Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96667
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉旻禕zh_TW
dc.contributor.advisorHelene Minyi Liuen
dc.contributor.author詹芸瑞zh_TW
dc.contributor.authorYun-Jui Chanen
dc.date.accessioned2025-02-20T16:26:58Z-
dc.date.available2025-02-21-
dc.date.copyright2025-02-20-
dc.date.issued2025-
dc.date.submitted2025-01-14-
dc.identifier.citation1. Chan, Y.K. and M.U. Gack, Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol, 2016. 14(6): p. 360-73.
2. Chiang, H.S. and H.M. Liu, The Molecular Basis of Viral Inhibition of IRF- and STAT-Dependent Immune Responses. Front Immunol, 2018. 9: p. 3086.
3. Yoneyama, M. and T. Fujita, Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity, 2008. 29(2): p. 178-81.
4. Firth, A.E. and I. Brierley, Non-canonical translation in RNA viruses. J Gen Virol, 2012. 93(Pt 7): p. 1385-1409.
5. Dreher, T.W. and W.A. Miller, Translational control in positive strand RNA plant viruses. Virology, 2006. 344(1): p. 185-97.
6. Hornung, V., et al., 5'-Triphosphate RNA is the ligand for RIG-I. Science, 2006. 314(5801): p. 994-7.
7. Pichlmair, A., et al., RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science, 2006. 314(5801): p. 997-1001.
8. Goubau, D., et al., Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature, 2014. 514(7522): p. 372-375.
9. Jiang, F., et al., Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature, 2011. 479(7373): p. 423-7.
10. Wies, E., et al., Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity, 2013. 38(3): p. 437-49.
11. Gack, M.U., et al., Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J Virol, 2010. 84(7): p. 3220-9.
12. Liu, H.M., et al., Regulation of Retinoic Acid Inducible Gene-I (RIG-I) Activation by the Histone Deacetylase 6. EBioMedicine, 2016. 9: p. 195-206.
13. Cadena, C., et al., Ubiquitin-Dependent and -Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell, 2019. 177(5): p. 1187-1200.e16.
14. Gack, M.U., et al., TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 2007. 446(7138): p. 916-920.
15. Horner, S.M., et al., Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A, 2011. 108(35): p. 14590-5.
16. Goubau, D., S. Deddouche, and C. Reis e Sousa, Cytosolic sensing of viruses. Immunity, 2013. 38(5): p. 855-69.
17. Wu, B., et al., Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell, 2013. 152(1-2): p. 276-89.
18. Lin, J.P., Y.K. Fan, and H.M. Liu, The 14-3-3η chaperone protein promotes antiviral innate immunity via facilitating MDA5 oligomerization and intracellular redistribution. PLoS Pathog, 2019. 15(2): p. e1007582.
19. Schindler, C., D.E. Levy, and T. Decker, JAK-STAT signaling: from interferons to cytokines. J Biol Chem, 2007. 282(28): p. 20059-63.
20. Platanias, L.C., Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol, 2005. 5(5): p. 375-86.
21. Ikushima, H., H. Negishi, and T. Taniguchi, The IRF family transcription factors at the interface of innate and adaptive immune responses. Cold Spring Harb Symp Quant Biol, 2013. 78: p. 105-16.
22. Vladimer, G.I., M.W. Górna, and G. Superti-Furga, IFITs: Emerging Roles as Key Anti-Viral Proteins. Front Immunol, 2014. 5: p. 94.
23. Schoggins, J.W., Interferon-Stimulated Genes: What Do They All Do? Annu Rev Virol, 2019. 6(1): p. 567-584.
24. Ramazi, S. and J. Zahiri, Posttranslational modifications in proteins: resources, tools and prediction methods. Database (Oxford), 2021. 2021.
25. Rehwinkel, J. and M.U. Gack, RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol, 2020. 20(9): p. 537-551.
26. Choudhary, C., et al., Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009. 325(5942): p. 834-40.
27. Shakespear, M.R., et al., Histone deacetylases as regulators of inflammation and immunity. Trends Immunol, 2011. 32(7): p. 335-43.
28. Callis, J., The ubiquitination machinery of the ubiquitin system. Arabidopsis Book, 2014. 12: p. e0174.
29. Cao, L., et al., Role of K63-linked ubiquitination in cancer. Cell Death Discov, 2022. 8(1): p. 410.
30. Wang, W., et al., The E3 ligase Riplet promotes RIG-I signaling independent of RIG-I oligomerization. Nat Commun, 2023. 14(1): p. 7308.
31. Zhao, C., et al., The E3 Ubiquitin Ligase TRIM40 Attenuates Antiviral Immune Responses by Targeting MDA5 and RIG-I. Cell Rep, 2017. 21(6): p. 1613-1623.
32. Arimoto, K., et al., Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A, 2007. 104(18): p. 7500-5.
33. Davis, M.E., et al., Antagonism of the phosphatase PP1 by the measles virus V protein is required for innate immune escape of MDA5. Cell Host Microbe, 2014. 16(1): p. 19-30.
34. Gack, M.U., et al., Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe, 2009. 5(5): p. 439-49.
35. Rajsbaum, R., et al., Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog, 2012. 8(11): p. e1003059.
36. Liu, H.M., et al., The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe, 2012. 11(5): p. 528-37.
37. Ren, Z., et al., Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response. Front Immunol, 2020. 11: p. 1030.
38. Wang, W. and D.C. Shakes, Molecular evolution of the 14-3-3 protein family. J Mol Evol, 1996. 43(4): p. 384-98.
39. Munier, C.C., C. Ottmann, and M.W.D. Perry, 14-3-3 modulation of the inflammatory response. Pharmacol Res, 2021. 163: p. 105236.
40. Yang, X., et al., Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci U S A, 2006. 103(46): p. 17237-42.
41. Xiao, B., et al., Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature, 1995. 376(6536): p. 188-91.
42. Liu, M.Y., et al., 14-3-3 interacts with the tumor suppressor tuberin at Akt phosphorylation site(s). Cancer Res, 2002. 62(22): p. 6475-80.
43. Rosner, M. and M. Hengstschläger, 14-3-3 proteins are involved in the regulation of mammalian cell proliferation. Amino Acids, 2006. 30(1): p. 105-9.
44. Truong, A.B., et al., Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins, 2002. 49(3): p. 321-5.
45. Won, J., et al., Cleavage of 14-3-3 protein by caspase-3 facilitates bad interaction with Bcl-x(L) during apoptosis. J Biol Chem, 2003. 278(21): p. 19347-51.
46. Andrews, D.D.T., et al., Cleavage of 14-3-3ε by the enteroviral 3C protease dampens RIG-I-mediated antiviral signaling. J Virol, 2023. 97(8): p. e0060423.
47. Chan, Y.J., et al., Temporal regulation of MDA5 inactivation by Caspase-3 dependent cleavage of 14-3-3η. PLoS Pathog, 2024. 20(6): p. e1012287.
48. Low, Z.Y., et al., 14-3-3 Family of Proteins: Biological Implications, Molecular Interactions, and Potential Intervention in Cancer, Virus and Neurodegeneration Disorders. J Cell Biochem, 2024. 125(7): p. e30624.
49. Surjit, M., et al., The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J Virol, 2005. 79(17): p. 11476-86.
50. Reymond, A., et al., The tripartite motif family identifies cell compartments. Embo j, 2001. 20(9): p. 2140-51.
51. Patil, G. and S. Li, Tripartite motif proteins: an emerging antiviral protein family. Future Virol, 2019. 14(2): p. 107-122.
52. Rajsbaum, R., A. García-Sastre, and G.A. Versteeg, TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol, 2014. 426(6): p. 1265-84.
53. Heikel, G., N.R. Choudhury, and G. Michlewski, The role of Trim25 in development, disease and RNA metabolism. Biochem Soc Trans, 2016. 44(4): p. 1045-50.
54. Rajsbaum, R., J.P. Stoye, and A. O'Garra, Type I interferon-dependent and -independent expression of tripartite motif proteins in immune cells. Eur J Immunol, 2008. 38(3): p. 619-30.
55. Ozato, K., et al., TRIM family proteins and their emerging roles in innate immunity. Nature Reviews Immunology, 2008. 8(11): p. 849-860.
56. Zou, W. and D.E. Zhang, The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J Biol Chem, 2006. 281(7): p. 3989-94.
57. Toniato, E., et al., TRIM8/GERP RING finger protein interacts with SOCS-1. J Biol Chem, 2002. 277(40): p. 37315-22.
58. Zha, J., et al., The Ret finger protein inhibits signaling mediated by the noncanonical and canonical IkappaB kinase family members. J Immunol, 2006. 176(2): p. 1072-80.
59. Stremlau, M., et al., The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature, 2004. 427(6977): p. 848-53.
60. Barr, S.D., J.R. Smiley, and F.D. Bushman, The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathog, 2008. 4(2): p. e1000007.
61. Uchil, P.D., et al., TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog, 2008. 4(2): p. e16.
62. Onomoto, K., K. Onoguchi, and M. Yoneyama, Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol, 2021. 18(3): p. 539-555.
63. Inn, K.S., et al., Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol Cell, 2011. 41(3): p. 354-65.
64. Croker, B.A., H. Kiu, and S.E. Nicholson, SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol, 2008. 19(4): p. 414-22.
65. Ning, X., et al., Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3. Mol Cell, 2019. 74(1): p. 19-31 e7.
66. Feng, Q., et al., Enterovirus 2Apro targets MDA5 and MAVS in infected cells. J Virol, 2014. 88(6): p. 3369-78.
67. Barral, P.M., et al., RIG-I is cleaved during picornavirus infection. Virology, 2009. 391(2): p. 171-6.
68. Riedl, W., et al., Zika Virus NS3 Mimics a Cellular 14-3-3-Binding Motif to Antagonize RIG-I- and MDA5-Mediated Innate Immunity. Cell Host Microbe, 2019. 26(4): p. 493-503.e6.
69. Xu, W., et al., Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe, 2014. 16(2): p. 187-200.
70. Shabman, R.S., et al., The Ebola virus VP24 protein prevents hnRNP C1/C2 binding to karyopherin α1 and partially alters its nuclear import. J Infect Dis, 2011. 204 Suppl 3(Suppl 3): p. S904-10.
71. Kuzelová, K., et al., Isoform-specific cleavage of 14-3-3 proteins in apoptotic JURL-MK1 cells. J Cell Biochem, 2009. 106(4): p. 673-81.
72. Besch, R., et al., Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest, 2009. 119(8): p. 2399-411.
73. Fu, S.C., et al., ScreenCap3: Improving prediction of caspase-3 cleavage sites using experimentally verified noncleavage sites. Proteomics, 2014. 14(17-18): p. 2042-6.
74. Molina-García, L. and F. Gasset-Rosa, Semi-denaturing Detergent Agarose Gel Electrophoresis (SDD-AGE). Bio-protocol, 2014. 4(22): p. e1297.
75. Rehwinkel, J., et al., RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell, 2010. 140(3): p. 397-408.
76. Zust, R., et al., Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol, 2011. 12(2): p. 137-43.
77. Kuo, R.L., et al., Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol, 2002. 83(Pt 6): p. 1367-1376.
78. Li, M.L., et al., The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology, 2002. 293(2): p. 386-95.
79. Sakuma, M., et al., Expression of estrogen-responsive finger protein (Efp) is associated with advanced disease in human epithelial ovarian cancer. Gynecol Oncol, 2005. 99(3): p. 664-70.
80. Inoue, S., et al., Genomic binding-site cloning reveals an estrogen-responsive gene that encodes a RING finger protein. Proc Natl Acad Sci U S A, 1993. 90(23): p. 11117-21.
81. Choudhury, N.R., et al., Trim25 Is an RNA-Specific Activator of Lin28a/TuT4-Mediated Uridylation. Cell Rep, 2014. 9(4): p. 1265-72.
82. Sanchez, J.G., et al., TRIM25 Binds RNA to Modulate Cellular Anti-viral Defense. J Mol Biol, 2018. 430(24): p. 5280-5293.
83. Zhou, W., et al., Degradation of HDAC10 by autophagy promotes IRF3-mediated antiviral innate immune responses. Sci Signal, 2022. 15(765): p. eabo4356.
84. Castanier, C., et al., MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol, 2012. 10: p. 44.
85. Kuniyoshi, K., et al., Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc Natl Acad Sci U S A, 2014. 111(15): p. 5646-51.
86. Yan, J., et al., TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J Mol Cell Biol, 2014. 6(2): p. 154-63.
87. Castello, A., et al., Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 2012. 149(6): p. 1393-406.
88. Kwon, S.C., et al., The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol, 2013. 20(9): p. 1122-30.
89. Hentze, M.W., et al., A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol, 2018. 19(5): p. 327-341.
90. Choudhury, N.R., et al., RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination. BMC Biol, 2017. 15(1): p. 105.
91. Zhang, F., et al., Housekeeping U1 snRNA facilitates antiviral innate immunity by promoting TRIM25-mediated RIG-I activation. Cell Rep, 2024. 43(3): p. 113945.
92. Manokaran, G., et al., Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science, 2015. 350(6257): p. 217-21.
93. Meyerson, N.R., et al., Nuclear TRIM25 Specifically Targets Influenza Virus Ribonucleoproteins to Block the Onset of RNA Chain Elongation. Cell Host Microbe, 2017. 22(5): p. 627-638.e7.
94. Choudhury, N.R., et al., TRIM25 inhibits influenza A virus infection, destabilizes viral mRNA, but is redundant for activating the RIG-I pathway. Nucleic Acids Res, 2022. 50(12): p. 7097-7114.
95. Álvarez, L., et al., The molecular dissection of TRIM25’s RNA-binding mechanism provides key insights into its antiviral activity. Nature Communications, 2024. 15(1): p. 8485.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96667-
dc.description.abstract先天性免疫透過模式識別受體(PRRs)來偵測病毒核酸,以啟動抗病毒訊號傳遞。在RIG-I樣受體(RLR)訊息傳遞中,多種輔助蛋白可以共同協調抗病毒免疫反應。在本研究中,我們著重於14-3-3和TRIM25這兩種輔助蛋白,它們分別能夠增強黑色素瘤分化相關蛋白5(MDA5)和視黃酸誘導基因I(RIG-I)的活化。14-3-3蛋白家族是重要的伴護蛋白(Chaperone protein),它們廣泛表達於真核細胞中,並用來調控不同的訊息傳遞路徑。先前的研究曾指出,在RNA病毒感染期間,14-3-3η能夠正向調控MDA5介導的第一型干擾素(IFN)的生成。為了防止訊息傳遞路徑過度活化,凋亡蛋白酶-3(Caspase-3)相關的細胞凋亡(apoptosis)路徑會被MDA5活化所觸發,進而切割MAVS和IRF3等信號分子。在本研究中,我們發現當MDA5活化時,14-3-3η會被凋亡蛋白酶-3切割而產生sub-14-3-3η,我們也觀察到冠狀病毒(coronavirus)和腸病毒(enterovirus)感染時也會導致sub-14-3-3η在細胞中積累,此外,抑制凋亡蛋白酶-3就能夠抑制sub-14-3-3η的生成,證實了14-3-3η是由凋亡蛋白酶-3所切割的。另外我們也發現缺少了第9個α螺旋(the 9th α-helix)的sub-14-3-3η與MDA5 之間有很強的交互作用,它們的結合改變了MDA5從細胞質移動到粒線體的狀況,並顯著降低了MDA5介導的第一型干擾素的產生,這些都證明了sub-14-3-3η可作為MDA5相關訊息傳遞路徑的負調節因子。此外,在冠狀病毒感染的細胞當中,sub-14-3-3η可以去抑制第一型干擾素的生成,使得病毒複製數量增加。在本論文的第二章中,我們的研究顯示了14-3-3η被凋亡蛋白酶-3切割可調控MDA5的活化與去活化,形成一種負向回饋機制以調節MDA5介導的第一型干擾素的生成。
另外,先前的研究顯示,TRIM蛋白家族參與了先天性免疫的調控,其中TRIM25被報導參與了RIG-I介導的抗病毒先天性免疫反應。TRIM25包含一個RING區域、兩個B-box結構、一個coiled-coil結構以及一個SPRY區域,其中RING區域具有泛素連接酶(ubiquitin ligase)的活性,可以協助RIG-I進行K63鏈結泛素化(K63-linked ubiquitination),這顯示了TRIM25在RIG-I的活化中扮演了重要角色。蛋白質體學的研究顯示,RIG-I和TRIM25在未感染的細胞中可以被乙醯化(acetylation),而且先前研究也指出,RIG-I的去乙醯化能夠促進其形成多聚體(oligomer),進而在急性病毒感染期間誘導第一型干擾素的表達。在本論文的第三章中,我們發現在細胞中表現模擬乙醯化的TRIM25能夠抑制第一型干擾素的生成,因此接下來我們評估了TRIM25的乙醯化在RIG-I介導的抗病毒先天性免疫中的作用。我們的實驗數據顯示乙醯化的TRIM25能使其形成二聚體(dimer)的比例下降,但其他具體影響的詳細機制尚需進一步探討。另一方面,我們發現去乙醯酶(deacetylase) HDAC10和內源性TRIM25有交互作用,顯示了HDAC10可能在病毒感染期間調控了TRIM25的去乙醯化。在第三章中,我們的研究顯示,TRIM25的乙醯化調控了RIG-I介導的抗病毒訊息傳導路徑,而進一步的分子機制探討能夠揭示TRIM25的乙醯化在抗病毒先天性免疫中的其他調控作用,有助於發現病毒感染時的潛在治療靶點。
zh_TW
dc.description.abstractDetection of viral nucleic acids through pattern recognition receptors (PRRs) triggers antiviral innate immunity. The RIG-I-like receptor (RLR) signaling pathway relies on various accessory proteins to orchestrate the antiviral immune response. In this study, we focused on two accessory proteins, 14-3-3 and tripartite motif-containing protein 25 (TRIM25), which enhance the activations of melanoma differentiated-associated protein 5 (MDA5) and retinoic acid inducible gene-I (RIG-I), respectively. The 14-3-3 family is a group of important chaperone proteins which are ubiquitously expressed in eukaryotic cells to modulate different signaling pathways. Previous studies have reported that during RNA virus infection, 14-3-3η positively regulates MDA5-dependent type I interferon (IFN) induction. To prevent overactivation, MDA5 activation triggers Caspase-3-dependent apoptosis to cleave certain signaling molecules such as MAVS and IRF3. In Chapter 2, we reported that 14-3-3η is cleaved by apoptotic Caspase-3 to form sub-14-3-3 upon MDA5 activation. We observed that coronavirus and/or enterovirus infections caused the accumulation of sub-14-3-3η. Also, inhibition of Caspase-3 suppressed the sub-14-3-3η production, confirming that 14-3-3η was cleaved by Caspase-3. We found that sub-14-3-3η lacking the 9th α-helix has a stronger interaction with MDA5, altering MDA5 distribution and dramatically impairing MDA5-dependent IFNβ induction, indicating that sub-14-3-3η is a negative regulator of MDA5-dependent signaling. In addition, in coronavirus infected cells, sub-14-3-3η could inhibit IFNβ induction and result in higher viral replication. In Chapter 2, our study revealed temporal control of MDA5 activation/deactivation by Caspase-3-dependent 14-3-3η cleavage, which provides a negative feedback mechanism of MDA5-mediated type I IFN induction.
Previous reports showed that members of the tripartite motif (TRIM) protein family are involved in the regulation of innate immunity. Among the TRIM family, TRIM25 has been reported to be involved in RIG-I-mediated antiviral innate immunity. TRIM25 contains a RING-finger domain, two B-box domains, a coiled-coil domain, and a SPRY domain. The RING domain of TRIM25 has an E3 ubiquitin ligase activity, which is essential for K63-linked ubiquitination of RIG-I. It is indicated that TRIM25 plays an important role in RIG-I activation. Previous proteomics reports have shown that RIG-I and TRIM25 were acetylated in the uninfected cells. In addition, according to a previous study, deacetylation of RIG-I promotes its oligomerization to induce type I IFN expression during acute virus infection. In Chapter 3, we found that expression of acetyl-mimetic mutants of TRIM25 suppressed IFNβ induction. We assessed the role of TRIM25 acetylation in RIG-I-dependent antiviral innate immunity and found that acetyl-TRIM25 regulates its dimerization. However, the detailed mechanism requires further studies. On the other hand, specific deacetylases, HDAC10, could interact with endogenous TRIM25, suggesting that HDAC10 may mediate TRIM25 deacetylation during viral infection. In Chapter 3, the role of TRIM25 acetylation in RIG-I-dependent antiviral signaling was described and discussed. Further investigations in molecular mechanisms may reveal additional regulatory roles of TRIM25 acetylation in antiviral immunity and uncover potential therapeutic targets for viral infections.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:26:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-20T16:26:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 1
中文摘要 2
Abstract 4
Table of Contents 7
List of Figures 10
List of Tables 12
List of Appendix 13
Abbreviation Table 14
Chapter 1: Introduction to RIG-I-Like Receptor-Dependent Antiviral Innate Immunity 17
1.1 Antiviral innate immunity by the RLR family 17
1.2 Post-translational modification of RLRs 20
1.3 Accessory proteins in RLR signaling pathway 22
1.4 The 14-3-3 chaperone protein family 23
1.5 The TRIM protein family 25
1.6 Negative regulator and feedback mechanism in the antiviral signaling 26
Chapter 2: The Temporal Regulations of 14-3-3η in MDA5-Dependent Type-I Interferon Induction 29
2.1 Background and rationale 29
2.2 Results 32
2.2.1 The degradation of 14-3-3η and the accumulation of sub-14-3-3η correlated to Caspase-3 activity in MDA5-dependent antiviral signaling. 32
2.2.2 The D209 of 14-3-3η was the key residue in accumulation of sub-14-3-3η upon MDA5 activation. 40
2.2.3 Sub-14-3-3η attenuated the MDA5 translocation from cytosol to mitochondria. 47
2.2.4 Cells with sub-14-3-3η expression were more susceptible to viral infection. 54
2.2.5 Viral protease other than Caspase-3 may also block MDA5-mediated antiviral signaling. 59
2.3 Conclusion 66
Chapter 3: The Role of TRIM25 Acetylation in Anti-Viral Innate Immunity 68
3.1 Background and rationale 68
3.2 Results 71
3.2.1 The acetylation of TRIM25 reduced RIG-I-dependent IFN induction. 71
3.2.2 The K273 and K320 of TRIM25 regulated self-dimerization. 77
3.2.3 HDAC10 served as the specific deacetylase for TRIM25. 83
3.3 Conclusion and discussion 87
Chapter 4 89
4.1 General discussion 89
4.2 Materials and Methods 95
4.2.1 Cells 95
4.2.2 Construction of expression plasmids 96
4.2.3 DNA transfection 96
4.2.4 Virus infection, high molecular weight poly(I:C) stimulation, and inhibitor treatment 97
4.2.5 Immunoblot analysis 98
4.2.6 Immunoprecipitation (IP) 100
4.2.7 Semi-denaturing detergent agarose gel electrophoresis (SDD-AGE) 100
4.2.8 Native polyacrylamide gel electrophoresis (Native PAGE) 101
4.2.9 Dual luciferase IFNβ reporter assay 101
4.2.10 RNA extractions 102
4.2.11 Quantitative real-time PCR (qRT-PCR) 103
4.2.12 Cell fractionation assay 103
4.2.13 Statistical analysis 104
Chapter 5: Reference 105
-
dc.language.isoen-
dc.subject14-3-3etazh_TW
dc.subject乙醯化(acetylation)zh_TW
dc.subjectTRIM25zh_TW
dc.subject視黃酸誘導基因-I(RIG-I)zh_TW
dc.subject凋亡蛋白酶-3(Caspase-3)zh_TW
dc.subject黑色素瘤分化相關蛋白5 (MDA5)zh_TW
dc.subjectCaspase-3en
dc.subject14-3-3etaen
dc.subjectMDA5en
dc.subjectacetylationen
dc.subjectTRIM25en
dc.subjectRIG-Ien
dc.title輔助蛋白質在RIG-I樣受體活化中的分子機制研究zh_TW
dc.titleMolecular Studies on Accessory Proteins in the Activation of RIG-I-Like Receptorsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee余明俊;林靜宜;施信如;郭瑞琳zh_TW
dc.contributor.oralexamcommitteeMing-Jiun Yu;Jing-Yi Lin;Shin-Ru Shih;Rei-Lin Kuoen
dc.subject.keyword黑色素瘤分化相關蛋白5 (MDA5),14-3-3eta,凋亡蛋白酶-3(Caspase-3),視黃酸誘導基因-I(RIG-I),TRIM25,乙醯化(acetylation),zh_TW
dc.subject.keywordMDA5,14-3-3eta,Caspase-3,RIG-I,TRIM25,acetylation,en
dc.relation.page139-
dc.identifier.doi10.6342/NTU202500120-
dc.rights.note未授權-
dc.date.accepted2025-01-15-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
6.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved