature, 511(7508):216–219.
Zhou, D., Zhao, S., Liu, S., Zhang, L., and Zhu, C. (2014). Surface urban heat island in china’s 32 major cities: Spatial patterns and drivers. Remote sensing of environment, 152:51–61.
Zhou, W., Wang, H., Cheng, F., Peng, S., and Zhou, T. (2024). Water bodies as a stable reference for urban heat islands intensity measurements. Ecological Indicators, 166:112343.
Zhou, Y., Zhao, H., Mao, S., Zhang, G., Jin, Y., Luo, Y., Huo, W., Pan, Z., An, P., and Lun, F. (2022). Exploring surface urban heat island (suhi) intensity and its implications based on urban 3d neighborhood metrics: An investigation of 57 chinese cities. Science of The Total Environment, 847:157662.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96741-
dc.description.abstract本研究結合遙測技術、地理資訊系統與機器學習模型,探討地表都市熱島的形成機制與關鍵驅動因子,並提出針對性緩解建議。以桃園市為研究區域,採用2019年至2023年夏季的多源遙測資料,結合多維環境因子(如建築密度、道路密度、植被覆蓋、空氣品質等)並配合進行地表溫度反演和都市熱場變異指數的計算,分析地表都市熱島的空間分佈特性與強度。

地表使用與覆蓋、地表高程、歸一化水體指數和空氣品質是影響地表都市熱島效應的主要驅動因子,其中不同發展密度區域的影響因子權重與作用機制存在顯著差異。高發展密度區域主要受建築密度、地表高程和空氣品質影響,而中發展密度區域則由植被與水體覆蓋主導,低發展密度區域受粗糙長度與建物密度對熱島效應的作用更為顯著。透過隨機森林模型,量化了各影響因子的重要性,並應用SHAP值進一步解釋模型預測的內在機制,為影響因子與熱島效應之間的因果關係提供了詳細解析。

本研究建立了一套整合地表都市熱島影響因子與機器學習的地表都市熱島效應分析方法,針對不同發展密度區域提出差異化的緩解建議,包括提升植被覆蓋率、優化建築布局與改善空氣品質等。本研究的成果可為都市規劃和環境管理提供實證支持,助力推動都市的永續發展。
zh_TW
dc.description.abstractThis study integrates remote sensing, GIS, and machine learning to explore the formation mechanisms and key drivers of surface urban heat islands, proposing targeted mitigation measures. Using multi-source remote sensing data from Taoyuan City (2019–2023 summers), it examines how building density, road density, vegetation cover, and air quality affect land surface temperature and urban thermal variation.

Results show that land use/cover, surface elevation, normalized difference water index, and air quality are major drivers. High-density areas are shaped mainly by building density, elevation, and air quality, while vegetation and water coverage dominate medium-density areas. In low-density areas, roughness length and building density have stronger impacts. A random forest model quantifies factor importance and uses SHAP values for deeper insights. These findings inform different mitigation strategies—such as boosting vegetation, optimizing building layouts, and improving air quality—that can guide sustainable urban development.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:20:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:20:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 v
圖次 vii
表次 ix
第一章緒論1
1.1 研究背景與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
第二章文獻回顧5
2.1 地表都市熱島(Surface Urban Heat Island, SUHI) 定義與研究進展. . 5
2.2 評估地表都市熱島強度(Surface Urban Heat Island Intensity, SUHII)方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 影響地表都市熱島的因子. . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 機器學習在地表都市熱島的應用. . . . . . . . . . . . . . . . . . . . 10
2.5 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
第三章研究方法與理論13
3.1 地表都市熱島強度計算與影響因子資料處理. . . . . . . . . . . . . 15
3.2 地表都市熱島影響因子分析模型建構. . . . . . . . . . . . . . . . . 21
3.2.1 機器學習演算法選擇. . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 研究區域的發展密度劃分. . . . . . . . . . . . . . . . . . . . . . 25
3.3 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
第四章研究成果與討論28
4.1 研究區域概況. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 研究時間範圍及研究資料. . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 地表都市熱島強度計算與影響因子資料處理成果. . . . . . . . . . 31
4.4 地表都市熱島影響因子分析模型建構成果. . . . . . . . . . . . . . 42
4.4.1 全區域模型建構成果與分析. . . . . . . . . . . . . . . . . . . . 42
4.4.2 區域模型建構成果與分析. . . . . . . . . . . . . . . . . . . . . . 48
4.5 影響因子變化對UTFVI 的影響分析. . . . . . . . . . . . . . . . . . 56
4.6 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
第五章結論與建議60
5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 建議與未來工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
參考文獻62
-
dc.language.isozh_TW-
dc.subject隨機森林zh_TW
dc.subject都市規劃zh_TW
dc.subject遙感探測zh_TW
dc.subject地表溫度zh_TW
dc.subject地表都市熱島zh_TW
dc.subjectEnvironmental Managementen
dc.subjectSurface Urban Heat Islanden
dc.subjectRemote Sensingen
dc.subjectRandom Foresten
dc.subjectUrban Planningen
dc.title地表都市熱島效應的關鍵因子之量化分析 —以桃園市為例zh_TW
dc.titleQuantitative Analysis of Key Impact Factors Influencing Surface Urban Heat Islands: A case study of Taoyuanen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee甯方璽;高書屏zh_TW
dc.contributor.oralexamcommitteeFang-Shii Ning;Szu-Pyng Kaoen
dc.subject.keyword地表都市熱島,地表溫度,遙感探測,隨機森林,都市規劃,zh_TW
dc.subject.keywordSurface Urban Heat Island,Remote Sensing,Random Forest,Urban Planning,Environmental Management,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202404786-
dc.rights.note未授權-
dc.date.accepted2024-12-27-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
11.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved