請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96675完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳玉怜 | zh_TW |
| dc.contributor.advisor | Yuh-Lien Chen | en |
| dc.contributor.author | 李紫琳 | zh_TW |
| dc.contributor.author | Tzu-Lin Lee | en |
| dc.date.accessioned | 2025-02-20T16:29:04Z | - |
| dc.date.available | 2025-02-21 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-21 | - |
| dc.identifier.citation | Algoet, M., Janssens, S., Himmelreich, U., Gsell, W., Pusovnik, M., Van den Eynde, J., & Oosterlinck, W. (2023). Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med, 33(6), 357-366. https://doi.org/10.1016/j.tcm.2022.02.005
Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., Chiuve, S. E., Cushman, M., Delling, F. N., Deo, R., de Ferranti, S. D., Ferguson, J. F., Fornage, M., Gillespie, C., Isasi, C. R., Jiménez, M. C., Jordan, L. C., Judd, S. E., Lackland, D.,…Muntner, P. (2018). Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation, 137(12), e67-e492. https://doi.org/10.1161/cir.0000000000000558 Brook, R. D., & Rajagopalan, S. (2009). Particulate matter, air pollution, and blood pressure. J Am Soc Hypertens, 3(5), 332-350. https://doi.org/10.1016/j.jash.2009.08.005 Bugger, H., & Pfeil, K. (2020). Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis, 1866(7), 165768. https://doi.org/10.1016/j.bbadis.2020.165768 Cao, J., Qin, G., Shi, R., Bai, F., Yang, G., Zhang, M., & Lv, J. (2016). Overproduction of reactive oxygen species and activation of MAPKs are involved in apoptosis induced by PM2.5 in rat cardiac H9c2 cells. J Appl Toxicol, 36(4), 609-617. https://doi.org/10.1002/jat.3249 Chen, Q., Zhou, Y., Richards, A. M., & Wang, P. (2016). Up-regulation of miRNA-221 inhibits hypoxia/reoxygenation-induced autophagy through the DDIT4/mTORC1 and Tp53inp1/p62 pathways. Biochem Biophys Res Commun, 474(1), 168-174. https://doi.org/10.1016/j.bbrc.2016.04.090 Chistiakov, D. A., Sobenin, I. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. Biomed Res Int, 2015, 354517. https://doi.org/10.1155/2015/354517 Corsten, M. F., Heggermont, W., Papageorgiou, A. P., Deckx, S., Tijsma, A., Verhesen, W., van Leeuwen, R., Carai, P., Thibaut, H. J., Custers, K., Summer, G., Hazebroek, M., Verheyen, F., Neyts, J., Schroen, B., & Heymans, S. (2015). The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. Eur Heart J, 36(42), 2909-2919. https://doi.org/10.1093/eurheartj/ehv321 Cozzi, E., Hazarika, S., Stallings, H. W., 3rd, Cascio, W. E., Devlin, R. B., Lust, R. M., Wingard, C. J., & Van Scott, M. R. (2006). Ultrafine particulate matter exposure augments ischemia-reperfusion injury in mice. Am J Physiol Heart Circ Physiol, 291(2), H894-903. https://doi.org/10.1152/ajpheart.01362.2005 de Bont, J., Jaganathan, S., Dahlquist, M., Persson, Å., Stafoggia, M., & Ljungman, P. (2022). Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J Intern Med, 291(6), 779-800. https://doi.org/10.1111/joim.13467 Emanueli, C., Shearn, A. I., Angelini, G. D., & Sahoo, S. (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol, 71, 24-30. https://doi.org/10.1016/j.vph.2015.02.008 Feng, L., Wei, J., Liang, S., Sun, Z., & Duan, J. (2020). miR-205/IRAK2 signaling pathway is associated with urban airborne PM(2.5)-induced myocardial toxicity. Nanotoxicology, 14(9), 1198-1212. https://doi.org/10.1080/17435390.2020.1813824 Fernandez, S., Risolino, M., Mandia, N., Talotta, F., Soini, Y., Incoronato, M., Condorelli, G., Banfi, S., & Verde, P. (2015). miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene, 34(25), 3240-3250. https://doi.org/10.1038/onc.2014.267 Ferrari, L., Iodice, S., Cantone, L., Solazzo, G., Dioni, L., Hoxha, M., Vicenzi, M., Mozzoni, P., Bergamaschi, E., Persico, N., & Bollati, V. (2022). Extracellular vesicles and their miRNA contents counterbalance the pro-inflammatory effect of air pollution during physiological pregnancy: A focus on Syncytin-1 positive vesicles. Environ Int, 169, 107502. https://doi.org/10.1016/j.envint.2022.107502 Guo, M., Li, B., Peng, Q., Yao, R., Wu, Y., Ma, P., Du, C., Liu, H., Shu, Z., Qin, S., Yang, X., & Yu, W. (2023). Co-exposure to particulate matter and humidity increases blood pressure in hypertensive mice via the TRPV4-cPLA(2)-COX2 pathway. Ecotoxicol Environ Saf, 255, 114800. https://doi.org/10.1016/j.ecoenv.2023.114800 Gustafsson, A. B., & Gottlieb, R. A. (2009). Autophagy in ischemic heart disease. Circ Res, 104(2), 150-158. https://doi.org/10.1161/circresaha.108.187427 Hacke, W., Kaste, M., Fieschi, C., Toni, D., Lesaffre, E., von Kummer, R., Boysen, G., Bluhmki, E., Höxter, G., Mahagne, M. H., & et al. (1995). Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). Jama, 274(13), 1017-1025. Hall, A. R., Burke, N., Dongworth, R. K., & Hausenloy, D. J. (2014). Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol, 171(8), 1890-1906. https://doi.org/10.1111/bph.12516 Hamacher-Brady, A., Brady, N. R., Logue, S. E., Sayen, M. R., Jinno, M., Kirshenbaum, L. A., Gottlieb, R. A., & Gustafsson, A. B. (2007). Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ, 14(1), 146-157. https://doi.org/10.1038/sj.cdd.4401936 Happo, M. S., Salonen, R. O., Hälinen, A. I., Jalava, P. I., Pennanen, A. S., Dormans, J. A., Gerlofs-Nijland, M. E., Cassee, F. R., Kosma, V. M., Sillanpää, M., Hillamo, R., & Hirvonen, M. R. (2010). Inflammation and tissue damage in mouse lung by single and repeated dosing of urban air coarse and fine particles collected from six European cities. Inhal Toxicol, 22(5), 402-416. https://doi.org/10.3109/08958370903527908 Holme, J. A., Brinchmann, B. C., Refsnes, M., Låg, M., & Øvrevik, J. (2019). Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health, 18(1), 74. https://doi.org/10.1186/s12940-019-0514-2 Huang, Z., Han, Z., Ye, B., Dai, Z., Shan, P., Lu, Z., Dai, K., Wang, C., & Huang, W. (2015). Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur J Pharmacol, 762, 1-10. https://doi.org/10.1016/j.ejphar.2015.05.028 Jiang, J., Liang, S., Zhang, J., Du, Z., Xu, Q., Duan, J., & Sun, Z. (2021). Melatonin ameliorates PM(2.5) -induced cardiac perivascular fibrosis through regulating mitochondrial redox homeostasis. J Pineal Res, 70(1), e12686. https://doi.org/10.1111/jpi.12686 Jin, Q., Li, R., Hu, N., Xin, T., Zhu, P., Hu, S., Ma, S., Zhu, H., Ren, J., & Zhou, H. (2018). DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol, 14, 576-587. https://doi.org/10.1016/j.redox.2017.11.004 Jneid, H., Addison, D., Bhatt, D. L., Fonarow, G. C., Gokak, S., Grady, K. L., Green, L. A., Heidenreich, P. A., Ho, P. M., Jurgens, C. Y., King, M. L., Kumbhani, D. J., & Pancholy, S. (2017). 2017 AHA/ACC Clinical Performance and Quality Measures for Adults With ST-Elevation and Non-ST-Elevation Myocardial Infarction: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. Circ Cardiovasc Qual Outcomes, 10(10). https://doi.org/10.1161/hcq.0000000000000032 Kalogeris, T., Baines, C. P., Krenz, M., & Korthuis, R. J. (2012). Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol, 298, 229-317. https://doi.org/10.1016/b978-0-12-394309-5.00006-7 Korchak, H. M., Rich, A. M., Wilkenfeld, C., Rutherford, L. E., & Weissmann, G. (1982). A carbocyanine dye, DiOC6(3), acts as a mitochondrial probe in human neutrophils. Biochem Biophys Res Commun, 108(4), 1495-1501. https://doi.org/10.1016/s0006-291x(82)80076-4 Kothapalli, D., Castagnino, P., Rader, D. J., Phillips, M. C., Lund-Katz, S., & Assoian, R. K. (2013). Apolipoprotein E-mediated cell cycle arrest linked to p27 and the Cox2-dependent repression of miR221/222. Atherosclerosis, 227(1), 65-71. https://doi.org/10.1016/j.atherosclerosis.2012.12.003 Lai, T. C., Lee, T. L., Chang, Y. C., Chen, Y. C., Lin, S. R., Lin, S. W., Pu, C. M., Tsai, J. S., & Chen, Y. L. (2020). MicroRNA-221/222 Mediates ADSC-Exosome-Induced Cardioprotection Against Ischemia/Reperfusion by Targeting PUMA and ETS-1. Front Cell Dev Biol, 8, 569150. https://doi.org/10.3389/fcell.2020.569150 Larson, E. A., German, D. M., Shatzel, J., & DeLoughery, T. G. (2019). Anticoagulation in the cardiac patient: A concise review. Eur J Haematol, 102(1), 3-19. https://doi.org/10.1111/ejh.13171 le Sage, C., Nagel, R., Egan, D. A., Schrier, M., Mesman, E., Mangiola, A., Anile, C., Maira, G., Mercatelli, N., Ciafrè, S. A., Farace, M. G., & Agami, R. (2007). Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. Embo j, 26(15), 3699-3708. https://doi.org/10.1038/sj.emboj.7601790 Lee, M., Ban, J. J., Kim, K. Y., Jeon, G. S., Im, W., Sung, J. J., & Kim, M. (2016). Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro. Biochem Biophys Res Commun, 479(3), 434-439. https://doi.org/10.1016/j.bbrc.2016.09.069 Lee, T. L., Lai, T. C., Lin, S. R., Lin, S. W., Chen, Y. C., Pu, C. M., Lee, I. T., Tsai, J. S., Lee, C. W., & Chen, Y. L. (2021). Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway. Theranostics, 11(7), 3131-3149. https://doi.org/10.7150/thno.52677 Lee, T. L., Lee, M. H., Chen, Y. C., Lee, Y. C., Lai, T. C., Lin, H. Y., Hsu, L. F., Sung, H. C., Lee, C. W., & Chen, Y. L. (2020). Vitamin D Attenuates Ischemia/Reperfusion-Induced Cardiac Injury by Reducing Mitochondrial Fission and Mitophagy. Front Pharmacol, 11, 604700. https://doi.org/10.3389/fphar.2020.604700 Li, X., Geng, J., Chen, Y., Chen, F., Liu, C., Xu, Q., Zhao, J., Hu, J., Xie, J., & Xu, B. (2017). Exposure to particulate matter induces cardiomyocytes apoptosis after myocardial infarction through NFκB activation. Biochem Biophys Res Commun, 488(1), 224-231. https://doi.org/10.1016/j.bbrc.2017.05.047 Li, Y., Xiao, Y., Shang, Y., Xu, C., Han, C., Hu, D., Han, J., & Wang, H. (2024). Exosomes derived from adipose tissue-derived stem cells alleviated H(2)O(2)-induced oxidative stress and endothelial-to-mesenchymal transition in human umbilical vein endothelial cells by inhibition of the mir-486-3p/Sirt6/Smad signaling pathway. Cell Biol Toxicol, 40(1), 39. https://doi.org/10.1007/s10565-024-09881-6 Luo, C. M., Feng, J., Zhang, J., Gao, C., Cao, J. Y., Zhou, G. L., Jiang, Y. J., Jin, X. Q., Yang, M. S., Pan, J. Y., & Wang, A. L. (2019). 1,25-Vitamin D3 protects against cooking oil fumes-derived PM2.5-induced cell damage through its anti-inflammatory effects in cardiomyocytes. Ecotoxicol Environ Saf, 179, 249-256. https://doi.org/10.1016/j.ecoenv.2019.04.064 Ma, T., Sun, J., Zhao, Z., Lei, W., Chen, Y., Wang, X., Yang, J., & Shen, Z. (2017). A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res Ther, 8(1), 124. https://doi.org/10.1186/s13287-017-0585-3 Mao, K., & Klionsky, D. J. (2013). Mitochondrial fission facilitates mitophagy in Saccharomyces cerevisiae. Autophagy, 9(11), 1900-1901. https://doi.org/10.4161/auto.25804 Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., Levine, B., & Sadoshima, J. (2007). Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res, 100(6), 914-922. https://doi.org/10.1161/01.Res.0000261924.76669.36 McKay, L. K., & White, J. P. (2021). The AMPK/p27(Kip1) Pathway as a Novel Target to Promote Autophagy and Resilience in Aged Cells. Cells, 10(6). https://doi.org/10.3390/cells10061430 Ming, Y., Zhou, X., Liu, G., Abudupataer, M., Zhu, S., Xiang, B., Yin, X., Lai, H., Sun, Y., Wang, C., Li, J., & Zhu, K. (2023). PM2.5 exposure exacerbates mice thoracic aortic aneurysm and dissection by inducing smooth muscle cell apoptosis via the MAPK pathway. Chemosphere, 313, 137500. https://doi.org/10.1016/j.chemosphere.2022.137500 Ni, H. M., Williams, J. A., & Ding, W. X. (2015). Mitochondrial dynamics and mitochondrial quality control. Redox Biol, 4, 6-13. https://doi.org/10.1016/j.redox.2014.11.006 Ning, R., Shi, Y., Jiang, J., Liang, S., Xu, Q., Duan, J., & Sun, Z. (2020). Mitochondrial dysfunction drives persistent vascular fibrosis in rats after short-term exposure of PM(2.5). Sci Total Environ, 733, 139135. https://doi.org/10.1016/j.scitotenv.2020.139135 Nuvolone, D., Balzi, D., Chini, M., Scala, D., Giovannini, F., & Barchielli, A. (2011). Short-term association between ambient air pollution and risk of hospitalization for acute myocardial infarction: results of the cardiovascular risk and air pollution in Tuscany (RISCAT) study. Am J Epidemiol, 174(1), 63-71. https://doi.org/10.1093/aje/kwr046 Papadopoulos, K. S., Piperi, C., & Korkolopoulou, P. (2024). Clinical Applications of Adipose-Derived Stem Cell (ADSC) Exosomes in Tissue Regeneration. Int J Mol Sci, 25(11). https://doi.org/10.3390/ijms25115916 Pei, Y. H., Chen, J., Wu, X., He, Y., Qin, W., He, S. Y., Chang, N., Jiang, H., Zhou, J., Yu, P., Shi, H. B., & Chen, X. H. (2020). LncRNA PEAMIR inhibits apoptosis and inflammatory response in PM2.5 exposure aggravated myocardial ischemia/reperfusion injury as a competing endogenous RNA of miR-29b-3p. Nanotoxicology, 14(5), 638-653. https://doi.org/10.1080/17435390.2020.1731857 Pellegrini, L., & Scorrano, L. (2007). A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death Differ, 14(7), 1275-1284. https://doi.org/10.1038/sj.cdd.4402145 Piao, M. J., Ahn, M. J., Kang, K. A., Ryu, Y. S., Hyun, Y. J., Shilnikova, K., Zhen, A. X., Jeong, J. W., Choi, Y. H., Kang, H. K., Koh, Y. S., & Hyun, J. W. (2018). Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol, 92(6), 2077-2091. https://doi.org/10.1007/s00204-018-2197-9 Pu, C. M., Liu, C. W., Liang, C. J., Yen, Y. H., Chen, S. H., Jiang-Shieh, Y. F., Chien, C. L., Chen, Y. C., & Chen, Y. L. (2017). Adipose-Derived Stem Cells Protect Skin Flaps against Ischemia/Reperfusion Injury via IL-6 Expression. J Invest Dermatol, 137(6), 1353-1362. https://doi.org/10.1016/j.jid.2016.12.030 Qiu, X., Wei, Y., Wang, Y., Di, Q., Sofer, T., Awad, Y. A., & Schwartz, J. (2020). Inverse probability weighted distributed lag effects of short-term exposure to PM(2.5) and ozone on CVD hospitalizations in New England Medicare participants - Exploring the causal effects. Environ Res, 182, 109095. https://doi.org/10.1016/j.envres.2019.109095 Rajagopalan, S., Brauer, M., Bhatnagar, A., Bhatt, D. L., Brook, J. R., Huang, W., Münzel, T., Newby, D., Siegel, J., & Brook, R. D. (2020). Personal-Level Protective Actions Against Particulate Matter Air Pollution Exposure: A Scientific Statement From the American Heart Association. Circulation, 142(23), e411-e431. https://doi.org/10.1161/cir.0000000000000931 Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 200(4), 373-383. https://doi.org/10.1083/jcb.201211138 Reiter, R. J., & Tan, D. X. (2003). Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res, 58(1), 10-19. https://doi.org/10.1016/s0008-6363(02)00827-1 Rikka, S., Quinsay, M. N., Thomas, R. L., Kubli, D. A., Zhang, X., Murphy, A. N., & Gustafsson Å, B. (2011). Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ, 18(4), 721-731. https://doi.org/10.1038/cdd.2010.146 Schantz, M. M., Cleveland, D., Heckert, N. A., Kucklick, J. R., Leigh, S. D., Long, S. E., Lynch, J. M., Murphy, K. E., Olfaz, R., Pintar, A. L., Porter, B. J., Rabb, S. A., Vander Pol, S. S., Wise, S. A., & Zeisler, R. (2016). Development of two fine particulate matter standard reference materials (<4 μm and <10 μm) for the determination of organic and inorganic constituents. Anal Bioanal Chem, 408(16), 4257-4266. https://doi.org/10.1007/s00216-016-9519-7 Schiattarella, G. G., & Hill, J. A. (2016). Therapeutic targeting of autophagy in cardiovascular disease. J Mol Cell Cardiol, 95, 86-93. https://doi.org/10.1016/j.yjmcc.2015.11.019 Shen, H., Lin, Z., Shi, H., Wu, L., Ma, B., Li, H., Yin, B., Tang, J., Yu, H., & Yin, X. (2020). MiR-221/222 promote migration and invasion, and inhibit autophagy and apoptosis by modulating ATG10 in aggressive papillary thyroid carcinoma. 3 Biotech, 10(8), 339. https://doi.org/10.1007/s13205-020-02326-x Sivakumar, B., AlAsmari, A. F., Ali, N., Waseem, M., & Kurian, G. A. (2022). Consequential Impact of Particulate Matter Linked Inter-Fibrillar Mitochondrial Dysfunction in Rat Myocardium Subjected to Ischemia Reperfusion Injury. Biology (Basel), 11(12). https://doi.org/10.3390/biology11121811 Song, R., Dasgupta, C., Mulder, C., & Zhang, L. (2022). MicroRNA-210 Controls Mitochondrial Metabolism and Protects Heart Function in Myocardial Infarction. Circulation, 145(15), 1140-1153. https://doi.org/10.1161/circulationaha.121.056929 Su, X., Tian, J., Li, B., Zhou, L., Kang, H., Pei, Z., Zhang, M., Li, C., Wu, M., Wang, Q., Han, B., Chu, C., Pang, Y., Ning, J., Zhang, B., Niu, Y., & Zhang, R. (2020). Ambient PM2.5 caused cardiac dysfunction through FoxO1-targeted cardiac hypertrophy and macrophage-activated fibrosis in mice. Chemosphere, 247, 125881. https://doi.org/10.1016/j.chemosphere.2020.125881 Sun, S. J., Wei, R., Li, F., Liao, S. Y., & Tse, H. F. (2021). Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem Cell Reports, 16(7), 1662-1673. https://doi.org/10.1016/j.stemcr.2021.05.003 Tavecchio, M., Simone, M., Bernasconi, S., Tognon, G., Mazzini, G., & Erba, E. (2008). Multi-parametric flow cytometric cell cycle analysis using TO-PRO-3 iodide (TP3): detailed protocols. Acta Histochem, 110(3), 232-244. https://doi.org/10.1016/j.acthis.2007.10.007 Togliatto, G., Trombetta, A., Dentelli, P., Cotogni, P., Rosso, A., Tschöp, M. H., Granata, R., Ghigo, E., & Brizzi, M. F. (2013). Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb ischemia via SOD-2-mediated miR-221/222 expression. J Am Heart Assoc, 2(6), e000376. https://doi.org/10.1161/jaha.113.000376 Tong, M., Zablocki, D., & Sadoshima, J. (2020). The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol, 142, 138-145. https://doi.org/10.1016/j.yjmcc.2020.04.015 van Hameren, G., Campbell, G., Deck, M., Berthelot, J., Gautier, B., Quintana, P., Chrast, R., & Tricaud, N. (2019). In vivo real-time dynamics of ATP and ROS production in axonal mitochondria show decoupling in mouse models of peripheral neuropathies. Acta Neuropathol Commun, 7(1), 86. https://doi.org/10.1186/s40478-019-0740-4 Vergara, N., de Mier, M. V. P., Rodelo-Haad, C., Revilla-González, G., Membrives, C., Díaz-Tocados, J. M., Martínez-Moreno, J. M., Torralbo, A. I., Herencia, C., Rodríguez-Ortiz, M. E., López-Baltanás, R., Richards, W. G., Felsenfeld, A., Almadén, Y., Martin-Malo, A., Ureña, J., Santamaría, R., Soriano, S., Rodríguez, M., & Muñoz-Castañeda, J. R. (2023). The direct effect of fibroblast growth factor 23 on vascular smooth muscle cell phenotype and function. Nephrol Dial Transplant, 38(2), 322-343. https://doi.org/10.1093/ndt/gfac220 Verjans, R., Peters, T., Beaumont, F. J., van Leeuwen, R., van Herwaarden, T., Verhesen, W., Munts, C., Bijnen, M., Henkens, M., Diez, J., de Windt, L. J., van Nieuwenhoven, F. A., van Bilsen, M., Goumans, M. J., Heymans, S., González, A., & Schroen, B. (2018). MicroRNA-221/222 Family Counteracts Myocardial Fibrosis in Pressure Overload-Induced Heart Failure. Hypertension, 71(2), 280-288. https://doi.org/10.1161/hypertensionaha.117.10094 Vriens, A., Nawrot, T. S., Saenen, N. D., Provost, E. B., Kicinski, M., Lefebvre, W., Vanpoucke, C., Van Deun, J., De Wever, O., Vrijens, K., De Boever, P., & Plusquin, M. (2016). Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva. Environ Health, 15(1), 80. https://doi.org/10.1186/s12940-016-0162-8 Wang, A., Zhang, H., Liang, Z., Xu, K., Qiu, W., Tian, Y., Guo, H., Jia, J., Xing, E., Chen, R., Xiang, Z., & Liu, J. (2016). U0126 attenuates ischemia/reperfusion-induced apoptosis and autophagy in myocardium through MEK/ERK/EGR-1 pathway. Eur J Pharmacol, 788, 280-285. https://doi.org/10.1016/j.ejphar.2016.06.038 Wang, C., Tu, Y., Yu, Z., & Lu, R. (2015). PM2.5 and Cardiovascular Diseases in the Elderly: An Overview. Int J Environ Res Public Health, 12(7), 8187-8197. https://doi.org/10.3390/ijerph120708187 Wang, H., Peng, X., Cao, F., Wang, Y., Shi, H., Lin, S., Zhong, W., & Sun, J. (2017). Cardiotoxicity and Mechanism of Particulate Matter 2.5 (PM2.5) Exposure in Offspring Rats During Pregnancy. Med Sci Monit, 23, 3890-3896. https://doi.org/10.12659/msm.903006 Wang, S., Wang, F., Yang, L., Li, Q., Huang, Y., Cheng, Z., Chu, H., Song, Y., Shang, L., Hao, W., & Wei, X. (2020). Effects of coal-fired PM(2.5) on the expression levels of atherosclerosis-related proteins and the phosphorylation level of MAPK in ApoE(-/-) mice. BMC Pharmacol Toxicol, 21(1), 34. https://doi.org/10.1186/s40360-020-00411-8 Wang, T., Li, T., Niu, X., Hu, L., Cheng, J., Guo, D., Ren, H., Zhao, R., Ji, Z., Liu, P., Li, Y., & Guo, Y. (2023). ADSC-derived exosomes attenuate myocardial infarction injury by promoting miR-205-mediated cardiac angiogenesis. Biol Direct, 18(1), 6. https://doi.org/10.1186/s13062-023-00361-1 Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 11(12), 872-884. https://doi.org/10.1038/nrm3013 White, J. P., Billin, A. N., Campbell, M. E., Russell, A. J., Huffman, K. M., & Kraus, W. E. (2018). The AMPK/p27(Kip1) Axis Regulates Autophagy/Apoptosis Decisions in Aged Skeletal Muscle Stem Cells. Stem Cell Reports, 11(2), 425-439. https://doi.org/10.1016/j.stemcr.2018.06.014 Wu, T., Tong, M., Chu, A., Wu, K., Niu, X., & Zhang, Z. (2022). PM2.5-Induced Programmed Myocardial Cell Death via mPTP Opening Results in Deteriorated Cardiac Function in HFpEF Mice. Cardiovasc Toxicol, 22(8), 746-762. https://doi.org/10.1007/s12012-022-09753-7 Xu, Y., Guo, W., Zeng, D., Fang, Y., Wang, R., Guo, D., Qi, B., Xue, Y., Xue, F., Jin, Z., Li, Y., & Zhang, M. (2021). Inhibiting miR-205 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Function, and Apoptosis. Oxid Med Cell Longev, 2021, 9986506. https://doi.org/10.1155/2021/9986506 Xu, Y., Tang, C., Tan, S., Duan, J., Tian, H., & Yang, Y. (2020). Cardioprotective effect of isorhamnetin against myocardial ischemia reperfusion (I/R) injury in isolated rat heart through attenuation of apoptosis. J Cell Mol Med, 24(11), 6253-6262. https://doi.org/10.1111/jcmm.15267 Yang, M., Linn, B. S., Zhang, Y., & Ren, J. (2019). Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis, 1865(9), 2293-2302. https://doi.org/10.1016/j.bbadis.2019.05.007 Yang, X., Feng, L., Zhang, Y., Hu, H., Shi, Y., Liang, S., Zhao, T., Fu, Y., Duan, J., & Sun, Z. (2018). Cytotoxicity induced by fine particulate matter (PM(2.5)) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotoxicol Environ Saf, 161, 198-207. https://doi.org/10.1016/j.ecoenv.2018.05.092 Yang, Y., & Lin, X. (2023). Potential relationship between autophagy and ferroptosis in myocardial ischemia/reperfusion injury. Genes Dis, 10(6), 2285-2295. https://doi.org/10.1016/j.gendis.2022.02.012 Yetgin, T., Manintveld, O. C., Boersma, E., Kappetein, A. P., van Geuns, R. J., Zijlstra, F., Duncker, D. J., & van der Giessen, W. J. (2012). Remote ischemic conditioning in percutaneous coronary intervention and coronary artery bypass grafting. Circ J, 76(10), 2392-2404. https://doi.org/10.1253/circj.cj-12-0518 Yu, W., Xu, M., Zhang, T., Zhang, Q., & Zou, C. (2019). Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. J Physiol Sci, 69(1), 113-127. https://doi.org/10.1007/s12576-018-0627-3 Zerihun, M., Sukumaran, S., & Qvit, N. (2023). The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy. Int J Mol Sci, 24(6). https://doi.org/10.3390/ijms24065785 Zha, Y., Li, Y., Lin, T., Chen, J., Zhang, S., & Wang, J. (2021). Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics, 11(1), 397-409. https://doi.org/10.7150/thno.50741 Zhang, C., Zhang, J., Zhang, A., Wang, Y., Han, L., You, Y., Pu, P., & Kang, C. (2010). PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol, 37(6), 1621-1626. https://doi.org/10.3892/ijo_00000816 Zhang, L. M., Lv, S. S., Fu, S. R., Wang, J. Q., Liang, L. Y., Li, R. Q., Zhang, F., & Ma, Y. X. (2021). Procyanidins inhibit fine particulate matter-induced vascular smooth muscle cells apoptosis via the activation of the Nrf2 signaling pathway. Ecotoxicol Environ Saf, 223, 112586. https://doi.org/10.1016/j.ecoenv.2021.112586 Zhang, X., Shao, S., Geng, H., Yu, Y., Wang, C., Liu, Z., Yu, C., Jiang, X., Deng, Y., Gao, L., & Zhao, J. (2014). Expression profiles of six circulating microRNAs critical to atherosclerosis in patients with subclinical hypothyroidism: a clinical study. J Clin Endocrinol Metab, 99(5), E766-774. https://doi.org/10.1210/jc.2013-1629 Zhang, Y. H. (2016). Neuronal nitric oxide synthase in hypertension - an update. Clin Hypertens, 22, 20. https://doi.org/10.1186/s40885-016-0055-8 Zhou, H., Zhu, P., Wang, J., Zhu, H., Ren, J., & Chen, Y. (2018). Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ, 25(6), 1080-1093. https://doi.org/10.1038/s41418-018-0086-7 Zhou, Y., Chen, Q., Lew, K. S., Richards, A. M., & Wang, P. (2016). Discovery of Potential Therapeutic miRNA Targets in Cardiac Ischemia-Reperfusion Injury. J Cardiovasc Pharmacol Ther, 21(3), 296-309. https://doi.org/10.1177/1074248415604463 Zijlstra, F., de Boer, M. J., Hoorntje, J. C., Reiffers, S., Reiber, J. H., & Suryapranata, H. (1993). A comparison of immediate coronary angioplasty with intravenous streptokinase in acute myocardial infarction. N Engl J Med, 328(10), 680-684. https://doi.org/10.1056/nejm199303113281002 Zou, J., Xia, H., Jiang, Q., Su, Z., Wen, S., Liang, Z., Ouyang, Y., Liu, J., Zhang, Z., Chen, D., Yang, L., & Guo, L. (2023). Exosomes derived from odontogenic stem cells: Its role in the dentin-pulp complex. Regen Ther, 24, 135-146. https://doi.org/10.1016/j.reth.2023.05.008 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96675 | - |
| dc.description.abstract | 流行病學研究顯示,細顆粒物(particulate matter, PM)暴露與心血管疾病之間存在密切關聯。然而,目前尚不清楚PM是否會加重心肌缺血/再灌流(ischemia/reperfusion, I/R)損傷,以及相關的機制。本研究探討PM暴露對I/R誘導的心臟損傷的影響,並分析脂肪幹細胞來源的外泌體(adipose stem cell-derived exosome, ADSC-Exo)中高含量的miR-221/222的潛在作用。使用miR-221/222基因剔除(KO)和miR-221/222過表達基因(TG)小鼠模型,進行10 mg/kg PM的氣管內注射處理。24小時後,小鼠接受左冠狀動脈結紮30分鐘後,進行3小時的再灌注(I/R)。在體外實驗,H9c2細胞前處理PM(50 µg/mL)並於1% O2缺氧環境下培養6小時,然後在正常氧氣環境培養12小時(hypoxia/reoxygenation, H/R)。結果顯示,PM加重了I/R(或H/R)引起的心臟損傷,通過增加活性氧化物(reactive oxygen species, ROS)和引發粒線體功能障礙,導致粒線體分裂相關蛋白(Drp1和MFF)及粒線體自噬相關蛋白(BNIP3和LC3B)的表達增加。ADSC-Exo或miR-221/222 mimics的治療顯著減少了PM+I/R誘導的心臟損傷。值得注意的是,ADSC-Exo中的miR-221/222直接調節BNIP3、LC3B和PUMA並減少其表達,最終降低細胞的粒線體自噬和細胞凋亡反應。本研究發現ADSC-Exo通過miR-221/222/BNIP3/LC3B/PUMA途徑調控粒線體自噬和細胞凋亡,顯著減少了PM+I/R所引起的心臟損傷,揭示ADSC-Exo在緩解PM加重心肌I/R損傷中的潛在治療價值。 | zh_TW |
| dc.description.abstract | Studies in epidemiology have highlighted a significant link between exposure to fine particulate matter (PM) and an increased risk of cardiovascular disease. However, whether PM exacerbates myocardial ischemia/reperfusion (I/R) injury remains unclear, and the specific mechanisms involved in this process have not yet been fully elucidated. Our previous study has shown that adipose stem cell-derived exosomes (ADSC-Exo) contain high levels of miR-221/222. This study investigated the effects of PM exacerbates mitochondrial dysfunction and increases the processes of mitophagy and cell apoptosis in I/R settings, while demonstrating that miR-221/222 in ADSC-Exo may help alleviate these detrimental effects. Wild-type, miR-221/222 knockout (KO), and miR-221/222 overexpressing transgenic (TG) mice were administered 10 mg/kg PM through intratracheal injection. After 24 h, the mice underwent left coronary artery ligation for 30 min, followed by 3 h of reperfusion to model I/R injury. We also established an H9c2 cell model under PM (50 µg/mL) and 1% O2 for 6 h, then reoxygenated for 12 h (hypoxia-reoxygenation, H/R). PM exposure exacerbated cardiac injury induced by I/R or H/R by elevating reactive oxygen species (ROS) levels and disrupting mitochondrial function. This dysfunction was associated with an upregulation of mitochondrial fission proteins (Drp1 and MFF) and mitophagy-related proteins (BNIP3 and LC3B), both in in vivo and in vitro experimental models. Administration of ADSC-Exo or miR-221/222 mimics significantly alleviated cardiac injury induced by PM and I/R. Notably, ADSC-Exo, which are enriched with miR-221/222, directly target and suppress the expression of mitophagy and apoptosis regulators such as BNIP3, LC3B, and PUMA. This suppression reduces excessive mitophagy and apoptosis, thereby mitigating cardiac injury. The present data showed that ADSC-Exo treatment regulated mitophagy and cell apoptosis through the miR-221/222/BNIP3/LC3B/PUMA pathway and significantly reduced the cardiac damage by PM+I/R. The present study revealed the novel therapeutic potential of ADSC-Exo in alleviating PM-induced exacerbation of myocardial I/R injury. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:29:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:29:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv Chapter 1. Introduction 1 1.1 Structure and function of the heart 1 1.2 Treatment approaches for myocardial infarction 2 1.2.1 Pharmacological therapy 2 1.2.2 Percutaneous coronary intervention (PCI) 3 1.2.3 Coronary artery bypass grafting (CABG) 4 1.3 Ischemia/Reperfusion injury in cardiovascular disease 4 1.4 Particulate matter (PM) exposure and I/R 5 1.5 The role of reactive oxygen species (ROS) in the interaction of PM exposure and the progression of I/R injury 6 1.6 The role of mitochondrial dynamics and mitophagy in PM exposure with I/R injury 7 1.7 Adipose-derived stem cells (ADSCs)-derived exosomes in tissue repair 9 1.8 The role of miR-221/222 in regulating cardiac apoptosis and mitophagy 11 1.9 Aim 13 Chapter 2. Materials and Methods 14 2.1 Animal experimental procedures 14 2.2 Cell experimental procedures 20 2.3 Measurement of apoptosis 23 2.4 Analysis of ROS productions 26 2.5 Analysis of autolysosomes 28 2.6 Assessment of mitochondrial functions 29 2.7 MicroRNA expression analysis 34 2.8 Statistical analysis 36 Chapter 3. Results 37 3.1 Assessment of cardiac function and injury in PM with I/R treated mice 37 3.2 Histological and apoptotic analysis of PM with I/R treated mice 38 3.3 ROS production, mitochondrial dysfunction, and structural changes in PM with I/R treated mice 38 3.4 Examination of PM and H/R-induced exacerbation of apoptosis 40 3.5 PM enhances H9c2 cell apoptosis by inducing ROS under H/R conditions 41 3.6 PM aggravates apoptosis in H/R-treated H9c2 cells by disrupting mitochondrial function and promoting mitophagy 42 3.7 MiR-221/222-enriched ADSC-Exo alleviates PM+H/R-induced mitophagy and apoptosis 44 3.8 MiR-221/222 regulates apoptosis in PM+H/R-treated cells through the AMPK/p27 pathway 48 3.9 ADSC-Exo and miR-221/222 mimics alleviate mitochondrial dysfunction and apoptosis in PM+H/R-treated H9c2 cells 49 3.10 ADSC-Exo alleviates PM+I/R-induced cardiac injury through miR-221/222 in WT and miR-221/222 KO mice 52 3.11 BNIP3 and LC3B knockdown improves cardiac function and reduces apoptosis in miR-221/222 KO mice exposed to PM+I/R injury 53 3.12 Impact of miR-221/222 overexpression in TG mice on PM+I/R-induced mitophagy, apoptosis and cardiac injury 55 Chapter 4. Discussion 57 4.1. Differences between in vivo and in vitro studies 68 Chapter 5. Conclusion 70 Chapter 6. Limitations and Future works 71 Chapter 7. References 73 Chapter 8. Figures 95 Figure 1. PM reduces cardiac function and increases apoptosis in WT mice during I/R 96 Figure 2. Impact of PM exposure and I/R on cardiac structure and apoptosis in mice. 98 Figure 3. Analysis of intracellular and mitochondrial ROS levels in PM+I/R treated WT mice. 100 Figure 4. Analysis of ultrastructural morphology and protein expression in PM+I/R treated WT mice. 102 Figure 5. PM exposure significantly exacerbates H/R-induced damage in H9c2. 104 Figure 6. Analysis of ROS production in PM+H/R treated cells using fluorescent staining and flow cytometry. 106 Figure 7. MitoTEMPO and NAC mitigate PM+H/R-induced mitochondrial ROS production. 108 Figure 8. MitoTEMPO and NAC alleviate PM+H/R-induced cell apoptosis. 110 Figure 9. Impact of PM and H/R on mitochondrial function in H9c2 cells. 112 Figure 10. Assessment of mitochondrial membrane potential, mitochondrial morphology, and fission protein expression. 114 Figure 11. Analysis of protein expression related to mitophagy and mitochondrial dynamics in PM+H/R-treated H9c2 cells. 116 Figure 12. Autolysosome formation and mitophagy in H9c2 cells treated with PM+H/R. 118 Figure 13. MiR-221/222 expression analysis and interaction with target genes in PM+H/R-treated cells. 120 Figure 14. Regulation of BNIP3 and LC3B expression by miR-221/222 in PM+H/R-treated H9c2 cells. 122 Figure 15. Evaluation of ADSC-Exo on OCR and cell viability in PM+H/R treated H9c2 cells. 124 Figure 16. Apoptosis and protein expression analysis in PM+H/R-treated H9c2 cells following ADSC-Exo and miR-221/222 modulation. 126 Figure 17. Effects of BNIP3, LC3B, and PUMA downregulation on apoptosis in PM+H/R-treated H9c2 cells. 128 Figure 18. Impact of siBNIP3 and siLC3B on PM+H/R-induced apoptosis-related proteins. 130 Figure 19. Effect of PUMA downregulation and miR-221/222 overexpression on apoptosis proteins in PM+H/R-treated H9c2 cells. 132 Figure 20. Involvement of the AKT pathway in PM+H/R-induced apoptosis and the mitigating effects of ADSC-Exo and miR-221/222 mimics. 134 Figure 21. Assessment of the AMPK/p27 pathway in ADSC-Exo-mediated reduction of PM+H/R-induced cell apoptosis. 136 Figure 22. Impact of ADSC-Exo, miR-221/222 mimics, and MitoTEMPO on mitochondrial ROS and function in PM+H/R-treated H9c2 cells. 138 Figure 23. Impact of ADSC-Exo on mitochondrial length and fission protein expression in PM+H/R-treated H9c2 cells. 140 Figure 24. Evaluation of mitophagy following treatment with ADSC-Exo in PM+H/R-treated H9c2 cells. 142 Figure 25. Effects of ADSC-Exo on apoptosis in PM+H/R-treated H9c2 cells. 144 Figure 26. ADSC-Exo decreases PM+I/R-induced cardiac damage in WT, miR-221/222-KO mice. 146 Figure 27. Assessment of mitochondrial and cellular ROS levels in WT and miR-221/222 KO mice using MitoSOX Red and DHE staining. 148 Figure 28. Effect of BNIP3 and LC3B expression in WT and miR-221/222 KO mice under PM+I/R. 150 Figure 29. Knockdown of BNIP3 and LC3B expression improves cardiac function and reduces apoptosis-related proteins. 152 Figure 30. Evaluation of apoptosis in WT and miR-221/222 KO mice treated with ADSC-Exo in PM+I/R. 154 Figure 31. Comparison of cardiac function and ROS in miR-221/222 overexpression TG mice and WT mice following PM and I/R treatment. 156 Figure 32. Assessment of mitophagy- and apoptosis in miR-221/222 overexpression TG mice and WT mice under PM+I/R treatment. 158 Appendix 159 Figure A1. MiR-221/222-expression and characterization of ADSC-Exo. 159 Figure A2. Comparison of ADSC-Exo from WT and miR-221/222 KO mice. 160 Figure A3. Graphical abstract. 163 Prior Publications 164 表次 Table 1. List of primary and secondary antibodies used in Immunohistochemistry. 20 Table 2. List of antibodies used in western blotting. 25 Table 3. List of antibodies used for immunofluorescence staining. 34 | - |
| dc.language.iso | en | - |
| dc.subject | 粒線體自噬 | zh_TW |
| dc.subject | 顆粒物 | zh_TW |
| dc.subject | miR-221/222 | zh_TW |
| dc.subject | 缺血/再灌流損傷 | zh_TW |
| dc.subject | ADSC-Exosome | zh_TW |
| dc.subject | particulate matter | en |
| dc.subject | ADSC-Exosome | en |
| dc.subject | ischemia/reperfusion injury | en |
| dc.subject | miR-221/222 | en |
| dc.subject | mitophagy | en |
| dc.title | 研究脂肪幹細胞外泌體在懸浮微粒和缺血/再灌流引發的心臟損傷中對粒線體功能和細胞凋亡的影響 | zh_TW |
| dc.title | To study the effects of exosomes from adipose-derived stem cells on mitochondrial function and apoptosis in particulate matter and ischemia/reperfusion-induced cardiac injury | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 莫凡毅;吳佳慶;蔡亭芬;陳瀅;王淑慧 | zh_TW |
| dc.contributor.oralexamcommittee | Fan-E Mo;Chia-Ching Wu;Ting-Fen Tsai;Ying Chen;Shu-Huei Wang | en |
| dc.subject.keyword | ADSC-Exosome,缺血/再灌流損傷,miR-221/222,粒線體自噬,顆粒物, | zh_TW |
| dc.subject.keyword | ADSC-Exosome,ischemia/reperfusion injury,miR-221/222,mitophagy,particulate matter, | en |
| dc.relation.page | 164 | - |
| dc.identifier.doi | 10.6342/NTU202404484 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-10-22 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | - |
| dc.date.embargo-lift | 2025-02-21 | - |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 37.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
