請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96673
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林居正 | zh_TW |
dc.contributor.advisor | Jiu-Jenq Lin | en |
dc.contributor.author | 簡泱庭 | zh_TW |
dc.contributor.author | Yang-Ting Chien | en |
dc.date.accessioned | 2025-02-20T16:28:33Z | - |
dc.date.available | 2025-02-21 | - |
dc.date.copyright | 2025-02-20 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-06 | - |
dc.identifier.citation | 1.Bullock GS, Garrigues GE, Ledbetter L, Kennedy J. A Systematic Review of Proposed Rehabilitation Guidelines Following Anatomic and Reverse Shoulder Arthroplasty. J Orthop Sports Phys Ther. 2019;49:337-346.
2. Roren A, Nguyen C, Palazzo C, et al. Kinematic analysis of the shoulder complex after anatomic and reverse total shoulder arthroplasty: A cross-sectional study. Musculoskelet Sci Pract. 2017;29:84-90. 3. Schwartz BE, Savin DD, Youderian AR, Mossad D, Goldberg BA. National trends and perioperative outcomes in primary and revision total shoulder arthroplasty: Trends in total shoulder arthroplasty. Int Orthop. 2015;39:271-276. 4. Kornuijt A, de Vries L, van der Weegen W, et al. Direct active rehabilitation after reverse total shoulder arthroplasty: an international multicentre prospective cohort safety study with 1-year follow up. BMJ Open. 2023;13:e070934. 5. Flatow EL, Harrison AK. A history of reverse total shoulder arthroplasty. Clin Orthop Relat Res. 2011;469:2432-2439. 6. Cogan CJ, Ho JC, Entezari V, Iannotti JP, Ricchetti ET. The Influence of Reverse Total Shoulder Arthroplasty Implant Design on Biomechanics. Curr Rev Musculoskelet Med. 2023;16:95-102. 7. Jarrett CD, Brown BT, Schmidt CC. Reverse shoulder arthroplasty. Orthop Clin North Am. 2013;44:389-408, x. 8. Roche CP. Reverse Shoulder Arthroplasty Biomechanics. J Funct Morphol Kinesiol. 2022;7. 9. Lee DH, Choi YS, Potter HG, et al. Reverse total shoulder arthroplasty: an imaging overview. Skeletal Radiol. 2020;49:19-30. 10. Caceres AP, Permeswaran VN, Goetz JE, Hettrich CM, Anderson DD. The Influence of Different Rotator Cuff Deficiencies on Shoulder Stability Following Reverse Shoulder Arthroplasty. Iowa Orthop J. 2019;39:63-68. 11. Howard MC, Trasolini NA, Waterman BR. Optimizing Outcomes After Reverse Total Shoulder Arthroplasty: Rehabilitation, Expected Outcomes, and Maximizing Return to Activities. Curr Rev Musculoskelet Med. 2023;16:145- 153. 12. Merolla G, Parel I, Cutti AG, Filippi MV, Paladini P, Porcellini G. Assessment of anatomical and reverse total shoulder arthroplasty with the scapula-weighted Constant-Murley score. Int Orthop. 2019;43:659-667. 13. Lu Z, Nazari G, Almeida PH, Pontes T, MacDermid JC. The clinical outcome of physiotherapy after reversed shoulder arthroplasty: a systematic review. Disabil Rehabil. 2022;44:6997-7008. 14.Kim E, Jang T, Park HJ, et al. In vivo three-dimensional scapular kinematic alterations after reverse total shoulder arthroplasty. J Orthop Surg (Hong Kong). 2020;28:2309499020921979. 15. Yildiz TI, Kara D, Demirci S, et al. Recovery of the shoulder kinematics after reverse shoulder arthroplasty. Clin Biomech (Bristol, Avon). 2023;107:106013. 16. Friedman RJ, Barcel DA, Eichinger JK. Scapular Notching in Reverse Total Shoulder Arthroplasty. J Am Acad Orthop Surg. 2019;27:200-209. 17. Walker D, Matsuki K, Struk AM, Wright TW, Banks SA. Scapulohumeral rhythm in shoulders with reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2015;24:1129-1134. 18. Reina M, Fiumana G, Mantovani M, D'Antonio L, Porcellini G. Scapulohumeral rhythm in shoulders with reverse shoulder arthroplasty measured with a new portable three-dimensional scapular kinematics assessment system. J Shoulder Elbow Surg. 2023;32:729-737. 19. Sulkar HJ, Aliaj K, Tashjian RZ, Chalmers PN, Foreman KB, Henninger HB. Reverse Total Shoulder Arthroplasty Alters Humerothoracic, Scapulothoracic, and Glenohumeral Motion During Weighted Scaption. Clin Orthop Relat Res. 2022;480:2254-2265. 20. Shinagawa K, Hatta T, Watanuki S, Yamamoto N, Tashiro M, Itoi E. The quantification of muscle activities during arm elevation following reverse shoulder arthroplasty or superior capsular reconstruction for irreparable rotator cuff tears using positron emission tomography. J Shoulder Elbow Surg. 2023;32:392-400. 21. Hecker A, Aguirre J, Eichenberger U, et al. Deltoid muscle contribution to shoulder flexion and abduction strength: an experimental approach. J Shoulder Elbow Surg. 2021;30:e60-e68. 22. Razmjou H, van Osnabrugge V, Anunciacion M, et al. Maximizing Muscle Function in Cuff-Deficient Shoulders: A Rehabilitation Proposal for Reverse Arthroplasty. J Shoulder Elb Arthroplast. 2021;5:24715492211023302. 23. Li H, Yoon SH, Lee D, Chung H. Relation between preoperative electromyographic activity of the deltoid and upper trapezius muscle and clinical results in patients treated with reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2020;29:195-201. 24. Smith RA, Woolley K, Mazzocca A, et al. Kinematics and EMG activity in Reverse Total Shoulder Arthroplasty. J Orthop. 2020;22:165-169. 25. Boudreau S, Boudreau ED, Higgins LD, Wilcox RB, 3rd. Rehabilitation following reverse total shoulder arthroplasty. J Orthop Sports Phys Ther. 2007;37:734-743. 26.Lee JH, Chun YM, Kim DS, Lee DH, Shin SJ. Effects of neuromuscular electrical muscle stimulation on the deltoid for shoulder function restoration after reverse total shoulder arthroplasty in the early recovery period: a prospective randomized study. Arch Orthop Trauma Surg. 2023;143:3037-3046. 27. Riek LM, Pfohl K, Zajac J. Using biofeedback to optimize scapular muscle activation ratios during a seated resisted scaption exercise. J Electromyogr Kinesiol. 2022;63:102647. 28. Hotta GH, Queiroz POP, de Lemos TW, Rossi DM, Scatolin RO, de Oliveira AS. Immediate effect of scapula-focused exercises performed with kinematic biofeedback on scapular kinematics in individuals with subacromial pain syndrome. Clin Biomech (Bristol, Avon). 2018;58:7-13. 29. Du WY, Huang TS, Chiu YC, et al. Single-Session Video and Electromyography Feedback in Overhead Athletes With Scapular Dyskinesis and Impingement Syndrome. J Athl Train. 2020;55:265-273. 30. Mohamed AA, Jan YK, El Sayed WH, Wanis MEA, Yamany AA. Dynamic scapular recognition exercise improves scapular upward rotation and shoulder pain and disability in patients with adhesive capsulitis: a randomized controlled trial. J Man Manip Ther. 2020;28:146-158. 31. de Oliveira AKA, da Costa KSA, de Lucena GL, de Oliveira Sousa C, Filho JFM, Brasileiro JS. Comparing exercises with and without electromyographic biofeedback in subacromial pain syndrome: A randomized controlled trial. Clin Biomech (Bristol, Avon). 2022;93:105596. 32. Huang HY, Lin JJ, Guo YL, Wang WT, Chen YJ. EMG biofeedback effectiveness to alter muscle activity pattern and scapular kinematics in subjects with and without shoulder impingement. J Electromyogr Kinesiol. 2013;23:267- 274. 33. Chuang LL, Chen YL, Chen CC, et al. Effect of EMG-triggered neuromuscular electrical stimulation with bilateral arm training on hemiplegic shoulder pain and arm function after stroke: a randomized controlled trial. J Neuroeng Rehabil. 2017;14:122. 34. Pelletier-Roy R, Ratté-Larouche M, Laurendeau S, Pelet S. Electromyographic and kinematic study of reverse total shoulder arthroplasty: an observational prospective cohort study. J Shoulder Elbow Surg. 2021;30:165-171. 35. Best MJ, Aziz KT, Wilckens JH, McFarland EG, Srikumaran U. Increasing incidence of primary reverse and anatomic total shoulder arthroplasty in the United States. J Shoulder Elbow Surg. 2021;30:1159-1166. 36. Frank JK, Siegert P, Plachel F, Heuberer PR, Huber S, Schanda JE. The Evolution of Reverse Total Shoulder Arthroplasty-From the First Steps to NovelImplant Designs and Surgical Techniques. J Clin Med. 2022;11. 37. Smithers CJ, Young AA, Walch G. Reverse shoulder arthroplasty. Curr Rev Musculoskelet Med. 2011;4:183-190. 38. Collin P, Matsukawa T, Denard PJ, Gain S, Lädermann A. Pre-operative factors influence the recovery of range of motion following reverse shoulder arthroplasty. Int Orthop. 2017;41:2135-2142. 39. Jeon YS, Rhee YG. Factors associated with poor active anterior elevation after reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2018;27:786-793. 40. Monir JG, Tams C, Wright TW, Parsons M, King JJ, Schoch BS. Preoperative factors associated with loss of range of motion after reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2021;30:e621-e628. 41. Hochreiter B, Hasler A, Hasler J, Kriechling P, Borbas P, Gerber C. Factors influencing functional internal rotation after reverse total shoulder arthroplasty. JSES Int. 2021;5:679-687. 42. Parsons M, Routman HD, Roche CP, Friedman RJ. Patient-reported outcomes of reverse total shoulder arthroplasty: a comparative risk factor analysis of improved versus unimproved cases. JSES Open Access. 2019;3:174-178. 43. Rienmüller A, Maffiuletti NA, Schwyzer HK, Eggspühler A. Shoulder Muscle Strength and Neuromuscular Activation 2 Years after Reverse Shoulder Prosthesis-An Experimental Case Control Study. J Clin Med. 2020;9. 44. Edwards PK, Ebert JR, Joss B, Ackland T, Wang A. A randomised trial comparing two rehabilitation approaches following reverse total shoulder arthroplasty. Shoulder Elbow. 2021;13:557-572. 45. Hagen MS, Allahabadi S, Zhang AL, Feeley BT, Grace T, Ma CB. A randomized single-blinded trial of early rehabilitation versus immobilization after revers total shoulder arthroplasty. J Shoulder Elbow Surg. 2020;29:442-450. 46. Lee J, Consigliere P, Fawzy E, et al. Accelerated rehabilitation following reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2021;30:e545-e557. 47. Mackay EJ, Robey NJ, Suprak DN, Buddhadev HH, San Juan JG. The effect of EMG biofeedback training on muscle activation in an impingement population. J Electromyogr Kinesiol. 2023;70:102772. 48. Uwamahoro R, Sundaraj K, Subramaniam ID. Assessment of muscle activity using electrical stimulation and mechanomyography: a systematic review. Biomed Eng Online. 2021;20:1. 49. Baker LL, Parker K. Neuromuscular electrical stimulation of the muscles surrounding the shoulder. Phys Ther. 1986;66:1930-1937. 50. Jones S, Man WD, Gao W, Higginson IJ, Wilcock A, Maddocks M.Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev. 2016;10:Cd009419. 51.Petterson S, Snyder-Mackler L. The use of neuromuscular electrical stimulation to improve activation deficits in a patient with chronic quadriceps strength impairments following total knee arthroplasty. J Orthop Sports Phys Ther. 2006;36:678-685. 52. Reinold MM, Macrina LC, Wilk KE, Dugas JR, Cain EL, Andrews JR. The effect of neuromuscular electrical stimulation of the infraspinatus on shoulder external rotation force production after rotator cuff repair surgery. Am J Sports Med. 2008;36:2317-2321. 53. Lee GJ, Cho H, Ahn BH, Jeong HS. Effects of Electrical Muscle Stimulation for Preventing Deltoid Muscle Atrophy after Rotator Cuff Repair: Preliminary Results of a Prospective, Randomized, Single-blind Trial. Clin Shoulder Elb. 2019;22:195-202. 54. Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology (Oxford). 2000;39:382-388. 55. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80:276-291. 56. Rocourt MH, Radlinger L, Kalberer F, et al. Evaluation of intratester and intertester reliability of the Constant-Murley shoulder assessment. J Shoulder Elbow Surg. 2008;17:364-369. 57. Vrotsou K, Ávila M, Machón M, et al. Constant-Murley Score: systematic review and standardized evaluation in different shoulder pathologies. Qual Life Res. 2018;27:2217-2226. 58. Kirkley A, Griffin S, Dainty K. Scoring systems for the functional assessment of the shoulder. Arthroscopy. 2003;19:1109-1120. 59. Angst F, Schwyzer HK, Aeschlimann A, Simmen BR, Goldhahn J. Measures of adult shoulder function: Disabilities of the Arm, Shoulder, and Hand Questionnaire (DASH) and its short version (QuickDASH), Shoulder Pain and Disability Index (SPADI), American Shoulder and Elbow Surgeons (ASES) Society standardized shoulder assessment form, Constant (Murley) Score (CS), Simple Shoulder Test (SST), Oxford Shoulder Score (OSS), Shoulder Disability Questionnaire (SDQ), and Western Ontario Shoulder Instability Index (WOSI). Arthritis Care Res (Hoboken). 2011;63 Suppl 11:S174-188. 60. Roy JS, MacDermid JC, Woodhouse LJ. A systematic review of the psychometric properties of the Constant-Murley score. J Shoulder Elbow Surg.2010;19:157-164. 61. Constant CR, Murley AH. A clinical method of functional assessment of the shoulder. Clin Orthop Relat Res. 1987:160-164. 62. Constant CR, Gerber C, Emery RJ, Søjbjerg JO, Gohlke F, Boileau P. A review of the Constant score: modifications and guidelines for its use. J Shoulder Elbow Surg. 2008;17:355-361. 63. Buchbinder R, Ramiro S, Huang H, Gagnier JJ, Jia Y, Whittle SL. Measures of Adult Shoulder Function. Arthritis Care Res (Hoboken). 2020;72 Suppl 10:250- 293. 64. James-Belin E, Roy AL, Lasbleiz S, et al. Comparative study of psychometric properties of three assessment tools for degenerative rotator cuff disease. Clin Rehabil. 2019;33:277-284. 65. Blonna D, Scelsi M, Marini E, et al. Can we improve the reliability of the Constant-Murley score? J Shoulder Elbow Surg. 2012;21:4-12. 66. Skutek M, Fremerey RW, Zeichen J, Bosch U. Outcome analysis following open rotator cuff repair. Early effectiveness validated using four different shoulder assessment scales. Arch Orthop Trauma Surg. 2000;120:432-436. 67. Angst F, Pap G, Mannion AF, et al. Comprehensive assessment of clinical outcome and quality of life after total shoulder arthroplasty: usefulness and validity of subjective outcome measures. Arthritis Rheum. 2004;51:819-828. 68. Liu J, Hui SS, Yang Y, Liu Y, Song Q, Mao D. Scapular kinematics and muscle activity during Yi Jin Bang exercises. Front Physiol. 2023;14:1169092. 69. Tsuruike M, Ellenbecker TS. Effect of Scapular Retraction on Lower Trapezius, Infraspinatus, and Deltoid Muscle Electromyographic Activity During the Side- Lying Abduction Exercise. Int J Sports Phys Ther. 2023;V18:715-725. 70. Huang TS, Lin JJ, Ou HL, Chen YT. Movement Pattern of Scapular Dyskinesis in Symptomatic Overhead Athletes. Sci Rep. 2017;7:6621. 71. Wu G, van der Helm FC, Veeger HE, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38:981-992. 72. Lirio-Romero C, Torres-Lacomba M, Gómez-Blanco A, et al. Electromyographic biofeedback improves upper extremity function: a randomized, single-blinded, controlled trial. Physiotherapy. 2021;110:54-62. 73. Lin JJ, Lim HK, Yang JL. Effect of shoulder tightness on glenohumeral translation, scapular kinematics, and scapulohumeral rhythm in subjects with stiff shoulders. J Orthop Res. 2006;24:1044-1051. 74. Pegreffi F, Pellegrini A, Paladini P, et al. Deltoid muscle activity in patients with reverse shoulder prosthesis at 2-year follow-up. Musculoskelet Surg.2017;101:129-135. 75. Schoch BS, Vigan M, Roche CP, et al. Deltoid fatigue part 2: a longitudinal assessment of anatomic total shoulder arthroplasty over time. J Shoulder Elbow Surg. 2022;31:e37-e47. 76. Ekstrom RA, Bifulco KM, Lopau CJ, Andersen CF, Gough JR. Comparing the function of the upper and lower parts of the serratus anterior muscle using surface electromyography. J Orthop Sports Phys Ther. 2004;34:235-243. 77. Decker MJ, Hintermeister RA, Faber KJ, Hawkins RJ. Serratus anterior muscle activity during selected rehabilitation exercises. Am J Sports Med. 1999;27:784- 791. 78. Nakayama H, Onishi H, Nojima M, Ishizu K, Kubo M. Analysis of scapular kinematics in three planes of shoulder elevation: a comparison between men and women. The Journal of Physical Fitness and Sports Medicine. 2018;7:65-74. 79. Contemori S, Panichi R, Biscarini A. Effects of scapular retraction/protraction position and scapular elevation on shoulder girdle muscle activity during glenohumeral abduction. Hum Mov Sci. 2019;64:55-66. 80. Ou HL, Huang TS, Chen YT, et al. Alterations of scapular kinematics and associated muscle activation specific to symptomatic dyskinesis type after conscious control. Man Ther. 2016;26:97-103. 81. Neblett R. Surface Electromyographic (SEMG) Biofeedback for Chronic Low Back Pain. Healthcare (Basel). 2016;4. 82. Haza T. [Analysis of the scapulohumeral rhythm]. Nihon Seikeigeka Gakkai Zasshi. 1988;62:1105-1119. 83. Boucher T. Effectiveness of Surface Electromyographic Biofeedback-triggered Neuromuscular Electrical Stimulation on Quadriceps Femoris Torque and Recruitment. J Rehab Pract Res. 2022;3:138. 84. Boucher T, Wang S, Trudelle-Jackson E, Olson S. Effectiveness of surface electromyographic biofeedback-triggered neuromuscular electrical stimulation on knee rehabilitation. N Am J Sports Phys Ther. 2009;4:100-109. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96673 | - |
dc.description.abstract | 研究背景:反置式人工肩關節(Reverse Total Shoulder Arthroplasty, rTSA)為不可修 復性大範圍旋轉肌群撕裂(massive irreparable rotator cuff tears)及旋轉肌群破裂關節 病變(Cuff Tear Arthropathy) 的最佳治療方法。在 rTSA 族群的肩胛骨運動學 (Scapular kinematics)中會相較正常肩關節有更多肩胛骨向上旋轉、外轉及向後傾 斜,此外,肩胛肱骨節律(Scapulohumeral rhythm) 平均為 1.1~1.6,代表盂肱關節 (Glenohumeral joint) 動作較少而肩胛胸廓關節(Scapulothoracic joint)動作較多,因 過多的肩胛骨向上旋轉並無足夠的肱骨上抬可能導致肩胛鑿痕(scapular notching),因此以降低肩胛骨動作或增加肱骨動作可能可以避免肩胛鑿痕。為了 代償旋轉肌群失能,三角肌扮演重要的角色,可以透過生物回饋或神經肌肉電刺 激以增強三角肌的功能,rTSA 術後病人之三角肌及肩胛骨周邊肌肉接受生物回 饋訓練或神經肌肉電刺激之效果不明。 研究目的:本次研究將(1)探討使用肌電圖生物回饋和神經肌肉電刺激於三角 肌在肌肉活化(上斜方肌、下斜方肌、前鋸肌及三角肌)及肩胛骨運動學(向上 旋轉/向下旋轉、外轉/內轉、向前傾斜/向後傾斜)的立即效果(2)評估使用肌電 圖生物回饋和神經肌肉電刺激於三角肌在肌肉平衡率(muscle balance ratio)及肩 胛肱骨節律的立即效果。
研究方法:本研究為交叉設計的研究,招收初次做rTSA術後的受試者,收入基本資料及術後肩關節活動度與肩關節功能量表,測試三個狀況為介入前、肌電圖生物回饋後及神經肌肉電刺激後,其中肌電圖生物回饋及神經肌肉電刺激為交叉設計,收取肌肉活化及肩胛骨運動學資料並計算肌肉平衡率及肩胛肱骨節律,本研究會使用肌電圖分析肌肉活化及使用三維電磁儀器分析肩胛骨運動學。 研究結果:本研究最終收取18位受試者,14位完成2次實驗,4位僅完成1次。於18位資料研究結果發現受試者使用肌電圖生物回饋於三角肌下,會使下斜方肌活化增加(平均數差異=10%, p=0.035)、肩胛骨外旋角度增加(平均數差異=2.0°~3.1°, p< 0.05),使用神經肌肉電刺激於三角肌下,則會使下斜方肌肌肉活化減少(平均數差異=4%, p= 0.028)、肩胛骨外旋角度減少(平均數差異= 2.3°, p =0.031)。在肌電圖生物回饋組中,由於下斜方肌肌肉活化上升使三角肌/下斜方肌之肌肉平衡率下降(平均數差異=0.16, p =0.03),反之,神經肌肉電刺 激組則升高(平均數差異=0.18~0.27, p < 0.05),在肌電圖生物回饋組發現介入後 顯著性增加肩胛肱骨節律(平均數差異=0.2, p =0.041)。於14 位資料研究結果 發現加成效果顯示兩種介入方法順序不同會有不同的結果,在先使用肌電圖生物 回饋再使用神經肌肉電刺激的組中,下斜方肌(平均數差異=11%, p = 0.041)與前鋸肌(平均數差異=11%, p =0.041)的肌肉活化及肩胛骨外旋(平均數差異=1.9°~2.9°, p< 0.05)有顯著性增加,在先使用神經肌肉電刺激再使用肌電圖生物回饋的組別中,發現介入前後無顯著性差異。肩關節外展角度在介入前後無顯著性差異,但在肌電圖生物回饋組發現介入後角度減少而神經肌肉電刺激組則增加,在加成效果的結果也與單獨兩種介入的結果類似。 研究結論:肌電圖生物回饋及神經肌肉電刺激對三角肌介入產生相似的結果,但在下斜方肌肌肉活化與肩胛骨運動學的結果則截然不同,肌電圖生物回饋增加下 斜方肌肌肉活化與肩胛骨代償內縮,而神經肌肉電刺激則是能減少下斜方肌肌肉 活化與肩胛骨代償性內縮,研究結果顯示,神經肌肉電刺激在預防肩胛骨過度移 動相較於肌電圖生物回饋更有效,可降低肩胛骨鑿痕的風險。對於結合兩種介入 方式結果呈現有好有壞,雖然肌電圖生物回饋及神經肌肉電刺激都顯示出治療rTSA患者的前景,但此研究突顯出應用順序的重要性,因此,本研究節果顯示 使用神經肌肉電刺激於三角肌可顯著性增強rTSA患者的肌肉控制、肩胛肱骨間協調與關節活動度恢復。 | zh_TW |
dc.description.abstract | Background: Reverse total shoulder arthroplasty (rTSA) has been the optimal treatment for massive irreparable rotator cuff tears and cuff tear arthropathy. Since scapular kinematics alteration was associated with shoulder disorders, scapular kinematics had been characterized in individuals post rTSA with more upward rotation, external rotation, and posterior tilt of the scapula. In addition, the average scapulohumeral rhythm ranged from 1.1 to 1.6, indicating lower glenohumeral joint movements and higher scapulothoracic movements. It supposed that more scapula upward rotation without adequate humeral elevation can result in the scapula notching. Therefore, strategy to decrease scapular movement or increase humeral movements during arm movements may prevent scapula notching. To compensate for rotator cuff deficiency, the deltoid muscle plays a crucial role post rTSA. Enhancing deltoid function can be accomplished through the use of biofeedback or neuromuscular electrical stimulation (NMES). However, the effect of NMES and surface electromyography (sEMG) biofeedback on the deltoid and associated scapular muscles in scapular kinematics, muscle activation, and muscle balance ratio in individual post rTSA remained unclear.
Objective: The objectives in this study would to (1) determine the immediate effects of NMES with EMG biofeedback to deltoid (D) on the muscle activation of upper trapezius (UT), lower Trapezius (LT) and serratus Anterior (SA) as well as the scapular kinematics (upward/downward rotation, external/internal rotation, anterior/posterior tilting) (2) evaluate the immediate effects of NMES with EMG biofeedback on the muscle balance ratios (D/UT, D/LT, D/SA) and the scapulohumeral rhythm (SHR) during arm elevation in the scapular plane at different range of motion. Design: This was a crossover design. Subject with primary rTSA were recruited in this study with shoulder abduction in scapular plane above 90 degrees and more than 3 months following rTSA. By using surface electromyography and electromagnetic motion tracking sensors, the muscle activation and scapular kinematics were recorded during arm elevation in scapular plane. Arm elevation were conducted in three conditions including baseline, post- sEMG biofeedback, and post-NMES. The crossover two conditions were sEMG biofeedback and NMES. Result: Eighteen subjects participated in the experiment. Fourteen of these subjects completed the experiment twice, while four completed it once. Compared to baseline, there were significantly higher LT muscle activity (mean difference = 10%, p = 0.035) and increased in scapular external rotation (mean difference =2.0°~3.1°, p < 0.05) in the sEMG group. In addition, a significant decrease in the LT muscle activity (mean difference = 4%, p = 0.028) and decreased in scapular external rotation (mean difference = 2.3°, p = 0.031) relative to baseline in NMES group. In muscle balance ratio of D/LT, the sEMG group showed a significant decrease (mean difference = 0.16, p = 0.03) between baseline and post-intervention. On the contrary, compared to the baseline, there was a significant decrease in D/LT (mean difference = 0.18 ~ 0.27, p < 0.05) in the NMES group. There was significant increase in scapulohumeral rhythm (mean difference = 0.2, p = 0.041) in sEMG group. The cumulative effect showed differences in the order of the two intervention methods. Group with sEMG first following NMES showed a significant increase in lower trapezius (mean difference = 11%, p = 0.041) and serratus anterior (mean difference = 11%, p = 0.041) of muscle activation and scapula external rotation (mean difference = 1.9°~ 2.9°,p < 0.05). There was no significant difference in the group with NMES first following sEMG. Additionally, although there was no statistically significant difference at abduction range, it was observed that the range of abduction decreased in the sEMG group, while it increased in the NMES group after the intervention. Conclusion: Both sEMG biofeedback and NMES interventions produced similar effects on deltoid muscle activation. However, they yielded contrasting outcomes for LT activation and scapular movement. While sEMG biofeedback resulted in increased LT activation and compensatory scapular retraction, NMES application led to decreased LT activation and compensatory scapular retraction. These findings suggest that NMES may be more effective than sEMG biofeedback in preventing excessive scapular movement, potentially reducing the risk of scapula notching. Combining these two interventions produced mixed results. While both sEMG biofeedback and NMES have shown promise in treating rTSA, our study highlights the importance of considering the sequence of application. In conclusion, our study indicates that NMES, but not sEMG biofeedback, applied to the deltoid muscle can significantly enhance muscle control, scapulohumeral coordination, and range of motion recovery in rTSA patients. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:28:33Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-20T16:28:33Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract vi Chapter 1- Nature of study 1 1.1 Background 1 1.2 Statement of problems 4 1.3 Purpose of the study 5 1.4 Hypotheses 6 Chapter 2- Literature review 8 2.1 Reverse total shoulder arthroplasty 8 2.2 History of rTSA 9 2.3 Factors associated with functional outcomes 10 2.4 Alterations of scapular kinematics and associated muscles activation 11 2.5 Abnormal scapulohumeral rhythm 13 2.6 Rehabilitation protocol after rTSA operation 14 2.7 Compare early rehabilitation with delayed rehabilitation of rTSA 16 2.8 Effectiveness of intervention 16 2.8.1 sEMG biofeedback 17 2.8.2 Neuromuscular Electrical Stimulation 17 Chapter 3- Methods 19 3.1 Study Design 19 3.2 Participants 19 3.2.1 Sample size estimation 19 3.2.2 Criteria 20 3.3 Instrumentation 20 3.3.1 Three-dimensional electromagnetic scapular kinematics 20 3.3.2 Surface electromyography (sEMG) 21 3.3.3 Neuromuscular Electrical Stimulation (NMES) 22 3.4 Procedures 22 3.5 Outcomes and Data Reduction 27 3.5.1 Primary outcomes 27 3.5.2 Secondary outcomes 28 3.6 Statistical analysis 28 Chapter 4 – Result 30 4.1 Demographic data 30 4.2 Physical examination 30 4.3 Muscle activation between sEMG and NMES conditions 30 4.4 Scapular kinematics between sEMG and NMES conditions 33 4.5 Muscle balance ratio between condition difference 35 4.6 Scapulohumeral rhythm (SHR) 37 4.7 Abduction between baseline and post-intervention 37 4.8 Cumulative effect 38 Chapter 5 – Discussions 40 Chapter 6 – Conclusion 47 References 48 List of tables 55 Figures legend 83 Appendix 89 Appendix 1. Constant murley shoulder scale (CMS) 89 Appendix 2. Chinese version of Disabilities of the arm, shoulder, and hand questionnaire (DASH) 90 | - |
dc.language.iso | en | - |
dc.title | 針對三角肌表面肌電圖生物回饋及神經肌肉電刺激反置式人工肩關節患者 | zh_TW |
dc.title | Electromyography Biofeedback and Neuromuscular Electrical Stimulation of Deltoid in patients with Reverse Total Shoulder Arthroplasty | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張宗訓;林楨喨;陳柏村 | zh_TW |
dc.contributor.oralexamcommittee | Chung-Hsun Chang;Chen-Liang Lin;Po-Tsun Chen | en |
dc.subject.keyword | 反置式人工肩關節置換,神經肌肉電刺激,肌電圖,生物回饋,肩胛肱骨節律, | zh_TW |
dc.subject.keyword | reverse total shoulder arthroplasty,neuromuscular electrical stimulation,surface electromyography,biofeedback,scapulohumeral rhythm, | en |
dc.relation.page | 92 | - |
dc.identifier.doi | 10.6342/NTU202500213 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-02-06 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 物理治療學研究所 | - |
dc.date.embargo-lift | 2030-02-05 | - |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 4.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。