請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96735完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中平 | zh_TW |
| dc.contributor.advisor | Chung-Ping Chen | en |
| dc.contributor.author | 王深泰 | zh_TW |
| dc.contributor.author | Shen-Tai Wang | en |
| dc.date.accessioned | 2025-02-21T16:19:01Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-12 | - |
| dc.identifier.citation | [1] S. Babayan-Mashhadi and R. Lotfi. Analysis and design of a low-voltage low-power double-tail comparator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2):343–352, 2014.
[2] S. Bandyopadhyay and A. P. Chandrakasan. Platform architecture for solar, thermal, and vibration energy combining with mppt and single inductor. IEEE Journal of Solid-State Circuits, 47(9):2199–2215, 2012. [3] S. Bandyopadhyay, P. P. Mercier, A. C. Lysaght, K. M. Stankovic, and A. P. Chandrakasan. A 1.1 nw energy-harvesting system with 544 pw quiescent power for next-generation implants. IEEE Journal of Solid-State Circuits, 49(12):2812–2824, 2014. [4] A. Boni. Op-amps and startup circuits for cmos bandgap references with near 1-v supply. IEEE Journal of Solid-State Circuits, 37(10):1339–1343, 2002. [5] S. Bose, T. Anand, and M. L. Johnston. A 3.5-mv input single-inductor self-starting boost converter with loss-aware mppt for efficient autonomous body-heat energy harvesting. IEEE Journal of Solid-State Circuits, 56(6):1837–1848, 2021. [6] M.-L. Chiu, I.-F. Lo, and T.-H. Lin. A time-domain ccm/dcm current-mode buck converter with a pi compensator incorporating an infinite phase shift delay line. In ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC), pages 441–444, 2023. [7] R. W. Erickson and D. Maksimovic. Fundamentals of Power Electronics. Springer, 2ed edition, 2001. [8] J.-J. Jhang, H.-H. Wu, T. Hsu, and C.-L. Wei. Design of a boost dc–dc converter with 82-mv startup voltage and fully built-in startup circuits for harvesting thermoelectric energy. IEEE Solid-State Circuits Letters, 3:54–57, 2020. [9] J. W. Jo, D.-H. Yu, Y. Pu, Y. J. Jung, S. Kim, J.-M. Yoo, K. C. Hwang, Y. Yang, and K.-Y. Lee. A design of boost converter with time-domain mppt and digital selftracking zcd for thermoelectric energy harvesting applications. IEEE Transactions on Power Electronics, 38(11):14226–14235, 2023. [10] E. Kanimba and Z. Tian. Modeling of a thermoelectric generator device. In S. Skipidarov and M. Nikitin, editors, Thermoelectrics for Power Generation, chapter 18. IntechOpen, Rijeka, 2016. [11] M.-D. Ker, J.-S. Chen, and C.-Y. Chu. New curvature-compensation technique for cmos bandgap reference with sub-1-v operation. In 2005 IEEE International Symposium on Circuits and Systems (ISCAS), pages 3861–3864 Vol. 4, 2005. [12] C. S. Kim, H. M. Yang, J. Lee, G. S. Lee, H. Choi, Y. J. Kim, S. H. Lim, S. H. Cho, and B. J. Cho. Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Letters, 3(3):501–507, 2018. [13] J. Lin, L. Wang, Y. Lu, and C. Zhan. A nano-watt dual-output subthreshold cmos voltage reference. IEEE Open Journal of Circuits and Systems, 1:100–106, 2020. [14] L. Magnelli, F. Crupi, P. Corsonello, C. Pace, and G. Iannaccone. A 2.6 nw, 0.45 v temperature-compensated subthreshold cmos voltage reference. IEEE Journal of Solid-State Circuits, 46(2):465–474, 2011. [15] B. Razavi. Design of Analog CMOS Integrated Circuits. Electrical Engineering Series. McGraw-Hill, 2001. [16] D. Rozgić and D. Marković. A miniaturized 0.78-mw/cm2 autonomous thermoelectric energy-harvesting platform for biomedical sensors. IEEE Transactions on Biomedical Circuits and Systems, 11(4):773–783, 2017. [17] Y.-H. Wang, Y.-W. Huang, P.-C. Huang, H.-J. Chen, and T.-H. Kuo. A singleinductor dual-path three-switch converter with energy-recycling technique for light energy harvesting. IEEE Journal of Solid-State Circuits, 51(11):2716–2728, 2016. [18] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu. 50 mv-input batteryless boost converter for thermal energy harvesting. IEEE Journal of Solid-State Circuits, 48(4):1031–1041, 2013. [19] H.-H. Wu, C.-L. Wei, Y.-C. Hsu, and R. B. Darling. Adaptive peak-inductor-currentcontrolled pfm boost converter with a near-threshold startup voltage and high efficiency. IEEE Transactions on Power Electronics, 30(4):1956–1965, 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96735 | - |
| dc.description.abstract | 近年來,許多醫療相關的物聯網裝置產品逐漸的出現在人們身邊,但是對於許多小型低功耗的貼身感測的醫療監測產品而言,在大型場域中要更換電池不是一件容易的事,因此,透過獵能元件來擷取周圍環境中的可再生能源來為儀器供電成為了一個很好具可行性的解決方案,但這些元件往往需要一個升壓電路來給IoT 供電。因此,本研究提出了一種具有寬輸入電壓範圍的升壓直流-直流轉換器。考慮到應用場景多為輕載,採用了脈衝忽略調變(Pulse Skipping Modulation,PSM)方法來降低切換損耗,並透過具數位調整失調電壓的比較器來最大限度地減少反向電流耗損,以提升系統在輕載下的效率。這款轉換器晶片使用台灣積體電路公司(TSMC)提供的180nm 1P6M 混合信號標準CMOS 製程實現,晶片面積為1197μm × 1192μm,輸入電壓範圍從50mV-400mV,提供的輸出電壓為1.2V。由後模擬結果顯示峰值效率為90.4%,實際量測效率則為86.4%。 | zh_TW |
| dc.description.abstract | In recent years, various medical-related IoT devices have emerged around us. However, for many small, low-power wearable medical monitoring products, replacing batteries over a large area can be challenging.Therefore, utilizing energy harvesting components to capture renewable energy from the surrounding environment has become a feasible solution for powering such devices. These components often require a boost converter to supply power to the IoT devices.
This study proposes a boost DC-DC converter with a wide input voltage range. Considering that the application scenario often involves light loads, adopted Pulse Skipping Modulation (PSM) to reduce switching losses and employed a comparator with digitally adjustable offset voltage to minimize reverse current losses, thereby enhancing efficiency under light loads. The converter chip is implemented using TSMC 180nm 1P6M mixedsignal standard CMOS process, with a chip area of 1197μm × 1192μm. It supports an input voltage range from 50mV to 400mV and provides an output voltage of 1.2V. Post-simulation results indicate a peak efficiency of 90.4%, while measured efficiency reaches 86.4%. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:19:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:19:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter i
Acknowledgements i 摘要iii Abstract iv Contents vi List of Figures ix List of Tables xii Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Energy Harvesting Source . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Solar Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Thermoelectric Device . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Piezoelectric Element . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Inductive Power Converter . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Fundamental of Power Converter 9 2.1 The Power Losses and Conversion Efficiency . . . . . . . . . . . . . 9 2.2 Modulation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Pulse Width Modulation . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Pulse Frequency and Pulse-Skipping Modulation . . . . . . . . . . 14 2.3 Converter Operation Mode . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 3 Step-Up Converter Design 19 3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Sub-circuit Implementation . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 On-Time Generator . . . . . . . . . . . . . . 20 3.2.2 All-CMOS Voltage Reference(ACVR) . . . . . . . . . . . . . . . . 25 3.2.3 Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.4 Low Power ZCD and Digital Offset-Calibrated Unit . . . . . . . . . 32 3.3 System Simulation Result . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.1 System Static Operation . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Load Transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.3 Output Voltage Ripple . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 4 Experimental Result 41 4.1 Printed Circuit Board Design Consideration . . . . . . . . . . . . . . 41 4.2 Chip Die-Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Chip Layout Consideration . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.1 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.2 Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.3 On-Time Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.4 ACVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.5 Zero Current Detector . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4 Measurement Environment . . . . . . . . . . . . . . . . . . . . . . . 45 4.5 Measurement Result . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter 5 Conclusion 52 Chapter 6 Future Work 53 6.0.1 Completeness of Overall System Architecture . . . . . . . . . . . . 53 6.0.2 Wider Range of Applications . . . . . . . . . . . . . . . . . . . . . 53 References 55 | - |
| dc.language.iso | en | - |
| dc.subject | 寬輸入電壓範圍 | zh_TW |
| dc.subject | 升壓電路 | zh_TW |
| dc.subject | 直流–直流轉換器 | zh_TW |
| dc.subject | 高轉換效率 | zh_TW |
| dc.subject | 低功耗 | zh_TW |
| dc.subject | boost converter | en |
| dc.subject | DC-DC converter | en |
| dc.subject | high efficiency | en |
| dc.subject | low power | en |
| dc.subject | wide input voltage range | en |
| dc.title | 用於醫療設備供電的高效熱電獵能升壓直流轉換器 | zh_TW |
| dc.title | High-Efficiency Boost DC-DC Converter Design for Thermoelectric Energy Harvesting in Medical Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳景然;陳偉倫 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Jan Chen;Woei-Luen Chen | en |
| dc.subject.keyword | 升壓電路,直流–直流轉換器,低功耗,寬輸入電壓範圍,高轉換效率, | zh_TW |
| dc.subject.keyword | boost converter,DC-DC converter,low power,wide input voltage range,high efficiency, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202404707 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-12-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 27.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
