Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96731Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃彥婷 | zh_TW |
| dc.contributor.advisor | Yen-Ting Hwang | en |
| dc.contributor.author | 曾弘毅 | zh_TW |
| dc.contributor.author | Hung-Yi Tseng | en |
| dc.date.accessioned | 2025-02-21T16:17:56Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-25 | - |
| dc.identifier.citation | Abhiram Nirmal, C. S., Abhilash, S., Martin, M., Sankar, S., Mohapatra, M., & Sahai, A. K. (2023). Changes in the thermodynamical profiles of the subsurface ocean and atmosphere induce cyclones to congregate over the Eastern Arabian Sea. Scientific Reports, 13(1), 15776. https://doi.org/10.1038/s41598-023-42642-9
Adam, O., Schneider, T., & Brient, F. (2018). Regional and seasonal variations of the double-ITCZ bias in CMIP5 models. Climate Dynamics, 51(1), 101-117. https://doi.org/10.1007/s00382-017-3909-1 Alexander, M., Yin, J., Branstator, G., Capotondi, A., Cassou, C., Cullather, R., Kwon, Y.-o., Norris, J., Scott, J., & Wainer, I. (2006). Extratropical Atmosphere–Ocean Variability in CCSM3. Journal of Climate, 19(11), 2496-2525. https://doi.org/https://doi.org/10.1175/JCLI3743.1 An, S.-I., Jin, F.-F., & Kang, I.-S. (1999). The Role of Zonal Advection Feedback in Phase Transition and Growth of ENSO in the Cane-Zebiak Model. Journal of the Meteorological Society of Japan. Ser. II, 77(6), 1151-1160. https://doi.org/10.2151/jmsj1965.77.6_1151 Anderson, B. T., Perez, R. C., & Karspeck, A. (2013). Triggering of El Niño onset through trade wind–induced charging of the equatorial Pacific. Geophysical Research Letters, 40(6), 1212-1216. https://doi.org/https://doi.org/10.1002/grl.50200 Andrews, T., Gregory, J. M., Paynter, D., Silvers, L. G., Zhou, C., Mauritsen, T., Webb, M. J., Armour, K. C., Forster, P. M., & Titchner, H. (2018). Accounting for Changing Temperature Patterns Increases Historical Estimates of Climate Sensitivity. Geophysical Research Letters, 45(16), 8490-8499. https://doi.org/https://doi.org/10.1029/2018GL078887 Andrews, T., Gregory, J. M., & Webb, M. J. (2015). The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models. Journal of Climate, 28(4), 1630-1648. https://doi.org/https://doi.org/10.1175/JCLI-D-14-00545.1 Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B., & Katsman, C. A. (2013). Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nature Geoscience, 6(5), 376-379. https://doi.org/10.1038/ngeo1767 BJERKNES, J. (1969). ATMOSPHERIC TELECONNECTIONS FROM THE EQUATORIAL PACIFIC. Monthly Weather Review, 97(3), 163-172. https://doi.org/https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 Broccoli, A. J., Dahl, K. A., & Stouffer, R. J. (2006). Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters, 33(1). https://doi.org/https://doi.org/10.1029/2005GL024546 Brönnimann, S. (2007). Impact of El Niño–Southern Oscillation on European climate. Reviews of Geophysics, 45(3). https://doi.org/https://doi.org/10.1029/2006RG000199 Bronselaer, B., Winton, M., Griffies, S. M., Hurlin, W. J., Rodgers, K. B., Sergienko, O. V., Stouffer, R. J., & Russell, J. L. (2018). Change in future climate due to Antarctic meltwater. Nature, 564(7734), 53-58. https://doi.org/10.1038/s41586-018-0712-z Burls, N. J., & Fedorov, A. V. (2014). What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: The role of cloud albedo. J. Climate, 27, 2757-2778. Burls, N. J., Muir, L., Vincent, E. M., & Fedorov, A. (2017). Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo. Climate Dyn., 49, 2093-2113. Caldwell, P. M., Terai, C. R., Hillman, B., Keen, N. D., Bogenschutz, P., Lin, W., Beydoun, H., Taylor, M., Bertagna, L., Bradley, A. M., Clevenger, T. C., Donahue, A. S., Eldred, C., Foucar, J., Golaz, J.-C., Guba, O., Jacob, R., Johnson, J., Krishna, J.,…Zender, C. S. (2021). Convection-Permitting Simulations With the E3SM Global Atmosphere Model. Journal of Advances in Modeling Earth Systems, 13(11), e2021MS002544. https://doi.org/https://doi.org/10.1029/2021MS002544 Camargo, S. J., Robertson, A. W., Gaffney, S. J., Smyth, P., & Ghil, M. (2007). Cluster Analysis of Typhoon Tracks. Part II: Large-Scale Circulation and ENSO. Journal of Climate, 20(14), 3654-3676. https://doi.org/https://doi.org/10.1175/JCLI4203.1 Cane, M. A., Clement, A. C., Kaplan, A., Kushnir, Y., Pozdnyakov, D., Seager, R., Zebiak, S. E., & Murtugudde, R. (1997). Twentieth-Century Sea Surface Temperature Trends. Science, 275(5302), 957-960. https://doi.org/doi:10.1126/science.275.5302.957 Cane, M. A., & Zebiak, S. E. (1985). A Theory for El Niño and the Southern Oscillation. Science, 228(4703), 1085-1087. https://doi.org/doi:10.1126/science.228.4703.1085 Capotondi, A. (2000). Oceanic wave dynamics and interdecadal variability in a climate system model. Journal of Geophysical Research: Oceans, 105(C1), 1017-1036. https://doi.org/https://doi.org/10.1029/1999JC900229 Capotondi, A. (2008). Can the mean structure of the tropical pycnocline affect ENSO period in coupled climate models? Ocean Modelling, 20(2), 157-169. https://doi.org/https://doi.org/10.1016/j.ocemod.2007.08.003 Capotondi, A., & Alexander, M. A. (2001). Rossby Waves in the Tropical North Pacific and Their Role in Decadal Thermocline Variability. Journal of Physical Oceanography, 31(12), 3496-3515. https://doi.org/https://doi.org/10.1175/1520-0485(2002)031<3496:RWITTN>2.0.CO;2 Capotondi, A., Alexander, M. A., & Deser, C. (2003). Why Are There Rossby Wave Maxima in the Pacific at 10°S and 13°N? Journal of Physical Oceanography, 33(8), 1549-1563. https://doi.org/https://doi.org/10.1175/2407.1 Capotondi, A., Alexander, M. A., Deser, C., & McPhaden, M. J. (2005). Anatomy and Decadal Evolution of the Pacific Subtropical–Tropical Cells (STCs). Journal of Climate, 18(18), 3739-3758. https://doi.org/https://doi.org/10.1175/JCLI3496.1 Capotondi, A., McGregor, S., McPhaden, M. J., Cravatte, S., Holbrook, N. J., Imada, Y., Sanchez, S. C., Sprintall, J., Stuecker, M. F., Ummenhofer, C. C., Zeller, M., Farneti, R., Graffino, G., Hu, S., Karnauskas, K. B., Kosaka, Y., Kucharski, F., Mayer, M., Qiu, B.,…Xu, T. (2023). Mechanisms of tropical Pacific decadal variability. Nature Reviews Earth & Environment, 4(11), 754-769. https://doi.org/10.1038/s43017-023-00486-x Capotondi, A., & Qiu, B. (2023). Decadal Variability of the Pacific Shallow Overturning Circulation and the Role of Local Wind Forcing. Journal of Climate, 36(3), 1001-1015. https://doi.org/https://doi.org/10.1175/JCLI-D-22-0408.1 Casselman, J. W., Lübbecke, J. F., Bayr, T., Huo, W., Wahl, S., & Domeisen, D. I. V. (2023). The teleconnection of extreme El Niño–Southern Oscillation (ENSO) events to the tropical North Atlantic in coupled climate models. Weather Clim. Dynam., 4(2), 471-487. https://doi.org/10.5194/wcd-4-471-2023 Ceppi, P., & Gregory, J. M. (2017). Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proceedings of the National Academy of Sciences, 114(50), 13126-13131. https://doi.org/doi:10.1073/pnas.1714308114 Chen, T., Rossow, W. B., & Zhang, Y. (2000). Radiative Effects of Cloud-Type Variations. Journal of Climate, 13(1), 264-286. https://doi.org/https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2 Chiang, J. C. H., & Bitz, C. M. (2005). Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics, 25(5), 477-496. https://doi.org/10.1007/s00382-005-0040-5 Chou, C., & Neelin, J. D. (2004). Mechanisms of Global Warming Impacts on Regional Tropical Precipitation. Journal of Climate, 17(13), 2688-2701. https://doi.org/https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2 Clement, A. C., Seager, R., Cane, M. A., & Zebiak, S. E. (1996). An Ocean Dynamical Thermostat. Journal of Climate, 9(9), 2190-2196. https://doi.org/https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2 Collins, W. D., Ramaswamy, V., Schwarzkopf, M. D., Sun, Y., Portmann, R. W., Fu, Q., Casanova, S. E. B., Dufresne, J.-L., Fillmore, D. W., Forster, P. M. D., Galin, V. Y., Gohar, L. K., Ingram, W. J., Kratz, D. P., Lefebvre, M.-P., Li, J., Marquet, P., Oinas, V., Tsushima, Y.,…Zhong, W. Y. (2006). Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Journal of Geophysical Research: Atmospheres, 111(D14). https://doi.org/https://doi.org/10.1029/2005JD006713 Cvijanovic, I., & Chiang, J. C. H. (2013). Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Climate Dyn., 40, 1435-1452. Dai, A., Fyfe, J. C., Xie, S.-P., & Dai, X. (2015). Decadal modulation of global surface temperature by internal climate variability. Nature Climate Change, 5(6), 555-559. https://doi.org/10.1038/nclimate2605 De Deckker, P. (2016). The Indo-Pacific Warm Pool: critical to world oceanography and world climate. Geoscience Letters, 3(1), 20. https://doi.org/10.1186/s40562-016-0054-3 Deser, C. (2020). Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277-286. Deser, C., Alexander, M. A., & Timlin, M. S. (1996). Upper-ocean thermal variations in the North Pacific during 1970–1991. J. Climate, 9, 1840-1855. Deser, C., Tomas, R. A., & Sun, L. (2015). The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 2168-2186. Dong, B.-W., & Sutton, R. T. (2002). Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys. Res. Lett., 29, 1728. Dong, Y., Armour, K. C., Battisti, D. S., & Blanchard-Wrigglesworth, E. (2022). Two-Way Teleconnections between the Southern Ocean and the Tropical Pacific via a Dynamic Feedback. Journal of Climate, 35(19), 6267-6282. https://doi.org/https://doi.org/10.1175/JCLI-D-22-0080.1 Dong, Y., Pauling, A. G., Sadai, S., & Armour, K. C. (2022). Antarctic Ice-Sheet Meltwater Reduces Transient Warming and Climate Sensitivity Through the Sea-Surface Temperature Pattern Effect. Geophysical Research Letters, 49(24), e2022GL101249. https://doi.org/https://doi.org/10.1029/2022GL101249 Dong, Y., Proistosescu, C., Armour, K. C., & Battisti, D. S. (2019). Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific. Journal of Climate, 32(17), 5471-5491. https://doi.org/https://doi.org/10.1175/JCLI-D-18-0843.1 Emanuel, K. A., David Neelin, J., & Bretherton, C. S. (1994). On large-scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120(519), 1111-1143. https://doi.org/https://doi.org/10.1002/qj.49712051902 England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., & Santoso, A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4(3), 222-227. https://doi.org/10.1038/nclimate2106 England, M. R., Polvani, L. M., Sun, L., & Deser, C. (2020). Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nature Geoscience, 13(4), 275-281. https://doi.org/10.1038/s41561-020-0546-9 Erez, M., & Adam, O. (2021). Energetic Constraints on the Time-Dependent Response of the ITCZ to Volcanic Eruptions. Journal of Climate, 34(24), 9989-10006. https://doi.org/https://doi.org/10.1175/JCLI-D-21-0146.1 Fedorov, A. V., Burls, N. J., Lawrence, K. T., & Peterson, L. C. (2015). Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nature Geoscience, 8(12), 975-980. https://doi.org/10.1038/ngeo2577 Feng, J., & Li, J. (2013). Contrasting Impacts of Two Types of ENSO on the Boreal Spring Hadley Circulation. Journal of Climate, 26(13), 4773-4789. https://doi.org/https://doi.org/10.1175/JCLI-D-12-00298.1 Ferster, B. S., Fedorov, A. V., Guilyardi, E., & Mignot, J. (2023). The Effect of Indian Ocean Temperature on the Pacific Trade Winds and ENSO. Geophysical Research Letters, 50(20), e2023GL103230. https://doi.org/https://doi.org/10.1029/2023GL103230 Frierson, D. M. W. (2007). The Dynamics of Idealized Convection Schemes and Their Effect on the Zonally Averaged Tropical Circulation. Journal of the Atmospheric Sciences, 64(6), 1959-1976. https://doi.org/https://doi.org/10.1175/JAS3935.1 Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M., Hawkins, E., Gillett, N. P., Xie, S.-P., Kosaka, Y., & Swart, N. C. (2016). Making sense of the early-2000s warming slowdown. Nature Climate Change, 6(3), 224-228. https://doi.org/10.1038/nclimate2938 Galanti, E., & Tziperman, E. (2003). A Midlatitude–ENSO Teleconnection Mechanism via Baroclinically Unstable Long Rossby Waves. Journal of Physical Oceanography, 33(9), 1877-1888. https://doi.org/https://doi.org/10.1175/1520-0485(2003)033<1877:AMTMVB>2.0.CO;2 Geng, Y.-F., Xie, S.-P., Zheng, X.-T., Long, S.-M., Kang, S. M., Lin, X., & Song, Z.-H. (2022). CMIP6 intermodel uncertainty in interhemispheric asymmetry of tropical climate response to greenhouse warming: Extratropical ocean effects. J. Climate, 35, 4869-4882. Good, P., Gregory, J. M., & Lowe, J. A. (2011). A step-response simple climate model to reconstruct and interpret AOGCM projections. Geophysical Research Letters, 38(1). https://doi.org/https://doi.org/10.1029/2010GL045208 Good, P., Gregory, J. M., Lowe, J. A., & Andrews, T. (2013). Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections. Climate Dynamics, 40(3), 1041-1053. https://doi.org/10.1007/s00382-012-1410-4 Graffino, G., Farneti, R., Kucharski, F., & Molteni, F. (2019). The Effect of Wind Stress Anomalies and Location in Driving Pacific Subtropical Cells and Tropical Climate. Journal of Climate, 32(5), 1641-1660. https://doi.org/https://doi.org/10.1175/JCLI-D-18-0071.1 Green, B., & Marshall, J. (2017). Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 4395-4411. Green, B., Marshall, J., & Campin, J.-M. (2019). The ‘sticky’ ITCZ: ocean-moderated ITCZ shifts. Climate Dynamics, 53(1), 1-19. https://doi.org/10.1007/s00382-019-04623-5 Gu, D., & Philander, S. G. H. (1997). Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805-807. Guo, Y.-P., & Tan, Z.-M. (2018). Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño. Nature Communications, 9(1), 1507. https://doi.org/10.1038/s41467-018-03945-y Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J. J., Mao, J., Mizielinski, M. S.,…von Storch, J. S. (2016). High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9(11), 4185-4208. https://doi.org/10.5194/gmd-9-4185-2016 Hartmann, D. L. (2022). The Antarctic ozone hole and the pattern effect on climate sensitivity. Proceedings of the National Academy of Sciences, 119(35), e2207889119. https://doi.org/doi:10.1073/pnas.2207889119 Hartmann, D. L., Ockert-Bell, M. E., & Michelsen, M. L. (1992). The effect of cloud type on earth’s energy balance—Global analysis. J. Climate, 5, 1281-1304. Hawcroft, M., Haywood, J. M., Collins, M., Jones, A., Jones, A. C., & Stephens, G. (2017). Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dyn., 48, 2279-2295. Hawkins, E., & Sutton, R. (2009). The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095-1108. https://doi.org/https://doi.org/10.1175/2009BAMS2607.1 Heede, U. K., & Fedorov, A. V. (2021). Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nature Climate Change, 11(8), 696-703. https://doi.org/10.1038/s41558-021-01101-x Heede, U. K., & Fedorov, A. V. (2023). Colder Eastern Equatorial Pacific and Stronger Walker Circulation in the Early 21st Century: Separating the Forced Response to Global Warming From Natural Variability. Geophysical Research Letters, 50(3), e2022GL101020. https://doi.org/https://doi.org/10.1029/2022GL101020 Heede, U. K., Fedorov, A. V., & Burls, N. J. (2020). Time Scales and Mechanisms for the Tropical Pacific Response to Global Warming: A Tug of War between the Ocean Thermostat and Weaker Walker. Journal of Climate, 33(14), 6101-6118. https://doi.org/https://doi.org/10.1175/JCLI-D-19-0690.1 Heede, U. K., Fedorov, A. V., & Burls, N. J. (2021). A stronger versus weaker Walker: understanding model differences in fast and slow tropical Pacific responses to global warming. Climate Dynamics, 57(9), 2505-2522. https://doi.org/10.1007/s00382-021-05818-5 Heim, C., Leutwyler, D., & Schär, C. (2023). Application of the Pseudo-Global Warming Approach in a Kilometer-Resolution Climate Simulation of the Tropics. Journal of Geophysical Research: Atmospheres, 128(5), e2022JD037958. https://doi.org/https://doi.org/10.1029/2022JD037958 Held, I. M., & Soden, B. J. (2006). Robust Responses of the Hydrological Cycle to Global Warming. Journal of Climate, 19(21), 5686-5699. https://doi.org/https://doi.org/10.1175/JCLI3990.1 Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., & Vallis, G. K. (2010). Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing. Journal of Climate, 23(9), 2418-2427. https://doi.org/https://doi.org/10.1175/2009JCLI3466.1 Her, Y., Yoo, S.-H., Cho, J., Hwang, S., Jeong, J., & Seong, C. (2019). Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Scientific Reports, 9(1), 4974. https://doi.org/10.1038/s41598-019-41334-7 Hong Lee, J., Julien, P. Y., & Lee, S. (2023). Teleconnection of ENSO extreme events and precipitation variability over the United States. Journal of Hydrology, 619, 129206. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129206 Horel, J. D., & Wallace, J. M. (1981). Planetary-Scale Atmospheric Phenomena Associated with the Southern Oscillation. Monthly Weather Review, 109(4), 813-829. https://doi.org/https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2 Hsiao, W.-T., Hwang, Y.-T., Chen, Y.-J., & Kang, S. M. (2022). The Role of Clouds in Shaping Tropical Pacific Response Pattern to Extratropical Thermal Forcing. Geophysical Research Letters, 49(11), e2022GL098023. https://doi.org/https://doi.org/10.1029/2022GL098023 Hu, S., & Fedorov, A. V. (2018). Cross-equatorial winds control El Niño diversity and change. Nature Climate Change, 8(9), 798-802. https://doi.org/10.1038/s41558-018-0248-0 Hu, Y., Huang, H., & Zhou, C. (2018). Widening and weakening of the Hadley circulation under global warming. Science Bulletin, 63(10), 640-644. https://doi.org/https://doi.org/10.1016/j.scib.2018.04.020 Huang, P., Lin, I. I., Chou, C., & Huang, R.-H. (2015). Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nature Communications, 6(1), 7188. https://doi.org/10.1038/ncomms8188 Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D.,…Marshall, S. (2013). The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 94(9), 1339-1360. https://doi.org/https://doi.org/10.1175/BAMS-D-12-00121.1 Hwang, Y.-T., Frierson, D. M. W., & Kang, S. M. (2013). Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 2845-2850. Hwang, Y.-T., Tseng, H.-Y., Li, K.-C., Kang, S. M., Chen, Y.-J., & Chiang, J. C. H. (2021). Relative roles of energy and momentum fluxes in the tropical response to extratropical thermal forcing. J. Climate, 34, 3771-3786. Hwang, Y.-T., Xie, S.-P., Chen, P.-J., Tseng, H.-Y., & Deser, C. (2024). Contribution of anthropogenic aerosols to persistent La Niña-like conditions in the early 21st century. Proceedings of the National Academy of Sciences, 121(5), e2315124121. https://doi.org/doi:10.1073/pnas.2315124121 Hwang, Y.-T., Xie, S.-P., Deser, C., & Kang, S. M. (2017). Connecting tropical climate change with Southern Ocean heat uptake. Geophysical Research Letters, 44(18), 9449-9457. https://doi.org/https://doi.org/10.1002/2017GL074972 Iles, C. E., Vautard, R., Strachan, J., Joussaume, S., Eggen, B. R., & Hewitt, C. D. (2020). The benefits of increasing resolution in global and regional climate simulations for European climate extremes. Geosci. Model Dev., 13(11), 5583-5607. https://doi.org/10.5194/gmd-13-5583-2020 Im, E.-S., Gutowski Jr., W. J., & Giorgi, F. (2008). Consistent changes in twenty-first century daily precipitation from regional climate simulations for Korea using two convection parameterizations. Geophysical Research Letters, 35(14). https://doi.org/https://doi.org/10.1029/2008GL034126 Jeevanjee, N. (2022). Three Rules for the Decrease of Tropical Convection With Global Warming. Journal of Advances in Modeling Earth Systems, 14(11), e2022MS003285. https://doi.org/https://doi.org/10.1029/2022MS003285 Jin, F.-F., & An, S.-I. (1999). Thermocline and Zonal Advective Feedbacks Within the Equatorial Ocean Recharge Oscillator Model for ENSO. Geophysical Research Letters, 26(19), 2989-2992. https://doi.org/https://doi.org/10.1029/1999GL002297 Jin, Y. H., Kawamura, A., Jinno, K., & Berndtsson, R. (2005). Quantitative relationship between SOI and observed precipitation in southern Korea and Japan by nonparametric approaches. Journal of Hydrology, 301(1), 54-65. https://doi.org/https://doi.org/10.1016/j.jhydrol.2004.06.026 Kang, S. M., Ceppi, P., Yu, Y., & Kang, I.-S. (2023). Recent global climate feedback controlled by Southern Ocean cooling. Nature Geoscience, 16(9), 775-780. https://doi.org/10.1038/s41561-023-01256-6 Kang, S. M., Hawcroft, M., Xiang, B., Hwang, Y.-T., Cazes, G., Codron, F., Crueger, T., Deser, C., Hodnebrog, Ø., Kim, H., Kim, J., Kosaka, Y., Losada, T., Mechoso, C. R., Myhre, G., Seland, Ø., Stevens, B., Watanabe, M., & Yu, S. (2019). Extratropical–Tropical Interaction Model Intercomparison Project (Etin-Mip): Protocol and Initial Results. Bulletin of the American Meteorological Society, 100(12), 2589-2606. https://doi.org/https://doi.org/10.1175/BAMS-D-18-0301.1 Kang, S. M., Held, I. M., Frierson, D. M. W., & Zhao, M. (2008). The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 3521-3532. Kang, S. M., Held, I. M., Frierson, D. M. W., & Zhao, M. (2008). The Response of the ITCZ to Extratropical Thermal Forcing: Idealized Slab-Ocean Experiments with a GCM. Journal of Climate, 21(14), 3521-3532. https://doi.org/https://doi.org/10.1175/2007JCLI2146.1 Kang, S. M., Shin, Y., & Codron, F. (2018). The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM. Geoscience Letters, 5(1), 22. https://doi.org/10.1186/s40562-018-0124-9 Kang, S. M., Xie, S.-P., Shin, Y., Kim, H., Hwang, Y.-T., Stuecker, M. F., Xiang, B., & Hawcroft, M. (2020). Walker circulation response to extratropical radiative forcing. Science Advances, 6(47), eabd3021. https://doi.org/doi:10.1126/sciadv.abd3021 Kang, S. M., Yu, Y., Deser, C., Zhang, X., Kang, I.-S., Lee, S.-S., Rodgers, K. B., & Ceppi, P. (2023). Global impacts of recent Southern Ocean cooling. Proceedings of the National Academy of Sciences, 120(30), e2300881120. https://doi.org/doi:10.1073/pnas.2300881120 Karnauskas, K. B., Seager, R., Kaplan, A., Kushnir, Y., & Cane, M. A. (2009). Observed Strengthening of the Zonal Sea Surface Temperature Gradient across the Equatorial Pacific Ocean. Journal of Climate, 22(16), 4316-4321. https://doi.org/https://doi.org/10.1175/2009JCLI2936.1 Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., & Bitz, C. (2016). Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 4617-4636. Kim, H., Kang, S. M., Kay, J. E., & Xie, S.-P. (2022). Subtropical clouds key to Southern Ocean teleconnections to the tropical Pacific. Proceedings of the National Academy of Sciences, 119(34), e2200514119. https://doi.org/doi:10.1073/pnas.2200514119 Kim, S., & Kug, J.-S. (2018). What Controls ENSO Teleconnection to East Asia? Role of Western North Pacific Precipitation in ENSO Teleconnection to East Asia. Journal of Geophysical Research: Atmospheres, 123(18), 10,406-410,422. https://doi.org/https://doi.org/10.1029/2018JD028935 King, A. D., Alexander, L. V., & Donat, M. G. (2013). Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophysical Research Letters, 40(10), 2271-2277. https://doi.org/https://doi.org/10.1002/grl.50427 Knutson, T. R., & Manabe, S. (1995). Time-Mean Response over the Tropical Pacific to Increased C02 in a Coupled Ocean-Atmosphere Model. Journal of Climate, 8(9), 2181-2199. https://doi.org/https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2 Kosaka, Y., & Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403-407. https://doi.org/10.1038/nature12534 Kucharski, F., Kang, I.-S., Farneti, R., & Feudale, L. (2011). Tropical Pacific response to 20th century Atlantic warming. Geophysical Research Letters, 38(3). https://doi.org/https://doi.org/10.1029/2010GL046248 Kucharski, F., Syed, F. S., Burhan, A., Farah, I., & Gohar, A. (2015). Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Climate Dynamics, 44(3), 881-896. https://doi.org/10.1007/s00382-014-2228-z Kuntz, L. B., & Schrag, D. P. (2018). Hemispheric Asymmetry in the Ventilated Thermocline of the Tropical Pacific. Journal of Climate, 31(3), 1281-1288. https://doi.org/https://doi.org/10.1175/JCLI-D-17-0686.1 Latif, M., Bayr, T., Kjellsson, J., Lübbecke, J. F., Martin, T., Nnamchi, H. C., Park, W., Savita, A., Sun, J., & Dommenget, D. (2023). Strengthening atmospheric circulation and trade winds slowed tropical Pacific surface warming. Communications Earth & Environment, 4(1), 249. https://doi.org/10.1038/s43247-023-00912-4 Lau, W. K. M., & Kim, K.-M. (2015). Robust Hadley Circulation changes and increasing global dryness due to CO<sub>2</sub> warming from CMIP5 model projections. Proceedings of the National Academy of Sciences, 112(12), 3630-3635. https://doi.org/doi:10.1073/pnas.1418682112 Lee, S., L’Heureux, M., Wittenberg, A. T., Seager, R., O’Gorman, P. A., & Johnson, N. C. (2022). On the future zonal contrasts of equatorial Pacific climate: Perspectives from Observations, Simulations, and Theories. npj Climate and Atmospheric Science, 5(1), 82. https://doi.org/10.1038/s41612-022-00301-2 Lee, T., & Fukumori, I. (2003). Interannual-to-Decadal Variations of Tropical–Subtropical Exchange in the Pacific Ocean: Boundary versus Interior Pycnocline Transports. Journal of Climate, 16(24), 4022-4042. https://doi.org/https://doi.org/10.1175/1520-0442(2003)016<4022:IVOTEI>2.0.CO;2 Li, Q., Luo, Y., Lu, J., & Liu, F. (2024). Revisiting the equatorial Pacific sea surface temperature response to global warming. Climate Dynamics, 62(3), 2239-2258. https://doi.org/10.1007/s00382-023-07019-8 Li, Y., Xie, S.-P., Lian, T., Zhang, G., Feng, J., Ma, J., Peng, Q., Wang, W., Hou, Y., & Li, X. (2023). Interannual Variability of Regional Hadley Circulation and El Niño Interaction. Geophysical Research Letters, 50(4), e2022GL102016. https://doi.org/https://doi.org/10.1029/2022GL102016 Lin, I.-I., Black, P., Price, J. F., Yang, C.-Y., Chen, S. S., Lien, C.-C., Harr, P., Chi, N.-H., Wu, C.-C., & D'Asaro, E. A. (2013). An ocean coupling potential intensity index for tropical cyclones. Geophysical Research Letters, 40(9), 1878-1882. https://doi.org/https://doi.org/10.1002/grl.50091 Liu, F., Luo, Y., Lu, J., & Wan, X. (2017). Response of the tropical Pacific Ocean to El Niño versus global warming. Climate Dynamics, 48(3), 935-956. https://doi.org/10.1007/s00382-016-3119-2 Liu, Z. (1998). The Role of Ocean in the Response of Tropical Climatology to Global Warming: The West–East SST Contrast. Journal of Climate, 11(5), 864-875. https://doi.org/https://doi.org/10.1175/1520-0442(1998)011<0864:TROOIT>2.0.CO;2 Liu, Z. (1999). Forced Planetary Wave Response in a Thermocline Gyre. Journal of Physical Oceanography, 29(5), 1036-1055. https://doi.org/https://doi.org/10.1175/1520-0485(1999)029<1036:FPWRIA>2.0.CO;2 Liu, Z., Philander, S. G. H., & Pacanowski, R. C. (1994). A GCM Study of Tropical–Subtropical Upper-Ocean Water Exchange. Journal of Physical Oceanography, 24(12), 2606-2623. https://doi.org/https://doi.org/10.1175/1520-0485(1994)024<2606:AGSOTU>2.0.CO;2 Long, D. J., & Collins, M. (2013). Quantifying global climate feedbacks, responses and forcing under abrupt and gradual CO2 forcing. Climate Dynamics, 41(9), 2471-2479. https://doi.org/10.1007/s00382-013-1677-0 Long, S.-M., Xie, S.-P., Zheng, X.-T., & Liu, Q. (2014). Fast and slow responses to global warming: Sea surface temperature and precipitation patterns. J. Climate, 27, 285-299. Lu, J., Vecchi, G. A., & Reichler, T. (2007). Expansion of the Hadley cell under global warming. Geophysical Research Letters, 34(6). https://doi.org/https://doi.org/10.1029/2006GL028443 Luo, J.-J., Masson, S., Behera, S., Delecluse, P., Gualdi, S., Navarra, A., & Yamagata, T. (2003). South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophysical Research Letters, 30(24). https://doi.org/https://doi.org/10.1029/2003GL018649 Luo, J.-J., Sasaki, W., & Masumoto, Y. (2012). Indian Ocean warming modulates Pacific climate change. Proceedings of the National Academy of Sciences, 109(46), 18701-18706. https://doi.org/doi:10.1073/pnas.1210239109 Luo, J.-J., Wang, G., & Dommenget, D. (2018). May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling? Climate Dynamics, 50(3), 1335-1351. https://doi.org/10.1007/s00382-017-3688-8 Luo, J.-J., & Yamagata, T. (2001). Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. Journal of Geophysical Research: Oceans, 106(C10), 22211-22227. https://doi.org/https://doi.org/10.1029/2000JC000471 Luongo, M. T., Xie, S.-P., & Eisenman, I. (2022). Buoyancy Forcing Dominates the Cross-Equatorial Ocean Heat Transport Response to Northern Hemisphere Extratropical Cooling. Journal of Climate, 35(20), 6671-6690. https://doi.org/https://doi.org/10.1175/JCLI-D-21-0950.1 Luongo, M. T., Xie, S.-P., Eisenman, I., Hwang, Y.-T., & Tseng, H.-Y. (2023). A Pathway for Northern Hemisphere Extratropical Cooling to Elicit a Tropical Response. Geophysical Research Letters, 50(2), e2022GL100719. https://doi.org/https://doi.org/10.1029/2022GL100719 Ma, J., Chadwick, R., Seo, K.-H., Dong, C., Huang, G., Foltz, G. R., & Jiang, J. H. (2018). Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle. Annual Review of Earth and Planetary Sciences, 46(Volume 46, 2018), 549-580. https://doi.org/https://doi.org/10.1146/annurev-earth-082517-010102 Maher, P., Vallis, G. K., Sherwood, S. C., Webb, M. J., & Sansom, P. G. (2018). The Impact of Parameterized Convection on Climatological Precipitation in Atmospheric Global Climate Models. Geophysical Research Letters, 45(8), 3728-3736. https://doi.org/https://doi.org/10.1002/2017GL076826 McGregor, S., Gallant, A., & van Rensch, P. (2024). Quantifying ENSOs Impact on Australia's Regional Monthly Rainfall Risk. Geophysical Research Letters, 51(6), e2023GL106298. https://doi.org/https://doi.org/10.1029/2023GL106298 McPhaden, M. J., & Zhang, D. (2002). Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415(6872), 603-608. https://doi.org/10.1038/415603a Mechoso, C. R., Robertson, A. W., Barth, N., Davey, M. K., Delecluse, P., Gent, P. R., Ineson, S., Kirtman, B., Latif, M., Treut, H. L., Nagai, T., Neelin, J. D., Philander, S. G. H., Polcher, J., Schopf, P. S., Stockdale, T., Suarez, M. J., Terray, L., Thual, O., & Tribbia, J. J. (1995). The Seasonal Cycle over the Tropical Pacific in Coupled Ocean–Atmosphere General Circulation Models. Monthly Weather Review, 123(9), 2825-2838. https://doi.org/https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2 Meehl, G. A., Hu, A., Santer, B. D., & Xie, S.-P. (2016). Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nature Climate Change, 6(11), 1005-1008. https://doi.org/10.1038/nclimate3107 Meehl, G. A., & Washington, W. M. (1996). El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382(6586), 56-60. https://doi.org/10.1038/382056a0 Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., & Stainforth, D. A. (2004). Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430(7001), 768-772. https://doi.org/10.1038/nature02771 Nicholls, N., Baek, H.-J., Gosai, A., Chambers, L. E., Choi, Y., Collins, D., Della-Marta, P. M., Griffiths, G. M., Haylock, M. R., Iga, N., Lata, R., Maitrepierre, L., Manton, M. J., Nakamigawa, H., Ouprasitwong, N., Solofa, D., Tahani, L., Thuy, D. T., Tibig, L.,…Zhai, P. (2005). The El Niño–Southern Oscillation and daily temperature extremes in east Asia and the west Pacific. Geophysical Research Letters, 32(16). https://doi.org/https://doi.org/10.1029/2005GL022621 Okumura, Y. M., Sun, T., & Wu, X. (2017). Asymmetric Modulation of El Niño and La Niña and the Linkage to Tropical Pacific Decadal Variability. Journal of Climate, 30(12), 4705-4733. https://doi.org/https://doi.org/10.1175/JCLI-D-16-0680.1 Oort, A. H., & Yienger, J. J. (1996). Observed Interannual Variability in the Hadley Circulation and Its Connection to ENSO. Journal of Climate, 9(11), 2751-2767. https://doi.org/https://doi.org/10.1175/1520-0442(1996)009<2751:OIVITH>2.0.CO;2 Pauling, A. G., Bitz, C. M., Smith, I. J., & Langhorne, P. J. (2016). The Response of the Southern Ocean and Antarctic Sea Ice to Freshwater from Ice Shelves in an Earth System Model. Journal of Climate, 29(5), 1655-1672. https://doi.org/https://doi.org/10.1175/JCLI-D-15-0501.1 Pausata, F. S. R., Zanchettin, D., Karamperidou, C., Caballero, R., & Battisti, D. S. (2020). ITCZ shift and extratropical teleconnections drive ENSO response to volcanic eruptions. Science Advances, 6(23), eaaz5006. https://doi.org/doi:10.1126/sciadv.aaz5006 Power, S., Casey, T., Folland, C., Colman, A., & Mehta, V. (1999). Inter-decadal modulation of the impact of ENSO on Australia. Climate Dynamics, 15(5), 319-324. https://doi.org/10.1007/s003820050284 Power, S., Lengaigne, M., Capotondi, A., Khodri, M., Vialard, J., Jebri, B., Guilyardi, E., McGregor, S., Kug, J.-S., Newman, M., McPhaden, M. J., Meehl, G., Smith, D., Cole, J., Emile-Geay, J., Vimont, D., Wittenberg, A. T., Collins, M., Kim, G.-I.,…Henley, B. J. (2021). Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 374(6563), eaay9165. https://doi.org/doi:10.1126/science.aay9165 Raymond, D. J. (1994). Convective processes and tropical atmospheric circulations. Quarterly Journal of the Royal Meteorological Society, 120(520), 1431-1455. https://doi.org/https://doi.org/10.1002/qj.49712052002 Raymond, D. J. (1995). Regulation of Moist Convection over the West Pacific Warm Pool. Journal of Atmospheric Sciences, 52(22), 3945-3959. https://doi.org/https://doi.org/10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2 Raymond, D. J. (2000). The Hadley Circulation as a Radiative–Convective Instability. Journal of the Atmospheric Sciences, 57(9), 1286-1297. https://doi.org/https://doi.org/10.1175/1520-0469(2000)057<1286:THCAAR>2.0.CO;2 Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vanniere, B., Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.-P., Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts, C., Senan, R., Zarzycki, C., & Ullrich, P. (2020). Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel Ensemble. Journal of Climate, 33(7), 2557-2583. https://doi.org/https://doi.org/10.1175/JCLI-D-19-0639.1 Rodríguez-Fonseca, B., Polo, I., García-Serrano, J., Losada, T., Mohino, E., Mechoso, C. R., & Kucharski, F. (2009). Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophysical Research Letters, 36(20). https://doi.org/https://doi.org/10.1029/2009GL040048 Ropelewski, C. F., & Halpert, M. S. (1986). North American Precipitation and Temperature Patterns Associated with the El Niño/Southern Oscillation (ENSO). Monthly Weather Review, 114(12), 2352-2362. https://doi.org/https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2 Rugenstein, M., Zelinka, M., Karnauskas, K., Ceppi, P., & Andrews, T. (2023). Patterns of Surface Warming Matter for Climate Sensitivity. Eos, 104. https://doi.org/10.1029/2023EO230411 Sadai, S., Condron, A., DeConto, R., & Pollard, D. (2020). Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming. Science Advances, 6(39), eaaz1169. https://doi.org/doi:10.1126/sciadv.aaz1169 San, S.-C., & Tseng, Y.-h. (2024). Aleutian low/PDO forces a decadal subsurface spiciness propagating mode in the North Pacific. Climate Dynamics, 62(1), 703-721. https://doi.org/10.1007/s00382-023-06938-w San, S.-C., Tseng, Y.-H., Ding, R., & Di Lorenzo, E. (2024a). A key role of off-equatorial subsurface temperature anomalies in Tropical Pacific Decadal Variability. npj Climate and Atmospheric Science, 7(1), 109. https://doi.org/10.1038/s41612-024-00643-z San, S.-C., Tseng, Y.-H., Ding, R., & Di Lorenzo, E. (2024b). Why Is Decadal Climate Variability Predominantly Observed in the Niño4 Region? Geophysical Research Letters, 51(17), e2024GL110457. https://doi.org/https://doi.org/10.1029/2024GL110457 Sasaki, Y. N., Schneider, N., Maximenko, N., & Lebedev, K. (2010). Observational evidence for propagation of decadal spiciness anomalies in the North Pacific. Geophys. Res. Lett., 37, L07708. Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di Girolamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S., & Wernli, H. (2020). Kilometer-Scale Climate Models: Prospects and Challenges. Bulletin of the American Meteorological Society, 101(5), E567-E587. https://doi.org/https://doi.org/10.1175/BAMS-D-18-0167.1 Schneider, N. (2000). A decadal spiciness mode in the tropics. Geophysical Research Letters, 27(2), 257-260. https://doi.org/https://doi.org/10.1029/1999GL002348 Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513(7516), 45-53. https://doi.org/10.1038/nature13636 Seager, R., Cane, M., Henderson, N., Lee, D.-E., Abernathey, R., & Zhang, H. (2019). Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nature Climate Change, 9(7), 517-522. https://doi.org/10.1038/s41558-019-0505-x Seager, R., Cane, M., Henderson, N., Lee, D.-E., Abernathey, R., & Zhang, H. (2019). Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517-522. Sen Gupta, A., Ganachaud, A., McGregor, S., Brown, J. N., & Muir, L. (2012). Drivers of the projected changes to the Pacific Ocean equatorial circulation. Geophysical Research Letters, 39(9). https://doi.org/https://doi.org/10.1029/2012GL051447 Shi, J.-R., Kwon, Y.-O., & Wijffels, S. E. (2023). Subsurface Ocean Temperature Responses to the Anthropogenic Aerosol Forcing in the North Pacific. Geophysical Research Letters, 50(2), e2022GL101035. https://doi.org/https://doi.org/10.1029/2022GL101035 Shin, S.-I., & Liu, Z. (2000). Response of the Equatorial Thermocline to Extratropical Buoyancy Forcing. Journal of Physical Oceanography, 30(11), 2883-2905. https://doi.org/https://doi.org/10.1175/1520-0485(2001)031<2883:ROTETT>2.0.CO;2 Smith, D. M. (2016). Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Climate Change, 6, 936-940. Sobel, A. H., Lee, C.-Y., Bowen, S. G., Camargo, S. J., Cane, M. A., Clement, A., Fosu, B., Hart, M., Reed, K. A., Seager, R., & Tippett, M. K. (2023). Near-term tropical cyclone risk and coupled Earth system model biases. Proceedings of the National Academy of Sciences, 120(33), e2209631120. https://doi.org/doi:10.1073/pnas.2209631120 Solomon, A., & Newman, M. (2012). Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nature Climate Change, 2(9), 691-699. https://doi.org/10.1038/nclimate1591 Stuecker, M. F. (2018). Polar amplification dominated by local forcing and feedbacks. Nat. Climate Change, 8, 1076-1081. Takahashi, C., & Watanabe, M. (2016). Pacific trade winds accelerated by aerosol forcing over the past two decades. Nature Climate Change, 6(8), 768-772. https://doi.org/10.1038/nclimate2996 Thomas, M. D., & Fedorov, A. V. (2017). The Eastern Subtropical Pacific Origin of the Equatorial Cold Bias in Climate Models: A Lagrangian Perspective. Journal of Climate, 30(15), 5885-5900. https://doi.org/https://doi.org/10.1175/JCLI-D-16-0819.1 Thomas, M. D., & Fedorov, A. V. (2017). The eastern subtropical Pacific origin of the equatorial cold bias in climate models: A Lagrangian perspective. J. Climate, 30, 5885-5900. Thompson, L. A., & Ladd, C. A. (2004). The Response of the North Pacific Ocean to Decadal Variability in Atmospheric Forcing: Wind versus Buoyancy Forcing. Journal of Physical Oceanography, 34(6), 1373-1386. https://doi.org/https://doi.org/10.1175/1520-0485(2004)034<1373:TROTNP>2.0.CO;2 Tian, B., & Dong, X. (2020). The Double-ITCZ Bias in CMIP3, CMIP5, and CMIP6 Models Based on Annual Mean Precipitation. Geophysical Research Letters, 47(8), e2020GL087232. https://doi.org/https://doi.org/10.1029/2020GL087232 Tokinaga, H., Xie, S.-P., Deser, C., Kosaka, Y., & Okumura, Y. M. (2012). Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491(7424), 439-443. https://doi.org/10.1038/nature11576 Tomas, R. A., Deser, C., & Sun, L. (2016). The Role of Ocean Heat Transport in the Global Climate Response to Projected Arctic Sea Ice Loss. Journal of Climate, 29(19), 6841-6859. https://doi.org/https://doi.org/10.1175/JCLI-D-15-0651.1 Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., & Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research: Oceans, 103(C7), 14291-14324. https://doi.org/https://doi.org/10.1029/97JC01444 Trenberth, K. E., & Fasullo, J. T. (2013). An apparent hiatus in global warming? Earth's Future, 1(1), 19-32. https://doi.org/https://doi.org/10.1002/2013EF000165 Trenberth, K. E., & Stepaniak, D. P. (2003). Covariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales. Journal of Climate, 16(22), 3691-3705. https://doi.org/https://doi.org/10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2 Tseng, H.-Y., & Hwang, Y.-T. (2024). Contrasting the Evolution of the Tropical Pacific SST Responses to Time-Invariant Extratropical Forcings in the Two Hemispheres. Geophysical Research Letters, 51(23), e2024GL110551. https://doi.org/https://doi.org/10.1029/2024GL110551 Tseng, H.-Y., Hwang, Y.-T., Xie, S.-P., Tseng, Y.-H., Kang, S. M., Luongo, M. T., & Eisenman, I. (2023). Fast and Slow Responses of the Tropical Pacific to Radiative Forcing in Northern High Latitudes. Journal of Climate, 36(16), 5337-5349. https://doi.org/https://doi.org/10.1175/JCLI-D-22-0622.1 Vecchi, G. A., & Soden, B. J. (2007). Global Warming and the Weakening of the Tropical Circulation. Journal of Climate, 20(17), 4316-4340. https://doi.org/https://doi.org/10.1175/JCLI4258.1 Vecchi, G. A., Soden, B. J., Wittenberg, A. T., Held, I. M., Leetmaa, A., & Harrison, M. J. (2006). Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441(7089), 73-76. https://doi.org/10.1038/nature04744 Wang, B., & Chan, J. C. L. (2002). How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific. Journal of Climate, 15(13), 1643-1658. https://doi.org/https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2 Wang, C. (2002). Atmospheric Circulation Cells Associated with the El Niño–Southern Oscillation. Journal of Climate, 15(4), 399-419. https://doi.org/https://doi.org/10.1175/1520-0442(2002)015<0399:ACCAWT>2.0.CO;2 Wang, C.-C., Lee, W.-L., & Chou, C. (2019). Climate Effects of Anthropogenic Aerosol Forcing on Tropical Precipitation and Circulations. Journal of Climate, 32(16), 5275-5287. https://doi.org/https://doi.org/10.1175/JCLI-D-18-0641.1 Wang, K., Deser, C., Sun, L., & Tomas, R. A. (2018). Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics. Geophysical Research Letters, 45(9), 4264-4272. https://doi.org/https://doi.org/10.1029/2018GL077325 Watanabe, M., Dufresne, J.-L., Kosaka, Y., Mauritsen, T., & Tatebe, H. (2021). Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nature Climate Change, 11(1), 33-37. https://doi.org/10.1038/s41558-020-00933-3 Watanabe, M., Kang, S. M., Collins, M., Hwang, Y.-T., McGregor, S., & Stuecker, M. F. (2024). Possible shift in controls of the tropical Pacific surface warming pattern. Nature, 630(8016), 315-324. https://doi.org/10.1038/s41586-024-07452-7 Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C., & Battisti, D. S. (2022). Systematic Climate Model Biases in the Large-Scale Patterns of Recent Sea-Surface Temperature and Sea-Level Pressure Change. Geophysical Research Letters, 49(17), e2022GL100011. https://doi.org/https://doi.org/10.1029/2022GL100011 Wood, R. (2012). Stratocumulus Clouds. Monthly Weather Review, 140(8), 2373-2423. https://doi.org/https://doi.org/10.1175/MWR-D-11-00121.1 Wyrtki, K. (1975). El Niño—The Dynamic Response of the Equatorial Pacific Oceanto Atmospheric Forcing. Journal of Physical Oceanography, 5(4), 572-584. https://doi.org/https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2 Xiang, B., Zhao, M., Ming, Y., Yu, W., & Kang, S. M. (2018). Contrasting impacts of radiative forcing in the Southern Ocean versus southern tropics on ITCZ position and energy transport in one GFDL climate model. J. Climate, 31, 5609-5628. Xie, S.-P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. (2010). Global Warming Pattern Formation: Sea Surface Temperature and Rainfall. Journal of Climate, 23(4), 966-986. https://doi.org/https://doi.org/10.1175/2009JCLI3329.1 Xie, S.-P., & Philander, S. G. H. (1994). A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340-350. Yan, X.-H., Ho, C.-R., Zheng, Q., & Klemas, V. (1992). Temperature and Size Variabilities of the Western Pacific Warm Pool. Science, 258(5088), 1643-1645. https://doi.org/doi:10.1126/science.258.5088.1643 Yang, L., Xie, S.-P., Shen, S. S. P., Liu, J.-W., & Hwang, Y.-T. (2023). Low cloud–SST feedback over the subtropical northeast Pacific and the remote effect on ENSO variability. J. Climate, 36, 441-452. Yeager, S. G., & Large, W. G. (2007). Observational Evidence of Winter Spice Injection. Journal of Physical Oceanography, 37(12), 2895-2919. https://doi.org/https://doi.org/10.1175/2007JPO3629.1 Yihui, D., & Chan, J. C. L. (2005). The East Asian summer monsoon: an overview. Meteorology and Atmospheric Physics, 89(1), 117-142. https://doi.org/10.1007/s00703-005-0125-z Yoshimori, M., Abe-Ouchi, A., & Laîné, A. (2017). The role of atmospheric heat transport and regional feedbacks in the Arctic warming at equilibrium. Climate Dyn., 49, 3457-3472. Yoshimori, M., & Broccoli, A. J. (2008). Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 4399-4423. You, Y., & Furtado, J. C. (2018). The South Pacific Meridional Mode and Its Role in Tropical Pacific Climate Variability. Journal of Climate, 31(24), 10141-10163. https://doi.org/https://doi.org/10.1175/JCLI-D-17-0860.1 Zhang, H., Clement, A., & Di Nezio, P. (2014). The South Pacific Meridional Mode: A Mechanism for ENSO-like Variability. Journal of Climate, 27(2), 769-783. https://doi.org/https://doi.org/10.1175/JCLI-D-13-00082.1 Zhang, H., Deser, C., Clement, A., & Tomas, R. (2014). Equatorial signatures of the Pacific meridional modes: Dependence on mean climate state. Geophys. Res. Lett., 41, 568-574. Zhang, L., Sun, D.-Z., & Karnauskas, K. B. (2019). The role of the Indian Ocean in determining the tropical pacific SST response to radiative forcing in an idealized model. Dynamics of Atmospheres and Oceans, 86, 1-9. https://doi.org/https://doi.org/10.1016/j.dynatmoce.2019.02.003 Zhang, R. (2007). Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophysical Research Letters, 34(12). https://doi.org/https://doi.org/10.1029/2007GL030225 Zhang, R., & Delworth, T. L. (2005). Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 1853-1860. Zhang, R.-H., & Busalacchi, A. J. (1999). A possible link between off-equatorial warm anomalies propagating along the NECC path and the onset of the 1997–98 El Niño. Geophysical Research Letters, 26(18), 2873-2876. https://doi.org/https://doi.org/10.1029/1999GL002315 Zhang, S., & Chen, J. (2021). Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6. Journal of Meteorological Research, 35(4), 646-662. https://doi.org/10.1007/s13351-021-1012-3 Zhang, X., Deser, C., & Sun, L. (2021). Is There a Tropical Response to Recent Observed Southern Ocean Cooling? Geophysical Research Letters, 48(5), e2020GL091235. https://doi.org/https://doi.org/10.1029/2020GL091235 Zhang, X., Liu, H., & Zhang, M. (2015). Double ITCZ in Coupled Ocean-Atmosphere Models: From CMIP3 to CMIP5. Geophysical Research Letters, 42(20), 8651-8659. https://doi.org/https://doi.org/10.1002/2015GL065973 Zhang, Y., Du, Y., Feng, M., & Hobday, A. J. (2023). Vertical structures of marine heatwaves. Nature Communications, 14(1), 6483. https://doi.org/10.1038/s41467-023-42219-0 Zhao, J., Zhan, R., Murakami, H., Wang, Y., Xie, S.-P., Zhang, L., & Guo, Y. (2023). Atmospheric modes fiddling the simulated ENSO impact on tropical cyclone genesis over the Northwest Pacific. npj Climate and Atmospheric Science, 6(1), 213. https://doi.org/10.1038/s41612-023-00537-6 Zheng, F., Feng, L., & Zhu, J. (2015). An incursion of off-equatorial subsurface cold water and its role in triggering the “double dip” La Niña event of 2011. Advances in Atmospheric Sciences, 32(6), 731-742. https://doi.org/10.1007/s00376-014-4080-9 Zhou, C., Zelinka, M. D., & Klein, S. A. (2016). Impact of decadal cloud variations on the Earth’s energy budget. Nature Geoscience, 9(12), 871-874. https://doi.org/10.1038/ngeo2828 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96731 | - |
| dc.description.abstract | 為了理解人為氣候變化下的熱帶氣候變化,本論文利用一完全耦合的氣候模型—地球系統社群模式1.2.0版,研究熱帶太平洋對於外熱帶輻射強迫的瞬態氣候響應。透過在任一半球的外熱帶區域施加突變的太陽輻射改變,本論文檢視海洋表面與次表層溫度的不同反應,並探討驅動這些變化的基本機制。
在海洋表面,異常海表溫度的演變可分為兩個階段:(1) 在最初的三年內,赤道區海表溫反應在北半球外熱帶呈現與輻射強迫相反的符號,而在南半球外熱帶則與輻射強迫符號一致。在此階段,加熱北半球外熱帶對冷卻赤道太平洋的作用比冷卻南半球外熱帶更有效,因北半球外熱帶的異常暖化被氣候場的輻合雨帶阻擋,只能從西側進入赤道太平洋,從而更有效地觸發了皮耶克尼斯反饋機制。(2) 在十年後,所有實驗均顯示出增強的赤道反應,且其符號與輻射強迫一致,這歸因於受迫半球的海洋經向翻轉環流的減緩。南半球受迫情況的赤道海表溫反應更強,表明南半球外熱帶對於十年尺度上熱帶太平洋具有顯著的控制作用。 在次表層,觀察到兩半球亞熱帶太平洋區域內帶狀的溫度異常,這些異常在受迫半球呈現與外熱帶強迫相反的符號,而在另一半球則與強迫符號一致。次表層溫度響應在2-3年內出現,其可能主要由風應力驅動的海洋動力學(如斯維爾德魯普傳送和艾克曼抽吸)所引起。其作用時間尺度快於通常預期的海洋動力機制(數十年或更長),突顯了耦合的大氣-海洋交互作用在形成兩半球亞熱帶次表層溫度反應中的關鍵作用。 本論文的研究結果強調了耦合大氣-海洋動力機制在塑造熱帶氣候反應的時間與空間演變中的關鍵角色。由於北半球在全球變暖下經歷了顯著的地表暖化,這些結果對於理解人為氣候變化與熱帶氣候變率具有重要意義,並有助於解釋觀測到的熱帶太平洋海表溫趨勢、氣候模型中模擬的歷史溫度變化以及極端事件的變化(如熱帶氣旋活動與聖嬰事件)。此外,透過基於機制的診斷方法,這些結果為調和模型與觀測的差異提供了潛在途徑,並促使進一步透過更具現實性的實驗研究相關的時間尺度。 | zh_TW |
| dc.description.abstract | With the goal of understanding the tropical climate changes under anthropogenic climate changes, this dissertation investigates the transient climate responses of the tropical Pacific to extratropical radiative forcings, using a fully coupled climate model, the Community Earth System Model (CESM), version 1.2.0. By imposing abrupt incoming solar radiation changes in extratropical regions of either hemisphere, this dissertation examines the distinct responses of both surface and subsurface ocean temperature and explores the underlying mechanisms driving these changes.
At the surface, a two-stage evolution of anomalous sea surface temperature (SST) is recognized: (1) in the initial three years, the equatorial SST responses exhibit an opposite sign to the forcings in the northern extratropics but align with those in the southern extratropics. At this stage, heating the northern extratropics is more effective at cooling the equatorial Pacific than cooling the southern extratropics. This occurs because the anomalous warming in the northern extratropics is blocked by the rainband and can only enter the equatorial Pacific from the west, triggering Bjerknes feedback more effectively. (2) Over a decade, all experiments show enhanced equatorial responses aligning with the signs of the forcings, attributable to the slowdown of the oceanic meridional overturning circulation in the forced hemisphere. The south-perturbed cases experience stronger equatorial SST responses, suggesting the significant control of the southern extratropics on tropical Pacific on decadal timescales. As for the subsurface, band-like temperature anomalies in the subtropical Pacific regions in both hemispheres are observed, which show the opposite sign against the extratropical forcing in the forced hemisphere and the same sign with the forging in the other hemisphere. The subsurface temperature responses develop within 2-3 years, which could be majorly driven by wind stress-induced ocean dynamics, such as Sverdrup transport and Ekman pumping. The operating timescale is faster than those expected by the oceanic dynamics, which are decadal or longer, highlighting the role of coupled atmosphere-ocean interactions in forming the subsurface temperature responses in both hemisphere subtropics. The findings in this dissertation underscore the critical role of coupled atmosphere-ocean dynamics in shaping the temporal and spatial evolution of tropical climate response to hemispherically asymmetric forcings. Since the Northern Hemisphere has experienced significant surface warming under global warming, these results have important implications for understanding the anthropogenic climate changes and tropical climate variability and help interpret the observed tropical Pacific SST trend, the simulated historical temperature changes in climate models, and shifts in extreme events including tropical cyclone activity and ENSO dynamics. Additionally, these results offer potential avenues for reconciling model-observation discrepancies through a mechanism-based diagnostic approach, urging further investigation of associated timescales through realistic experiments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:17:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:17:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Committee verification letter 學位論文審定書
謝辭 Acknowledgement i Abstract iii 摘要 v Contents vii List of Figures ix Chapter 1 Introduction 1 1.1 The role of tropical Pacific region in global climate system 1 1.2 The uncertain future projections of tropical Pacific region under anthropogenic climate change 3 1.3 The potential high-latitude influences on tropical Pacific climates 5 1.4 The scope of this dissertation and the outline 7 Chapter 2 Methods 9 2.1 Community Earth System Model (CESM) 9 2.2 Experimental design 9 2.3 Slab ocean model (SOM) experiments 10 2.4 The linear response 11 2.5 Energy budget analysis 11 Chapter 3 Fast and Slow Responses of the Tropical Pacific to Radiative Forcing in Northern High Latitudes 13 3.1 Introduction 13 3.2 Results 16 3.2.1 Tropical SST evolutions 16 3.2.2 The formation mechanisms for the fast response 18 3.2.3 The formation mechanisms for the slow response 21 3.3 Summary and Discussion 23 3.3.1 The fast response, the ITCZ-blocking effect, and Ekman transport 24 3.3.2 The slow response and the role of STC changes 25 3.4 Conclusion and Implication 27 3.4.1 Linkages with the GHG-forced simulations 28 3.4.2 Linkages with other modeling experiments and observational records 30 3.4.3 Outlooks 30 Chapter 4 Contrasting the Evolution of the Tropical Pacific SST Responses to Time-Invariant Extratropical Forcings in the Two Hemispheres 32 4.1 Plain Language Summary 32 4.2 Introduction 32 4.3 Local and remote SST responses 35 4.4 Thermodynamic air-sea fluxes and the contrasting initial equatorial SST responses 36 4.5 Dynamical oceanic processes explaining the emerging equatorial warming in both cases 38 4.6 Summary and Discussion 40 Chapter 5 Subtropical Ocean Temperature Responses at the Subsurface 44 5.1 Introduction 44 5.2 Contrasting temperature responses between NH Case and SH Case 47 5.3 Temperature responses in Northern Hemisphere subtropical region: anomalous divergence of the Sverdrup transport 48 5.4 Temperature responses in Southern Hemisphere subtropical region: anomalous Ekman pumping 50 5.5 Summary and discussion 52 Chapter 6 Conclusion and Implication 57 Reference 62 Figures 93 | - |
| dc.language.iso | en | - |
| dc.subject | 地球系統社群模式 | zh_TW |
| dc.subject | 次表層海溫 | zh_TW |
| dc.subject | 海表溫 | zh_TW |
| dc.subject | 太平洋 | zh_TW |
| dc.subject | 遙相關 | zh_TW |
| dc.subject | 氣候模式 | zh_TW |
| dc.subject | 大氣-海洋耦合交互作用 | zh_TW |
| dc.subject | Teleconnections | en |
| dc.subject | Atmosphere-ocean interaction | en |
| dc.subject | General circulation models | en |
| dc.subject | the Community Earth System Model | en |
| dc.subject | Pacific Ocean | en |
| dc.subject | Sea surface temperature | en |
| dc.subject | Subsurface temperature | en |
| dc.title | 熱帶太平洋對外熱帶強迫力的反應:人為氣候變遷與自然變異的啟示 | zh_TW |
| dc.title | Tropical Pacific Responses to Extratropical Forcing: Insights into Anthropogenic Climate Change and Natural Variability | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 羅敏輝;梁禹喬;曾于恒;陳世楠;隋中興 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Hui Lo;Yu-Chiao Liang;Yu-Heng Tseng;Shih-Nan Chen;Chung-Hsiung Sui | en |
| dc.subject.keyword | 大氣-海洋耦合交互作用,氣候模式,地球系統社群模式,太平洋,海表溫,次表層海溫,遙相關, | zh_TW |
| dc.subject.keyword | Atmosphere-ocean interaction,General circulation models,the Community Earth System Model,Pacific Ocean,Sea surface temperature,Subsurface temperature,Teleconnections, | en |
| dc.relation.page | 124 | - |
| dc.identifier.doi | 10.6342/NTU202404778 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-12-26 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| dc.date.embargo-lift | 2029-12-25 | - |
| Appears in Collections: | 大氣科學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-1.pdf Restricted Access | 16.91 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
