Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96739
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳希立zh_TW
dc.contributor.advisorSih-Li Chenen
dc.contributor.author吳建岳zh_TW
dc.contributor.authorJian-Yue Wuen
dc.date.accessioned2025-02-21T16:20:05Z-
dc.date.available2025-02-22-
dc.date.copyright2025-02-21-
dc.date.issued2024-
dc.date.submitted2024-12-27-
dc.identifier.citation經濟部能源局, "112年度全國電力資源供需報告"
經濟部能源局, "2023年非生產性質行業能源查核年報"
N. Fumo and D. Goswami, "Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration", Solar energy, vol. 72, no. 4, pp. 351-361, 2002.
G. A. Longo and A. Gasparella, "Experimental analysis on desiccant regeneration in a packed column with structured and random packing", Solar energy, vol. 83, no. 4, pp. 511-521, 2009.
E. Elsarrag, "Performance study on a structured packed liquid desiccant regenerator", Solar Energy, vol. 80, no. 12, pp. 1624-1631, 2006.
X. Liu, X. Yi, and Y. Jiang, "Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions", Energy Conversion and management, vol. 52, no. 1, pp. 180-190, 2011.
Z. Yang, K. Zhang, M. Yang, and Z. Lian, "Improvement of the ultrasonic atomization liquid desiccant dehumidification system", Energy and buildings, vol. 85, pp. 145-154, 2014.
Z. Yang, B. Lin, K. Zhang, and Z. Lian, "Experimental study on mass transfer performances of the ultrasonic atomization liquid desiccant dehumidification system", Energy and Buildings, vol. 93, pp. 126-136, 2015.
Z. Yang, K. Zhang, Y. Hwang, and Z. Lian, "Performance investigation on the ultrasonic atomization liquid desiccant regeneration system", Applied energy, vol. 171, pp. 12-25, 2016.
W. Su, W. Li, and X. Zhang, "Simulation analysis of a novel no-frost air-source heat pump with integrated liquid desiccant dehumidification and compression-assisted regeneration", Energy Conversion and Management, vol. 148, pp. 1157-1169, 2017.
W. Gao, W. Sun, K. Anderson, Y. Cheng, and A. Li, "Investigation on temperature distribution of flash evaporation of LiCl droplets released into vacuum", International Journal of Heat and Mass Transfer, vol. 74, pp. 414-420, 2014.
M. Qu, O. Abdelaziz, X.-G. Sun, and H. Yin, "Aqueous solution of [EMIM][OAc]: Property formulations for use in air conditioning equipment design", Applied Thermal Engineering, vol. 124, pp. 271-278, 2017.
Y. Luo, S. Shao, F. Qin, C. Tian, and H. Yang, "Investigation on feasibility of ionic liquids used in solar liquid desiccant air conditioning system", Solar Energy, vol. 86, no. 9, pp. 2718-2724, 2012.
Z. Yang, Z. Lian, X. Li, and K. Zhang, "Concept of dehumidification perfectness and its potential applications", Energy, vol. 91, pp. 176-191, 2015.
J. Emhofer, B. Beladi, P. Dudzinski, T. Fleckl, and H. C. Kuhlmann, "Analysis of a cross-flow liquid-desiccant falling-film", Applied Thermal Engineering, vol. 124, pp. 91-102, 2017.
S. Nada, "Air cooling-dehumidification/desiccant regeneration processes by a falling liquid desiccant film on finned-tubes for different flow arrangements", International Journal of Thermal Sciences, vol. 113, pp. 10-19, 2017.
J.-Y. Park, D.-S. Yoon, S.-J. Lee, and J.-W. Jeong, "Empirical model for predicting the dehumidification effectiveness of a liquid desiccant system", Energy and Buildings, vol. 126, pp. 447-454, 2016.
H. R. Yon, W. Cai, Y. Wang, and S. Shen, "Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition", Applied Energy, vol. 211, pp. 249-258, 2018.
ASHRAE, ASHRAE 2017 Fundamentals Handbook, 2017.
F. C. McQuiston, J. D. Parker, J. D. Spitler, and H. Taherian, Heating, ventilating, and air conditioning: analysis and design. John Wiley & Sons, 2023.
H.Y. Ho, "Performance analysis of outdoor air-conditioning system using ionic liquid desiccant", National Taiwan University Master Thesis, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96739-
dc.description.abstract本研究使用離子溶液於液態除濕系統,並於再生端利用低壓真空再生方式,來降低溶液所需之再生溫度,藉由低溫再生之特性,來增加離子溶液的應用範圍。
透過理論模型分析離子溶液於不同再生條件下之水分移除率與再生後濃度增加量,並分析冷凝溶液蒸發水蒸氣量對耗電量的影響,以及比較低壓真空再生與常壓再生之再生效率。
模擬參數為再生環境壓力、再生入口濃度及再生溫度,模擬結果顯示再生環境壓力由1000 Pa增加至5000 Pa時,離子溶液之水分移除率由4.5 g/s減少至0.8 g/s,再生後濃度增加量由5.9 %減少至0.9 %;再生入口濃度由50 %增加至75 %時,離子溶液之水分移除率由3.9 g/s減少至1.7 g/s,再生後濃度增加量由4.3 %減少至2.6 %;再生溫度由30 ℃增加至55 ℃時,離子溶液之水分移除率由1.1 g/s增加至4.5 g/s,再生後濃度增加量由1.4 %增加至6.0 %;並且在相同的再生性能下,離子溶液於4000 Pa時具有最少的耗電量。
由模擬結果可得,相比於常壓環境,離子溶液在低壓真空環境下具有較佳的再生性能,且每單位耗電之再生量會明顯提升。
zh_TW
dc.description.abstractThis study uses ionic solution in the liquid desiccant dehumidification system and employs a low-pressure vacuum regeneration method at the regeneration side to reduce the regeneration temperature required by the solution. By utilizing the characteristics of low-temperature regeneration, the aim is to expand the application range of the ionic solution.
Though the theoretical model, this study analyzes the moisture removal rate and desiccant concentration increase of the ionic solution under different regeneration conditions. It also examines the impact of the evaporated water vapor from the condensed solution on power consumption, and compares the regeneration efficiency of low-pressure vacuum regeneration with that of atmospheric pressure regeneration.
The simulation parameters include the regeneration environment pressure, the inlet concentration of regeneration side and the regeneration temperature. The simulation results show that when the regeneration environment pressure increases from 1000 Pa to 5000 Pa, the moisture removal rate of ionic solution decreases from 4.5 g/s to 0.8 g/s, and desiccant concentration increase decreases from 5.9 % to 0.9 %. When the inlet concentration of regeneration side increases from 50 % to 75 %, the moisture removal rate of ionic solution decreases from 3.9 g/s to 1.7 g/s, and desiccant concentration increase decreases from 4.3 % to 2.6 %. When the regeneration temperature increases from 30 ℃ to 50 ℃, the moisture removal rate of ionic solution increases from 1.1 g/s to 4.5 g/s, and desiccant concentration increase increases from 1.4 % to 6.0 %. Furthermore, under the same regeneration performance, the ionic solution exhibits the lowest power consumption at 4000 Pa.
According to the simulation results, compared to atmospheric pressure environment, the ionic solution demonstrates better regeneration performance in a low-pressure vacuum environment, and the moisture removal rate per unit of power consumption is significantly increased.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:20:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-21T16:20:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目次 V
圖次 VIII
表次 X
符號說明 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 6
第二章 基礎理論 7
2.1濕空氣學與溶液理論 7
2.1.1大氣壓力 7
2.1.2空氣之飽和蒸氣壓 8
2.1.3相對濕度 8
2.1.4絕對濕度 9
2.1.5溶液表面絕對濕度 11
2.1.6濕空氣焓值 11
2.1.7溶液焓值 12
2.2溶液基礎性質 13
第三章 研究方法 15
3.1離子溶液之飽和蒸氣壓 16
3.2水分移除率 17
3.3再生後濃度增加量 17
3.4理想再生模型 18
3.5低壓真空再生系統之能耗計算 21
3.5.1熱水加熱耗電量 21
3.5.2冰水冷凝耗電量 21
3.5.3真空泵浦耗電量 22
3.5.4總冷凝耗電量 22
3.5.5溶液泵浦耗電量 22
第四章 模擬結果與討論 24
4.1再生環境壓力分析 24
4.1.1再生環境壓力對再生性能之影響 24
4.1.2再生環境壓力對耗電量之影響 27
4.2再生入口濃度分析 31
4.2.1再生入口濃度對再生性能之影響 31
4.2.4再生入口濃度對耗電量之影響 34
4.3再生溫度分析 38
4.3.1再生溫度對再生性能之影響 38
4.3.2再生溫度對耗電量之影響 41
4.4相同再生後濃度分析 46
4.4.1再生環境壓力對再生溫度之影響 46
4.4.2相同再生後濃度對耗電量之影響 48
4.5低壓真空模擬與常壓實驗比較 50
第五章 結論與建議 54
5.1結論 54
5.2未來展望與建議 56
參考文獻 57
-
dc.language.isozh_TW-
dc.subject再生後濃度增加量zh_TW
dc.subject水分移除率zh_TW
dc.subject低壓真空再生zh_TW
dc.subject離子溶液zh_TW
dc.subjectDesiccant concentration increaseen
dc.subjectIonic solutionen
dc.subjectLow-pressure regenerationen
dc.subjectMoisture removal rateen
dc.title離子溶液低壓真空再生理論模型分析zh_TW
dc.titleTheoretical Analysis on Low-Pressure Vacuum Regeneration of Ionic Solutionsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁俊德;陳志豪zh_TW
dc.contributor.oralexamcommitteeJyun-De Liang;Chih-Hao Chenen
dc.subject.keyword離子溶液,低壓真空再生,水分移除率,再生後濃度增加量,zh_TW
dc.subject.keywordIonic solution,Low-pressure regeneration,Moisture removal rate,Desiccant concentration increase,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202404791-
dc.rights.note未授權-
dc.date.accepted2024-12-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
3.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved