請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96682完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴達明 | zh_TW |
| dc.contributor.advisor | Dar-Ming Lai | en |
| dc.contributor.author | 陸惠宗 | zh_TW |
| dc.contributor.author | Hui-Tzung Luh | en |
| dc.date.accessioned | 2025-02-20T16:30:56Z | - |
| dc.date.available | 2025-02-21 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-05 | - |
| dc.identifier.citation | 1. de Oliveira Manoel AL, Goffi A, Zampieri FG, Turkel-Parrella D, Duggal A, Marotta TR, et al. The critical care management of spontaneous intracranial hemorrhage: a contemporary review. Crit Care 2016; 20:272. doi:10.1186/s13054-016-1432-0
2. Uno M. Chronic Subdural Hematoma-Evolution of Etiology and Surgical Treatment. Neurol Med Chir (Tokyo) 2023; 63 (1):1-8. doi:10.2176/jns-nmc.2022-0207 3. Fallenius M, Skrifvars MB, Reinikainen M, Bendel S, Curtze S, Sibolt G, et al. Spontaneous Intracerebral Hemorrhage. Stroke 2019; 50 (9):2336-2343. doi:10.1161/STROKEAHA.118.024560 4. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet 2009; 373 (9675):1632-1644. doi:10.1016/S0140-6736(09)60371-8 5. Jacobs BS, Boden-Albala B, Lin IF, Sacco RL. Stroke in the young in the northern Manhattan stroke study. Stroke 2002; 33 (12):2789-2793. doi:10.1161/01.str.0000038988.64376.3a 6. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 2010; 9 (2):167-176. doi:10.1016/S1474-4422(09)70340-0 7. Chen C, Xie Y, Pu M, Deng L, Li Z, Yang T, et al. Age-related differences in risk factors, clinical characteristics, and outcomes for intracerebral hemorrhage. Front Aging Neurosci 2023; 15:1264124. doi:10.3389/fnagi.2023.1264124 8. Wang P, Sun Y, Yi D, Xie Y, Luo Y. Clinical features of Chinese patients in different age groups with spontaneous intracerebral hemorrhage based on multicenter inpatient information. Neurol Res 2020; 42 (8):657-664. doi:10.1080/01616412.2020.1782082 9. Brott T, Thalinger K, Hertzberg V. Hypertension as a risk factor for spontaneous intracerebral hemorrhage. Stroke 1986; 17 (6):1078-1083. doi:10.1161/01.str.17.6.1078 10. Fewel ME, Thompson BG, Hoff JT. Spontaneous intracerebral hemorrhage: a review. Neurosurgical focus 2003; 15 (4):1-16. 11. Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, et al. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circ Res 2022; 130 (8):1204-1229. doi:10.1161/CIRCRESAHA.121.319949 12. Charidimou A, Shakeshaft C, Werring DJ. Cerebral microbleeds on magnetic resonance imaging and anticoagulant-associated intracerebral hemorrhage risk. Front Neurol 2012; 3:133. doi:10.3389/fneur.2012.00133 13. Ziai WC. Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke 2013; 44 (6 Suppl 1):S74-78. doi:10.1161/STROKEAHA.111.000662 14. Zhang W, Wu Q, Hao S, Chen S. The hallmark and crosstalk of immune cells after intracerebral hemorrhage: Immunotherapy perspectives. Front Neurosci 2022; 16:1117999. doi:10.3389/fnins.2022.1117999 15. Consoli V, Sorrenti V, Grosso S, Vanella L. Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 2021; 11 (4). doi:10.3390/biom11040589 16. Hamou HA, Clusmann H, Schulz JB, Wiesmann M, Altiok E, Hollig A. Chronic Subdural Hematoma. Dtsch Arztebl Int 2022; 119 (12):208-213. doi:10.3238/arztebl.m2022.0144 17. Yadav YR, Parihar V, Namdev H, Bajaj J. Chronic subdural hematoma. Asian J Neurosurg 2016; 11 (4):330-342. doi:10.4103/1793-5482.145102 18. Kim KH, Lee Y. Medical Management of Chronic Subdural Hematoma. Korean J Neurotrauma 2023; 19 (3):288-297. doi:10.13004/kjnt.2023.19.e47 19. Weigel R, Schilling L, Krauss JK. The pathophysiology of chronic subdural hematoma revisited: emphasis on aging processes as key factor. Geroscience 2022; 44 (3):1353-1371. doi:10.1007/s11357-022-00570-y 20. Rauhala M, Luoto TM, Huhtala H, Iverson GL, Niskakangas T, Ohman J, et al. The incidence of chronic subdural hematomas from 1990 to 2015 in a defined Finnish population. J Neurosurg 2019; 132 (4):1147-1157. doi:10.3171/2018.12.JNS183035 21. Balser D, Farooq S, Mehmood T, Reyes M, Samadani U. Actual and projected incidence rates for chronic subdural hematomas in United States Veterans Administration and civilian populations. J Neurosurg 2015; 123 (5):1209-1215. doi:10.3171/2014.9.JNS141550 22. Boggs W. Chronic subdural hematoma rates increasing in the United States. 2015. Access: July 4, 2024; Available from: https://www.consultant360.com/story/chronic-subdural-hematoma-rates-increasing-united-states 23. Toi H, Kinoshita K, Hirai S, Takai H, Hara K, Matsushita N, et al. Present epidemiology of chronic subdural hematoma in Japan: analysis of 63,358 cases recorded in a national administrative database. J Neurosurg 2018; 128 (1):222-228. doi:10.3171/2016.9.JNS16623 24. El Rahal A, Beck J, Ahlborn P, Bernasconi C, Marbacher S, Wanderer S, et al. Incidence, therapy, and outcome in the management of chronic subdural hematoma in Switzerland: a population-based multicenter cohort study. Front Neurol 2023; 14:1206996. doi:10.3389/fneur.2023.1206996 25. Tamura R, Sato M, Yoshida K, Toda M. History and current progress of chronic subdural hematoma. J Neurol Sci 2021; 429:118066. doi:10.1016/j.jns.2021.118066 26. D'Errico AP, German WJ. Chronic Subdural Hematoma. Yale J Biol Med 1930; 3 (1):11-20. 27. Virchow R. Das hamatom der dura mater. Verhandl D Phys Med Gesellsch z Wurtzburg 1857; 7:134-142. 28. Trotter W. Chronic subdural haemorrhage of traumatic origin, and its relation to pachymeningitis haemorrhagica interna. British Journal of Surgery 1914; 2 (6):271-291. 29. Putnam TJ, Cushing H. Chronic subdural hematoma: its pathology, its relation to pachymeningitis hemorrhagica and its surgical treatment. Archives of Surgery 1925; 11 (3):329-393. 30. Lee KS. History of Chronic Subdural Hematoma. Korean J Neurotrauma 2015; 11 (2):27-34. doi:10.13004/kjnt.2015.11.2.27 31. Edlmann E, Giorgi-Coll S, Whitfield PC, Carpenter KLH, Hutchinson PJ. Pathophysiology of chronic subdural haematoma: inflammation, angiogenesis and implications for pharmacotherapy. J Neuroinflammation 2017; 14 (1):108. doi:10.1186/s12974-017-0881-y 32. Svedung Wettervik T, Sundblom J, Ronne-Engstrom E. Inflammatory biomarkers differentiate the stage of maturation in chronic subdural hematomas. J Neuroimmunol 2023; 381:578127. doi:10.1016/j.jneuroim.2023.578127 33. Wada T, Kuroda K, Yoshida Y, Ogasawara K, Ogawa A, Endo S. Local elevation of the anti-inflammatory interleukin-10 in the pathogenesis of chronic subdural hematoma. Neurosurg Rev 2006; 29 (3):242-245. doi:10.1007/s10143-006-0019-7 34. Pripp AH, Stanisic M. Association between biomarkers and clinical characteristics in chronic subdural hematoma patients assessed with lasso regression. PLoS One 2017; 12 (11):e0186838. doi:10.1371/journal.pone.0186838 35. Hemphill JC, 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2015; 46 (7):2032-2060. doi:10.1161/STR.0000000000000069 36. Monaco BA, Krueger E, Soldozy S, Jagid JR, Cordeiro JG. Burr Hole Hematoma Evacuation of Large Subdural Component Using Recombinant Tissue-Type Plasminogen Activator and a Novel Catheter: Case Report. Cureus 2022; 14 (4):e24242. doi:10.7759/cureus.24242 37. Chatzidakis S, Bakiri ZM, Faropoulos K, Fotakopoulos G, Georgakopoulou VE, Trakas N, et al. Comparison of surgical techniques for the treatment of chronic subdural hematomas: A single‑center case series. Experimental and Therapeutic Medicine 2024; 28 (2):1-7. 38. Rothrock RJ, Chartrain AG, Scaggiante J, Pan J, Song R, Hom D, et al. Advanced Techniques for Endoscopic Intracerebral Hemorrhage Evacuation: A Technical Report With Case Examples. Oper Neurosurg (Hagerstown) 2020; 20 (1):119-129. doi:10.1093/ons/opaa089 39. Wang T, Zhao QJ, Gu JW, Shi TJ, Yuan X, Wang J, et al. Neurosurgery medical robot Remebot for the treatment of 17 patients with hypertensive intracerebral hemorrhage. Int J Med Robot 2019; 15 (5):e2024. doi:10.1002/rcs.2024 40. Wu Z, Chen D, Pan C, Zhang G, Chen S, Shi J, et al. Surgical Robotics for Intracerebral Hemorrhage Treatment: State of the Art and Future Directions. Ann Biomed Eng 2023; 51 (9):1933-1941. doi:10.1007/s10439-023-03295-x 41. Chen D, Zhao Z, Zhang S, Chen S, Wu X, Shi J, et al. Evolving Therapeutic Landscape of Intracerebral Hemorrhage: Emerging Cutting-Edge Advancements in Surgical Robots, Regenerative Medicine, and Neurorehabilitation Techniques. Transl Stroke Res 2024. doi:10.1007/s12975-024-01244-x 42. Bao D, Ni S, Chang B, Zhang W, Zhang H, Niu C. Short-term outcomes of robot-assisted minimally invasive surgery for brainstem hemorrhage: A case-control study. Heliyon 2024; 10 (4):e25912. doi:10.1016/j.heliyon.2024.e25912 43. Zhang S, Chen T, Han B, Zhu W. A Retrospective Study of Puncture and Drainage for Primary Brainstem Hemorrhage With the Assistance of a Surgical Robot. Neurologist 2023; 28 (2):73-79. doi:10.1097/NRL.0000000000000445 44. Wu S, Wang H, Wang J, Hu F, Jiang W, Lei T, et al. Effect of Robot-Assisted Neuroendoscopic Hematoma Evacuation Combined Intracranial Pressure Monitoring for the Treatment of Hypertensive Intracerebral Hemorrhage. Front Neurol 2021; 12:722924. doi:10.3389/fneur.2021.722924 45. Tran DK, Paff M, Mnatsakanyan L, Sen-Gupta I, Lin JJ, Hsu FPK, et al. A Novel Robotic-Assisted Technique to Implant the Responsive Neurostimulation System. Oper Neurosurg (Hagerstown) 2020; 18 (6):728-735. doi:10.1093/ons/opz226 46. Karas PJ, Giridharan N, Treiber JM, Prablek MA, Khan AB, Shofty B, et al. Accuracy and Workflow Improvements for Responsive Neurostimulation Hippocampal Depth Electrode Placement Using Robotic Stereotaxy. Front Neurol 2020; 11:590825. doi:10.3389/fneur.2020.590825 47. Gonzalez-Martinez J, Bulacio J, Thompson S, Gale J, Smithason S, Najm I, et al. Technique, Results, and Complications Related to Robot-Assisted Stereoelectroencephalography. Neurosurgery 2016; 78 (2):169-180. doi:10.1227/NEU.0000000000001034 48. Brandmeir N. Commentary: Frameless ROSA(R) Robot-Assisted Lead Implantation for Deep Brain Stimulation: Technique and Accuracy. Oper Neurosurg (Hagerstown) 2020; 19 (1):E21. doi:10.1093/ons/opz325 49. Liu L, Mariani SG, De Schlichting E, Grand S, Lefranc M, Seigneuret E, et al. Frameless ROSA(R) Robot-Assisted Lead Implantation for Deep Brain Stimulation: Technique and Accuracy. Oper Neurosurg (Hagerstown) 2020; 19 (1):57-64. doi:10.1093/ons/opz320 50. Miller BA, Salehi A, Limbrick DD, Jr., Smyth MD. Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J Neurosurg Pediatr 2017; 20 (4):364-370. doi:10.3171/2017.5.PEDS1782 51. Liang L, Li X, Dong H, Gong X, Wang G. A comparative study on the efficacy of robot of stereotactic assistant and frame-assisted stereotactic drilling, drainage for intracerebral hematoma in patients with hypertensive intracerebral hemorrhage. Pak J Med Sci 2022; 38 (7):1796-1801. doi:10.12669/pjms.38.7.5481 52. Wang Y, Jin H, Gong S, Yang X, Sun X, Xu M, et al. Efficacy Analysis of Robot-Assisted Minimally Invasive Surgery for Small-Volume Spontaneous Thalamic Hemorrhage. World Neurosurg 2019; 131:e543-e549. doi:10.1016/j.wneu.2019.07.224 53. Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke 1996; 27 (8):1304-1305. doi:10.1161/01.str.27.8.1304 54. Hemphill JC, 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke 2001; 32 (4):891-897. doi:10.1161/01.str.32.4.891 55. Luh HT, Zhu C, Kuo LT, Lo WL, Liu HW, Su YK, et al. Application of Robotic Stereotactic Assistance (ROSA) for spontaneous intracerebral hematoma aspiration and thrombolytic catheter placement. J Formos Med Assoc 2024. doi:10.1016/j.jfma.2024.05.018 56. Xiao B, Wu FF, Zhang H, Ma YB. A randomized study of urgent computed tomography-based hematoma puncture and aspiration in the emergency department and subsequent evacuation using craniectomy versus craniectomy only. J Neurosurg 2012; 117 (3):566-573. doi:10.3171/2012.5.JNS111611 57. Oh CH, Shim YS, Yoon SH, Hyun D, Park H, Kim E. Early Decompression of Acute Subdural Hematoma for Postoperative Neurological Improvement: A Single Center Retrospective Review of 10 Years. Korean J Neurotrauma 2016; 12 (1):11-17. doi:10.13004/kjnt.2016.12.1.11 58. Moussa WM, Khedr W. Decompressive craniectomy and expansive duraplasty with evacuation of hypertensive intracerebral hematoma, a randomized controlled trial. Neurosurg Rev 2017; 40 (1):115-127. doi:10.1007/s10143-016-0743-6 59. Li Y, Yang R, Li Z, Yang Y, Tian B, Zhang X, et al. Surgical Evacuation of Spontaneous Supratentorial Lobar Intracerebral Hemorrhage: Comparison of Safety and Efficacy of Stereotactic Aspiration, Endoscopic Surgery, and Craniotomy. World Neurosurg 2017; 105:332-340. doi:10.1016/j.wneu.2017.05.134 60. Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019; 393 (10175):1021-1032. doi:10.1016/S0140-6736(19)30195-3 61. Wang WZ, Jiang B, Liu HM, Li D, Lu CZ, Zhao YD, et al. Minimally invasive craniopuncture therapy vs. conservative treatment for spontaneous intracerebral hemorrhage: results from a randomized clinical trial in China. Int J Stroke 2009; 4 (1):11-16. doi:10.1111/j.1747-4949.2009.00239.x 62. Hannah TC, Kellner R, Kellner CP. Minimally Invasive Intracerebral Hemorrhage Evacuation Techniques: A Review. Diagnostics (Basel) 2021; 11 (3). doi:10.3390/diagnostics11030576 63. Pan J, Chartrain AG, Scaggiante J, Spiotta AM, Tang Z, Wang W, et al. A Compendium of Modern Minimally Invasive Intracerebral Hemorrhage Evacuation Techniques. Oper Neurosurg (Hagerstown) 2020; 18 (6):710-720. doi:10.1093/ons/opz308 64. Alan N, Patel A, Abou-Al-Shaar H, Agarwal N, Zenonos GA, Jankowitz BT, et al. Intraparenchymal hematoma and intraventricular catheter placement using robotic stereotactic assistance (ROSA): A single center preliminary experience. J Clin Neurosci 2021; 91:391-395. doi:10.1016/j.jocn.2021.04.006 65. Alan N, Lee P, Ozpinar A, Gross BA, Jankowitz BT. Robotic Stereotactic Assistance (ROSA) Utilization for Minimally Invasive Placement of Intraparenchymal Hematoma and Intraventricular Catheters. World Neurosurg 2017; 108:996 e997-996 e910. doi:10.1016/j.wneu.2017.09.027 66. Nelson JH, Brackett SL, Oluigbo CO, Reddy SK. Robotic Stereotactic Assistance (ROSA) for Pediatric Epilepsy: A Single-Center Experience of 23 Consecutive Cases. Children (Basel) 2020; 7 (8). doi:10.3390/children7080094 67. Hanley DF, Thompson RE, Muschelli J, Rosenblum M, McBee N, Lane K, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurol 2016; 15 (12):1228-1237. doi:10.1016/S1474-4422(16)30234-4 68. Fam MD, Hanley D, Stadnik A, Zeineddine HA, Girard R, Jesselson M, et al. Surgical Performance in Minimally Invasive Surgery Plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation Phase III Clinical Trial. Neurosurgery 2017; 81 (5):860-866. doi:10.1093/neuros/nyx123 69. Tan K, Peng Y, Li J, Liu C, Tao L. Long-term outcomes and cost-effectiveness evaluation of robot-assisted stereotactic hematoma drainage for spontaneous intracerebral hemorrhage. Front Neurol 2023; 14:1291634. doi:10.3389/fneur.2023.1291634 70. Medina Perez G, Tran MM, McDonald C, O'Donnell R, Cruz AI, Jr. Factors Affecting Patient Decision-Making Regarding Midshaft Clavicle Fracture Treatment. Cureus 2020; 12 (9):e10505. doi:10.7759/cureus.10505 71. Shinkunas LA, Klipowicz CJ, Carlisle EM. Shared decision making in surgery: a scoping review of patient and surgeon preferences. BMC Med Inform Decis Mak 2020; 20 (1):190. doi:10.1186/s12911-020-01211-0 72. Stout A, Hamer J, Sharples T, Tahmasebi F. Less Is More: A Narrative Review of Deciding When Surgical Intervention Should Be Withheld. Cureus 2022; 14 (3):e23285. doi:10.7759/cureus.23285 73. Sondag L, Schreuder F, Boogaarts HD, Rovers MM, Vandertop WP, Dammers R, et al. Neurosurgical Intervention for Supratentorial Intracerebral Hemorrhage. Ann Neurol 2020; 88 (2):239-250. doi:10.1002/ana.25732 74. Kellner CP, Song R, Ali M, Nistal DA, Samarage M, Dangayach NS, et al. Time to Evacuation and Functional Outcome After Minimally Invasive Endoscopic Intracerebral Hemorrhage Evacuation. Stroke 2021; 52 (9):e536-e539. doi:10.1161/STROKEAHA.121.034392 75. Sirh S, Park HR. Optimal Surgical Timing of Aspiration for Spontaneous Supratentorial Intracerebral Hemorrhage. J Cerebrovasc Endovasc Neurosurg 2018; 20 (2):96-105. doi:10.7461/jcen.2018.20.2.96 76. Lee KS. Natural history of chronic subdural haematoma. Brain Inj 2004; 18 (4):351-358. doi:10.1080/02699050310001645801 77. Yu J, Tang J, Chen M, Ren Q, He J, Tang M, et al. Traumatic subdural hygroma and chronic subdural hematoma: A systematic review and meta-analysis. J Clin Neurosci 2023; 107:23-33. doi:10.1016/j.jocn.2022.11.010 78. Nouri A, Gondar R, Schaller K, Meling T. Chronic Subdural Hematoma (cSDH): A review of the current state of the art. Brain Spine 2021; 1:100300. doi:10.1016/j.bas.2021.100300 79. Yamashima T, Friede RL. Why do bridging veins rupture into the virtual subdural space? J Neurol Neurosurg Psychiatry 1984; 47 (2):121-127. doi:10.1136/jnnp.47.2.121 80. Holl DC, Volovici V, Dirven CMF, Peul WC, van Kooten F, Jellema K, et al. Pathophysiology and Nonsurgical Treatment of Chronic Subdural Hematoma: From Past to Present to Future. World Neurosurg 2018; 116:402-411 e402. doi:10.1016/j.wneu.2018.05.037 81. Stanisic M, Aasen AO, Pripp AH, Lindegaard KF, Ramm-Pettersen J, Lyngstadaas SP, et al. Local and systemic pro-inflammatory and anti-inflammatory cytokine patterns in patients with chronic subdural hematoma: a prospective study. Inflamm Res 2012; 61 (8):845-852. doi:10.1007/s00011-012-0476-0 82. Nanko N, Tanikawa M, Mase M, Fujita M, Tateyama H, Miyati T, et al. Involvement of hypoxia-inducible factor-1alpha and vascular endothelial growth factor in the mechanism of development of chronic subdural hematoma. Neurol Med Chir (Tokyo) 2009; 49 (9):379-385. doi:10.2176/nmc.49.379 83. Shono T, Inamura T, Morioka T, Matsumoto K, Suzuki SO, Ikezaki K, et al. Vascular endothelial growth factor in chronic subdural haematomas. J Clin Neurosci 2001; 8 (5):411-415. doi:10.1054/jocn.2000.0951 84. Weigel R, Hohenstein A, Schilling L. Vascular endothelial growth factor concentration in chronic subdural hematoma fluid is related to computed tomography appearance and exudation rate. J Neurotrauma 2014; 31 (7):670-673. doi:10.1089/neu.2013.2884 85. Su GJ, Gao J, Wu CW, Zou JF, Zhang D, Zhu DL, et al. Serum Levels of MMP-8 and MMP-9 as Markers in Chronic Subdural Hematoma. J Clin Med 2022; 11 (4). doi:10.3390/jcm11040902 86. Frati A, Salvati M, Mainiero F, Ippoliti F, Rocchi G, Raco A, et al. Inflammation markers and risk factors for recurrence in 35 patients with a posttraumatic chronic subdural hematoma: a prospective study. J Neurosurg 2004; 100 (1):24-32. doi:10.3171/jns.2004.100.1.0024 87. Kipele M, Buchfelder M, Taudte RV, Stadlbauer A, Kinfe T, Bozhkov Y. Immunometabolic Profiling of Chronic Subdural Hematoma through Untargeted Mass Spectrometry Analysis: Preliminary Findings of a Novel Approach. Diagnostics (Basel) 2023; 13 (21). doi:10.3390/diagnostics13213345 88. Duan X, Wen Z, Shen H, Shen M, Chen G. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy. Oxid Med Cell Longev 2016; 2016:1203285. doi:10.1155/2016/1203285 89. Krenzlin H, Wesp D, Schmitt J, Frenz C, Kurz E, Masomi-Bornwasser J, et al. Decreased Superoxide Dismutase Concentrations (SOD) in Plasma and CSF and Increased Circulating Total Antioxidant Capacity (TAC) Are Associated with Unfavorable Neurological Outcome after Aneurysmal Subarachnoid Hemorrhage. J Clin Med 2021; 10 (6). doi:10.3390/jcm10061188 90. Endo H, Nito C, Kamada H, Yu F, Chan PH. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab 2007; 27 (5):975-982. doi:10.1038/sj.jcbfm.9600399 91. Zhang Y, Khan S, Liu Y, Wu G, Yong VW, Xue M. Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets. Front Immunol 2022; 13:847246. doi:10.3389/fimmu.2022.847246 92. Vasconcellos L, Pimentel-Coelho PM. Heme as an inducer of cerebral damage in hemorrhagic stroke: potential therapeutic implications. Neural Regen Res 2022; 17 (9):1961-1962. doi:10.4103/1673-5374.335148 93. Alonso-Pineiro JA, Gonzalez-Rovira A, Sanchez-Gomar I, Moreno JA, Duran-Ruiz MC. Nrf2 and Heme Oxygenase-1 Involvement in Atherosclerosis Related Oxidative Stress. Antioxidants (Basel) 2021; 10 (9). doi:10.3390/antiox10091463 94. Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Natl Acad Sci U S A 2009; 106 (13):5171-5176. doi:10.1073/pnas.0813132106 95. Gordon DM, Neifer KL, Hamoud AA, Hawk CF, Nestor-Kalinoski AL, Miruzzi SA, et al. Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor alpha. J Biol Chem 2020; 295 (29):9804-9822. doi:10.1074/jbc.RA120.013700 96. Creeden JF, Gordon DM, Stec DE, Hinds TD, Jr. Bilirubin as a metabolic hormone: the physiological relevance of low levels. Am J Physiol Endocrinol Metab 2021; 320 (2):E191-E207. doi:10.1152/ajpendo.00405.2020 97. Stec DE, John K, Trabbic CJ, Luniwal A, Hankins MW, Baum J, et al. Bilirubin Binding to PPARalpha Inhibits Lipid Accumulation. PLoS One 2016; 11 (4):e0153427. doi:10.1371/journal.pone.0153427 98. Matsumoto H, Ishikawa K, Itabe H, Maruyama Y. Carbon monoxide and bilirubin from heme oxygenase-1 suppresses reactive oxygen species generation and plasminogen activator inhibitor-1 induction. Mol Cell Biochem 2006; 291 (1-2):21-28. doi:10.1007/s11010-006-9190-y 99. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol 2009; 41 (3):251-260. doi:10.1165/rcmb.2009-0170TR 100. Kitazono M, Yokota H, Satoh H, Onda H, Matsumoto G, Fuse A, et al. Measurement of inflammatory cytokines and thrombomodulin in chronic subdural hematoma. Neurol Med Chir (Tokyo) 2012; 52 (11):810-815. doi:10.2176/nmc.52.810 101. Aoyama M, Osuka K, Usuda N, Watanabe Y, Kawaguchi R, Nakura T, et al. Expression of Mitogen-Activated Protein Kinases in Chronic Subdural Hematoma Outer Membranes. J Neurotrauma 2015; 32 (14):1064-1070. doi:10.1089/neu.2014.3594 102. Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Aoyama M, Niwa A, et al. Activation of Ras/MEK/ERK signaling in chronic subdural hematoma outer membranes. Brain Res 2012; 1489:98-103. doi:10.1016/j.brainres.2012.10.013 103. Osuka K, Ohmichi Y, Ohmichi M, Honma S, Suzuki C, Aoyama M, et al. Angiogenesis in the Outer Membrane of Chronic Subdural Hematomas through Thrombin-Cleaved Osteopontin and the Integrin alpha9 and Integrin beta1 Signaling Pathways. Biomedicines 2023; 11 (5). doi:10.3390/biomedicines11051440 104. Bellner L, Lebovics NB, Rubinstein R, Buchen YD, Sinatra E, Sinatra G, et al. Heme Oxygenase-1 Upregulation: A Novel Approach in the Treatment of Cardiovascular Disease. Antioxid Redox Signal 2020; 32 (14):1045-1060. doi:10.1089/ars.2019.7970 105. Drummond HA, Mitchell ZL, Abraham NG, Stec DE. Targeting Heme Oxygenase-1 in Cardiovascular and Kidney Disease. Antioxidants (Basel) 2019; 8 (6). doi:10.3390/antiox8060181 106. Immenschuh S, Schroder H. Heme oxygenase-1 and cardiovascular disease. Histol Histopathol 2006; 21 (6):679-685. doi:10.14670/HH-21.679 107. Otterbein LE, Foresti R, Motterlini R. Heme Oxygenase-1 and Carbon Monoxide in the Heart: The Balancing Act Between Danger Signaling and Pro-Survival. Circ Res 2016; 118 (12):1940-1959. doi:10.1161/CIRCRESAHA.116.306588 108. Wu ML, Ho YC, Lin CY, Yet SF. Heme oxygenase-1 in inflammation and cardiovascular disease. Am J Cardiovasc Dis 2011; 1 (2):150-158. 109. Araujo JA, Zhang M, Yin F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol 2012; 3:119. doi:10.3389/fphar.2012.00119 110. Kishimoto Y, Kondo K, Momiyama Y. The Protective Role of Heme Oxygenase-1 in Atherosclerotic Diseases. Int J Mol Sci 2019; 20 (15). doi:10.3390/ijms20153628 111. Martinez-Casales M, Hernanz R, Alonso MJ. Vascular and Macrophage Heme Oxygenase-1 in Hypertension: A Mini-Review. Front Physiol 2021; 12:643435. doi:10.3389/fphys.2021.643435 112. Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, et al. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 14 (1):137-167. doi:10.1089/ars.2010.3153 113. Rossi M, Thierry A, Delbauve S, Preyat N, Soares MP, Roumeguere T, et al. Specific expression of heme oxygenase-1 by myeloid cells modulates renal ischemia-reperfusion injury. Sci Rep 2017; 7 (1):197. doi:10.1038/s41598-017-00220-w 114. Wang T, Fang Y, Zhang X, Yang Y, Jin L, Li Z, et al. Heme Oxygenase-1 Alleviates Ischemia-Reperfusion Injury by Inhibiting Hepatocyte Pyroptosis after Liver Transplantation in Rats. Front Biosci (Landmark Ed) 2023; 28 (10):275. doi:10.31083/j.fbl2810275 115. Katada K, Takagi T, Iida T, Ueda T, Mizushima K, Fukui A, et al. Role and Potential Mechanism of Heme Oxygenase-1 in Intestinal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11 (3). doi:10.3390/antiox11030559 116. Kobayashi H, Takeno M, Saito T, Takeda Y, Kirino Y, Noyori K, et al. Regulatory role of heme oxygenase 1 in inflammation of rheumatoid arthritis. Arthritis Rheum 2006; 54 (4):1132-1142. doi:10.1002/art.21754 117. Naito Y, Takagi T, Yoshikawa T. Heme oxygenase-1: a new therapeutic target for inflammatory bowel disease. Aliment Pharmacol Ther 2004; 20 Suppl 1:177-184. doi:10.1111/j.1365-2036.2004.01992.x 118. Bonelli M, Savitskaya A, Steiner CW, Rath E, Bilban M, Wagner O, et al. Heme oxygenase-1 end-products carbon monoxide and biliverdin ameliorate murine collagen induced arthritis. Clin Exp Rheumatol 2012; 30 (1):73-78. 119. Kitamura A, Nishida K, Komiyama T, Doi H, Kadota Y, Yoshida A, et al. Increased level of heme oxygenase-1 in rheumatoid arthritis synovial fluid. Mod Rheumatol 2011; 21 (2):150-157. doi:10.1007/s10165-010-0372-9 120. Takagi T, Naito Y, Uchiyama K, Yoshikawa T. The role of heme oxygenase and carbon monoxide in inflammatory bowel disease. Redox Rep 2010; 15 (5):193-201. doi:10.1179/174329210X12650506623889 121. Fujioka K, Kalish F, Zhao H, Wong RJ, Stevenson DK. Heme oxygenase-1 deficiency promotes severity of sepsis in a non-surgical preterm mouse model. Pediatr Res 2018; 84 (1):139-145. doi:10.1038/s41390-018-0028-6 122. Fujioka K, Kalish F, Zhao H, Lu S, Wong S, Wong RJ, et al. Induction of Heme Oxygenase-1 Attenuates the Severity of Sepsis in a Non-Surgical Preterm Mouse Model. Shock 2017; 47 (2):242-250. doi:10.1097/SHK.0000000000000689 123. Rossi M, Delbauve S, Roumeguere T, Wespes E, Leo O, Flamand V, et al. HO-1 mitigates acute kidney injury and subsequent kidney-lung cross-talk. Free Radic Res 2019; 53 (9-10):1035-1043. doi:10.1080/10715762.2019.1668936 124. Rossi M, Piagnerelli M, Van Meerhaeghe A, Zouaoui Boudjeltia K. Heme oxygenase-1 (HO-1) cytoprotective pathway: A potential treatment strategy against coronavirus disease 2019 (COVID-19)-induced cytokine storm syndrome. Med Hypotheses 2020; 144:110242. doi:10.1016/j.mehy.2020.110242 125. Dolinay T, Choi AM, Ryter SW. Heme Oxygenase-1/CO as protective mediators in cigarette smoke- induced lung cell injury and chronic obstructive pulmonary disease. Curr Pharm Biotechnol 2012; 13 (6):769-776. doi:10.2174/138920112800399338 126. Even B, Fayad-Kobeissi S, Gagliolo JM, Motterlini R, Boczkowski J, Foresti R, et al. Heme oxygenase-1 induction attenuates senescence in chronic obstructive pulmonary disease lung fibroblasts by protecting against mitochondria dysfunction. Aging Cell 2018; 17 (6):e12837. doi:10.1111/acel.12837 127. Xia Z, Zhong W. Immune Regulation of Heme Oxygenase-1 in Allergic Airway Inflammation. Antioxidants (Basel) 2022; 11 (3). doi:10.3390/antiox11030465 128. Si Z, Wang X. The Neuroprotective and Neurodegeneration Effects of Heme Oxygenase-1 in Alzheimer's Disease. J Alzheimers Dis 2020; 78 (4):1259-1272. doi:10.3233/JAD-200720 129. Schipper HM. Heme oxygenase-1 in Alzheimer disease: a tribute to Moussa Youdim. J Neural Transm (Vienna) 2011; 118 (3):381-387. doi:10.1007/s00702-010-0436-1 130. Sun W, Zheng J, Ma J, Wang Z, Shi X, Li M, et al. Increased Plasma Heme Oxygenase-1 Levels in Patients With Early-Stage Parkinson's Disease. Front Aging Neurosci 2021; 13:621508. doi:10.3389/fnagi.2021.621508 131. Wu YH, Hsieh HL. Roles of Heme Oxygenase-1 in Neuroinflammation and Brain Disorders. Antioxidants (Basel) 2022; 11 (5). doi:10.3390/antiox11050923 132. Wang Y, Miao Y, Mir AZ, Cheng L, Wang L, Zhao L, et al. Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells. J Neurol Sci 2016; 368:223-230. doi:10.1016/j.jns.2016.07.010 133. Hettiarachchi N, Dallas M, Al-Owais M, Griffiths H, Hooper N, Scragg J, et al. Heme oxygenase-1 protects against Alzheimer's amyloid-beta(1-42)-induced toxicity via carbon monoxide production. Cell Death Dis 2014; 5 (12):e1569. doi:10.1038/cddis.2014.529 134. Hettiarachchi NT, Boyle JP, Dallas ML, Al-Owais MM, Scragg JL, Peers C. Heme oxygenase-1 derived carbon monoxide suppresses Abeta(1-42) toxicity in astrocytes. Cell Death Dis 2017; 8 (6):e2884. doi:10.1038/cddis.2017.276 135. Liu Y, Zhang Z, Luo B, Schluesener HJ, Zhang Z. Lesional accumulation of heme oxygenase-1+ microglia/macrophages in rat traumatic brain injury. Neuroreport 2013; 24 (6):281-286. doi:10.1097/WNR.0b013e32835f2810 136. Dey M, Chang AL, Wainwright DA, Ahmed AU, Han Y, Balyasnikova IV, et al. Heme oxygenase-1 protects regulatory T cells from hypoxia-induced cellular stress in an experimental mouse brain tumor model. J Neuroimmunol 2014; 266 (1-2):33-42. doi:10.1016/j.jneuroim.2013.10.012 137. Schallner N, Pandit R, LeBlanc R, 3rd, Thomas AJ, Ogilvy CS, Zuckerbraun BS, et al. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest 2015; 125 (7):2609-2625. doi:10.1172/JCI78443 138. Joshi JG, Clauberg M. Ferritin: an iron storage protein with diverse functions. Biofactors 1988; 1 (3):207-212. 139. Heula AL, Ohlmeier S, Sajanti J, Majamaa K. Characterization of chronic subdural hematoma fluid proteome. Neurosurgery 2013; 73 (2):317-331. doi:10.1227/01.neu.0000430323.24623.de 140. Jehuda S, Philipp T, Javier F, Carl M. Evidence-Based Treatment of Chronic Subdural Hematoma. In: Farid S, editor. Traumatic Brain Injury. Rijeka: IntechOpen; 2014. p. Ch. 12. 141. Malaguarnera L, Imbesi RM, Scuto A, D'Amico F, Licata F, Messina A, et al. Prolactin increases HO-1 expression and induces VEGF production in human macrophages. J Cell Biochem 2004; 93 (1):197-206. doi:10.1002/jcb.20167 142. Grinshtein N, Bamm VV, Tsemakhovich VA, Shaklai N. Mechanism of low-density lipoprotein oxidation by hemoglobin-derived iron. Biochemistry 2003; 42 (23):6977-6985. doi:10.1021/bi020647r 143. De Simone G, Varricchio R, Ruberto TF, di Masi A, Ascenzi P. Heme Scavenging and Delivery: The Role of Human Serum Albumin. Biomolecules 2023; 13 (3). doi:10.3390/biom13030575 144. Meegan JE, Bastarache JA, Ware LB. Toxic effects of cell-free hemoglobin on the microvascular endothelium: implications for pulmonary and nonpulmonary organ dysfunction. Am J Physiol Lung Cell Mol Physiol 2021; 321 (2):L429-L439. doi:10.1152/ajplung.00018.2021 145. Stanisic M, Hald J, Rasmussen IA, Pripp AH, Ivanovic J, Kolstad F, et al. Volume and densities of chronic subdural haematoma obtained from CT imaging as predictors of postoperative recurrence: a prospective study of 107 operated patients. Acta Neurochir (Wien) 2013; 155 (2):323-333; discussion 333. doi:10.1007/s00701-012-1565-0 146. Zawy Alsofy S, Lewitz M, Meyer K, Fortmann T, Wilbers E, Nakamura M, et al. Retrospective Analysis of Risk Factors for Recurrence of Chronic Subdural Haematoma after Surgery. J Clin Med 2024; 13 (3). doi:10.3390/jcm13030805 147. Miah IP, Tank Y, Rosendaal FR, Peul WC, Dammers R, Lingsma HF, et al. Radiological prognostic factors of chronic subdural hematoma recurrence: a systematic review and meta-analysis. Neuroradiology 2021; 63 (1):27-40. doi:10.1007/s00234-020-02558-x 148. Lin MS. Subdural Lesions Linking Additional Intracranial Spaces and Chronic Subdural Hematomas: A Narrative Review with Mutual Correlation and Possible Mechanisms behind High Recurrence. Diagnostics (Basel) 2023; 13 (2). doi:10.3390/diagnostics13020235 149. Kawakami Y, Chikama M, Tamiya T, Shimamura Y. Coagulation and fibrinolysis in chronic subdural hematoma. Neurosurgery 1989; 25 (1):25-29. doi:10.1097/00006123-198907000-00005 150. Huang M, Dai J, Zhong X, Wang JIN, Xu J, Du BO. The pathogenesis of chronic subdural hematoma in the perspective of neomembrane formation and related mechanisms. Biocell 2024; 48 (6):889-896. doi:https://doi.org/10.32604/biocell.2024.050097 151. Song Y, Wang Z, Liu L, Wang D, Zhang J. The level of circulating endothelial progenitor cells may be associated with the occurrence and recurrence of chronic subdural hematoma. Clinics (Sao Paulo) 2013; 68 (8):1084-1088. doi:10.6061/clinics/2013(08)04 152. Kawano N, Endo M, Saito M, Nakayama K, Beppu T. [Origin and pathological significance of smooth muscle cells and myofibroblasts in the subdural neomembrane]. Neurol Med Chir (Tokyo) 1986; 26 (5):361-368. doi:10.2176/nmc.26.361 153. Chu PY, Koh AP, Antony J, Huang RY. Applications of the Chick Chorioallantoic Membrane as an Alternative Model for Cancer Studies. Cells Tissues Organs 2022; 211 (2):222-237. doi:10.1159/000513039 154. Ferrando M, Gueron G, Elguero B, Giudice J, Salles A, Leskow FC, et al. Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis 2011; 14 (4):467-479. doi:10.1007/s10456-011-9230-4 155. Dulak J, Deshane J, Jozkowicz A, Agarwal A. Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation 2008; 117 (2):231-241. doi:10.1161/CIRCULATIONAHA.107.698316 156. Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL, et al. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med 2001; 7 (6):693-698. doi:10.1038/89068 157. Bussolati B, Ahmed A, Pemberton H, Landis RC, Di Carlo F, Haskard DO, et al. Bifunctional role for VEGF-induced heme oxygenase-1 in vivo: induction of angiogenesis and inhibition of leukocytic infiltration. Blood 2004; 103 (3):761-766. doi:10.1182/blood-2003-06-1974 158. Bussolati B, Mason JC. Dual role of VEGF-induced heme-oxygenase-1 in angiogenesis. Antioxid Redox Signal 2006; 8 (7-8):1153-1163. doi:10.1089/ars.2006.8.1153 159. Pias-Peleteiro J, Campos F, Castillo J, Sobrino T. Endothelial progenitor cells as a therapeutic option in intracerebral hemorrhage. Neural Regen Res 2017; 12 (4):558-561. doi:10.4103/1673-5374.205085 160. Pias-Peleteiro J, Perez-Mato M, Lopez-Arias E, Rodriguez-Yanez M, Blanco M, Campos F, et al. Increased Endothelial Progenitor Cell Levels are Associated with Good Outcome in Intracerebral Hemorrhage. Sci Rep 2016; 6:28724. doi:10.1038/srep28724 161. Wang J, Chen S, Yerrapragada SM, Zhang W, Bihl JC. Therapeutic effects of exosomes from angiotensin-converting enzyme 2-overexpressed endothelial progenitor cells on intracerebral hemorrhagic stroke. Brain Hemorrhages 2021; 2 (1):57-62. 162. Yasuda E, Mogami H, Matsuzaka S, Matsuzaka Y, Inohaya A, Takakura M, et al. Subchorionic hematoma changes the character of amnion mesenchymal cells into myofibroblasts. Placenta 2023; 141:94. 163. Cheng C, Haasdijk RA, Tempel D, den Dekker WK, Chrifi I, Blonden LA, et al. PDGF-induced migration of vascular smooth muscle cells is inhibited by heme oxygenase-1 via VEGFR2 upregulation and subsequent assembly of inactive VEGFR2/PDGFRbeta heterodimers. Arterioscler Thromb Vasc Biol 2012; 32 (5):1289-1298. doi:10.1161/ATVBAHA.112.245530 164. Durante W. Targeting Heme Oxygenase-1 in the Arterial Response to Injury and Disease. Antioxidants (Basel) 2020; 9 (9). doi:10.3390/antiox9090829 165. Rodriguez AI, Gangopadhyay A, Kelley EE, Pagano PJ, Zuckerbraun BS, Bauer PM. HO-1 and CO decrease platelet-derived growth factor-induced vascular smooth muscle cell migration via inhibition of Nox1. Arterioscler Thromb Vasc Biol 2010; 30 (1):98-104. doi:10.1161/ATVBAHA.109.197822 166. Peyton KJ, Shebib AR, Azam MA, Liu XM, Tulis DA, Durante W. Bilirubin inhibits neointima formation and vascular smooth muscle cell proliferation and migration. Front Pharmacol 2012; 3:48. doi:10.3389/fphar.2012.00048 167. Vogel ME, Zucker SD. Bilirubin acts as an endogenous regulator of inflammation by disrupting adhesion molecule-mediated leukocyte migration. Inflamm Cell Signal 2016; 3 (1). doi:10.14800/ics.1178 168. Tsai MH, Lee CW, Hsu LF, Li SY, Chiang YC, Lee MH, et al. CO-releasing molecules CORM2 attenuates angiotensin II-induced human aortic smooth muscle cell migration through inhibition of ROS/IL-6 generation and matrix metalloproteinases-9 expression. Redox Biol 2017; 12:377-388. doi:10.1016/j.redox.2017.02.019 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96682 | - |
| dc.description.abstract | 顱內出血(Intracranial Hemorrhage)是一項重大臨床挑戰,臨床醫師們需要在有效控制出血造成的顱內壓升高、中樞神經系統次級傷害與降低手術風險之間努力取得平衡。此外,若病患需要接受積極侵入性的手術治療,在術後重新恢復使用抗凝血藥物以預防缺血性中風之時機與可能面臨再出血高復發率的矛盾困境中,也常會令臨床醫師陷入兩難,尤其是針對大多擁有諸多共病症且好發於高齡族群的慢性硬腦膜下血腫(Chronic Subdural Hematomas, CSDH)顱內出血患者,因此,本論文針對顱內出血這個臨床重要議題,從以下兩方面進行探討:
1)從臨床處置角度出發,深入分析比較臨床上最新的機器人立體定位輔助(Robotic Stereotactic Assistance, ROSA)手術,探討其在顱內出血手術處置中的有效性與安全性; 2)從轉譯醫學研究角度深入,特別針對顱內出血中的CSDH病患族群進行臨床檢體分析,希望能找到影響此出血疾病的關鍵分子,並進一步探討顱內出血的致病機轉。 在第一個臨床處置部分,使用了ROSA手術來評估其對自發性顱內出血手術結果的影響,並建立標準化手術流程。研究結果顯示,ROSA手術顯著提升了手術精確度,減少術中失血,縮短手術時間,並改善術後恢復率。得益於穩定的機械手臂,結合精確的GPS (Global Positioning System) 導航和即時影像的神經外科規劃導引系統,所有手術患者均無重大併發症,且術後神經學功能均獲得改善。此外,基於累積的臨床經驗,我更進一步建立了ROSA手術顱內出血吸除與置放導管溶栓的臨床治療流程,將以術前計畫、術中程序及術後管理三大要點分述之。 為了更深入了解顱內出血,我對93名CSDH患者收集手術檢體並進行了一項回溯性分析。該分析顯示,第一型血鐵質氧化酶 (Heme Oxygenase-1, HO-1) 是與CSDH厚度獨立負相關的風險因子。隨著HO-1濃度增加100 ng/mL,CSDH厚度約減少8.9 mm。同時,我進一步深入探討CSDH的分子醫學致病機轉,特別關注 HO-1在血管新生與微血管滲漏…等病理過程中之作用。雞胚絨毛尿囊膜(Chorioallantoic Membrane, CAM)實驗結果顯示,低HO-1濃度的血腫上清液會促進血管新生與微血管滲漏。值得注意的是,高HO-1濃度的血腫上清液中,並無此現象.這表明CSDH上清液中的HO-1可能有助於穩定新生膜 (Neomembranes) 上之新生血管,減少血管過度滲透性,並防止進一步的微血管滲漏。此外,後續針對內皮前驅細胞(Endothelial Progenitor Cells, EPCs)、纖維母細胞向肌纖維母細胞轉化(Fibroblast-to-Myofibroblast Transition, FMT)及人類硬腦膜纖維母細胞的實驗也支持HO-1在新生膜上針對新生血管的作用。結果顯示,HO-1可以影響EPCs與纖維母細胞的分化,調節FMT過程,並抑制人類硬腦膜纖維母細胞的遷移能力,進而支持其在維持血管穩定性及防止血腫過度增厚方面的重要性。 總結來說,這項從臨床到基礎轉譯醫學研究的整合型研究,不僅增進了我們對顱內出血之血腫病理學及手術處置的理解,也為未來的相關研究奠定了基礎。持續改良新手術技術與提高血腫液中HO-1之濃度是否將有助於改善顱內出血之預後。 | zh_TW |
| dc.description.abstract | Intracranial Hemorrhage (ICH) presents a significant clinical challenge, requiring clinicians to carefully balance effective control of the elevated intracranial pressure caused by the hemorrhage, prevention of secondary damage to the central nervous system, and minimizing the risks associated with surgery. Additionally, for patients requiring aggressive invasive surgical treatment, the timing of resuming anticoagulation therapy for ischemic stroke prevention postoperatively, while facing the dilemma of high recurrence rates of rebleeding, often presents a clinical conundrum. This dilemma is particularly relevant in patients with chronic subdural hematomas (CSDH), which predominantly affect the elderly population with multiple comorbidities. Therefore, this thesis explores the important clinical issue of intracranial hemorrhage from the following two perspectives:
1. From a clinical management perspective, an in-depth analysis and comparison of the latest robotic stereotactic assistance (ROSA) surgery was conducted to evaluate its efficacy and safety in the management of ICH. 2. From a translational research perspective, clinical specimen analyses were performed on CSDH patient populations, with the aim of identifying key molecules influencing this hemorrhagic condition and further investigating the pathogenic mechanisms of intracranial hemorrhage. In the clinical management section, ROSA surgery was employed to assess its impact on surgical outcomes in spontaneous intracranial hemorrhage, and a standardized surgical protocol was established. The results demonstrated that ROSA surgery significantly enhanced surgical precision, reduced intraoperative blood loss, shortened operation times, and improved postoperative recovery rates. The stable robotic arm, combined with precise Global Positioning System (GPS) navigation and real-time image-guided neurosurgical planning, contributed to the fact that none of the surgical patients experienced major complications, and postoperative neurological function improved in all cases. Additionally, based on accumulated clinical experience, a clinical treatment protocol was developed for ROSA-guided hematoma aspiration and catheter-based thrombolysis, with a focus on preoperative planning, intraoperative procedures, and postoperative management. To gain further insight into intracranial hemorrhage, surgical specimens from 93 CSDH patients were collected for a retrospective analysis. The analysis revealed that heme oxygenase-1 (HO-1) was an independent risk factor negatively associated with CSDH thickness. As HO-1 concentrations increased by 100 ng/mL, CSDH thickness decreased by approximately 8.9 mm. Additionally, an in-depth investigation of the molecular pathogenesis of CSDH was conducted, particularly focusing on the role of HO-1 in pathological processes such as angiogenesis and microvascular leakage. The results from the chick chorioallantoic membrane (CAM) assay indicated that low HO-1 concentrations in hematoma supernatant promoted angiogenesis and microvascular leakage. Notably, these effects were absent in supernatants with high HO-1 concentrations. This suggests that HO-1 in CSDH supernatant may help stabilize the neomembrane vasculature, reduce excessive vascular permeability, and prevent further microvascular leakage. Furthermore, subsequent experiments involving endothelial progenitor cells (EPCs), fibroblast-to-myofibroblast transition (FMT), and human dural fibroblasts supported the role of HO-1 in modulating neovascularization on the neomembrane. The results indicated that HO-1 could influence the differentiation of EPCs and fibroblasts, regulate the FMT process, and inhibit the migration ability of human dural fibroblasts, thereby supporting its importance in maintaining vascular stability and preventing excessive hematoma thickening. In conclusion, this integrated study, ranging from clinical to translational research, not only enhances my understanding of hematoma pathophysiology and surgical management in intracranial hemorrhage but also lays the foundation for future related research. Continued improvements in novel surgical techniques and elevating HO-1 concentrations in hematoma fluid may potentially improve intracranial hemorrhage outcomes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:30:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:30:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目 次
口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v Chapter 1 1 Introduction 1 1.1 Epidemiology and Pathophysiology of Spontaneous ICH 1 1.2 Epidemiology and Historical Perspectives of CSDH 3 1.3 Pathophysiology and Symptoms of CSDH 5 1.4 Current Treatment Approaches 7 1.5 Robotic Stereotactic Assistance (ROSA) 8 1.6 The Main Objectives of This Research Thesis: From Clinical Treatment to Basic Research 11 Chapter 2 14 Application of ROSA for Spontaneous ICH Aspiration and Thrombolytic Catheter Placement: Safety, Efficacy, Functional Outcomes, and Optimal Treatment Workflow in Clinical Practice 14 2.1 Background and Aims 14 2.1.1 Enhancing Neurosurgical Precision with ROSA One® Brain 14 2.1.2 Thesis Aims in Chapter 2 14 2.2 Materials and Methods 16 2.2.1 Study design and participant enrollment 16 2.2.2 Procedure of ROSA-guided ICH aspiration 17 2.2.3 Numerical Calculation and Statistical Analysis 19 2.3 Results 20 2.3.1 Demographic Characteristics and Surgical Outcomes 21 2.3.2 Case Representation 22 2.3.2.1 Representative Case 1 22 2.3.2.2 Representative Case 2 24 2.3.2.3 Representative Case 3 25 2.3.3 Clinical Treatment Workflow for ROSA-Guided ICH Aspiration 27 2.4 Discussion 29 2.5 Conclusions 37 Chapter 3 38 Heme Oxygenase-1 Concentrations in Hematoma Fluid Is Negatively Correlated with CSDH Thickness: Evidence from A Retrospective Study of 93 patients 38 3.1 Background and Aims 38 3.1.1 The Pathogenesis of CSDH and Its Relationship with Traumatic Subdural Lesions 39 3.1.2 The increased thickness and volume of hematoma during CSDH development 40 3.1.3 The oxidative and inflammatory stress causes a vicious cycle of re-bleeding and hematoma expansion 40 3.1.4 Antioxidant Defenses in Preventing Hematoma Formation 41 3.1.5 Biological role of heme oxygenase-1 (HO-1) 43 3.1.6 The Protective Role of HO-1 Across Diverse Diseases 44 3.1.7 Thesis Aim in Chapter 3 46 3.2 Materials and Methods 47 3.2.1 Study Design and CSDH Patients 47 3.2.2 Measurement of HO-1 Concentrations in Hematoma Fluid in CSDH Patients 48 3.2.3 Statistical Analysis 49 3.3 Results 50 3.3.1 Clinical Characteristics of 93 CSDH Patients 50 3.3.2 HO-1 levels significantly correlated with the hematoma thickness in CSDH 51 3.3.3 Negative linear correlation between HO-1 levels and CSDH thickness 52 3.4 Discussion 53 3.5 Conclusion 56 Chapter 4 58 Heme Oxygenase-1 attenuates during development of chronic subdural hematoma 58 4.1 Background and Aims 58 4.1.1 Multifactorial Mechanisms in the Development of CSDH: Coagulation, Fibrinolysis, Inflammation, and Neovascularization 58 4.1.2 Importance of Neomembrane Formation and Neovascularization in the Development of CSDH 59 4.1.3 HO-1 May be a Guardian Against Neomembrane Instability in CSDH 60 4.1.4 Thesis Aim in Chapter 4 60 4.2 Materials and Methods 61 4.2.1 Chick Chorioallantoic Membrane (CAM) Angiogenesis Assay Procedure 61 4.2.2 Immunofluorescence Staining of CSDH Outer Membranes 62 4.2.3 Morphologic Changes of Fibroblast in Response to CSDH Fluids 63 4.2.4 Western Blotting Analysis 63 4.2.5 Isolation, Cultivation, and Characterization of EPCs 64 4.3 Results 66 4.3.1 HO-1 in CSDH Fluid Reduced Angiogenesis and Microvascular Leakage 66 4.3.2 HO-1 Suppresses Fibroblast-Myofibroblast Transition Induced by CSDH Fluid 67 4.3.3 Effect of Low HO-1 CSDH Fluid on EPC Vasculogenesis: Morphological Changes and Implications 69 4.3.4 Enhancement of Migration Ability in Dura-Derived Fibroblasts by CSDH Fluid is Suppressed by Endogenous HO-1 70 4.4 Discussion 72 4.5 Conclusions 76 Chapter 5 77 General Discussion, Perspectives, and Conclusion 77 5.1 Implications of This Research Thesis for Enhancing Neurosurgical Outcomes: Bridging Clinical Treatment and Molecular Investigation 77 5.2 Summary and Perspective of This Research Thesis 78 5.3 General Conclusions 81 References 83 | - |
| dc.language.iso | en | - |
| dc.subject | 第一型血鐵質氧化酶 | zh_TW |
| dc.subject | 雞胚絨毛尿囊膜 | zh_TW |
| dc.subject | 血管新生 | zh_TW |
| dc.subject | 微血管滲漏 | zh_TW |
| dc.subject | 顱內出血 | zh_TW |
| dc.subject | 慢性硬腦膜下血腫 | zh_TW |
| dc.subject | 機器人立體定位輔助手術 | zh_TW |
| dc.subject | Angiogenesis | en |
| dc.subject | Microvascular leakage | en |
| dc.subject | Heme oxygenase-1 | en |
| dc.subject | Robotic stereotactic assistance surgery | en |
| dc.subject | Chronic subdural hematomas | en |
| dc.subject | Intracranial hemorrhage | en |
| dc.subject | Chick chorioallantoic membrane | en |
| dc.title | 慢性硬腦膜下血腫潛在分子機制探索:從臨床機器人立體定位輔助手術治療到第一型血鐵質氧化酶在血管新生和微血管滲漏的關鍵作用 | zh_TW |
| dc.title | Exploration of the Potential Molecular Mechanism of Chronic Subdural Hematomas: From Clinical Robotic Stereotactic Assistance Surgical Treatment to the Pivotal Role of Heme Oxygenase-1 in Neovascularization and Microvascular Leakage | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 謝松蒼 | zh_TW |
| dc.contributor.coadvisor | Sung-Tsang Hsieh | en |
| dc.contributor.oralexamcommittee | 黃凱文;林泰元;朱大同;張丞圭 | zh_TW |
| dc.contributor.oralexamcommittee | Kai-Wen Huang;Thai-Yen Ling;Da-Tong Ju;Cheng-Kuei Chang | en |
| dc.subject.keyword | 顱內出血,慢性硬腦膜下血腫,機器人立體定位輔助手術,第一型血鐵質氧化酶,微血管滲漏,血管新生,雞胚絨毛尿囊膜, | zh_TW |
| dc.subject.keyword | Intracranial hemorrhage,Chronic subdural hematomas,Robotic stereotactic assistance surgery,Heme oxygenase-1,Microvascular leakage,Angiogenesis,Chick chorioallantoic membrane, | en |
| dc.relation.page | 140 | - |
| dc.identifier.doi | 10.6342/NTU202404545 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-11-06 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 58.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
