請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96665
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李伯訓 | zh_TW |
dc.contributor.advisor | Bor-Shiunn Lee | en |
dc.contributor.author | 黃子芸 | zh_TW |
dc.contributor.author | Tzu-Yun Huang | en |
dc.date.accessioned | 2025-02-20T16:26:25Z | - |
dc.date.available | 2025-02-21 | - |
dc.date.copyright | 2025-02-20 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-02-12 | - |
dc.identifier.citation | 1. Bugshan, A., & Farooq, I. (2020). Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000 research, 2:9:229.
2. IRH, K. (1978). Definition of leukoplakia and related lesions: an aid to studies on oral precancer. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 46, 518-539. 3. Bewley, A. F., & Farwell, D. G. (2017). Oral leukoplakia and oral cavity squamous cell carcinoma. Clinics in dermatology, 35(5), 461-467. 4. Yang, S. W., Lee, Y. S., Chang, L. C., Hwang, C. C., Luo, C. M., & Chen, T. A. (2015). Clinical characteristics of narrow-band imaging of oral erythroplakia and its correlation with pathology. BMC cancer, 15, 1-8. 5. Sano, D., & Myers, J. N. (2007). Metastasis of squamous cell carcinoma of the oral tongue. Cancer and metastasis reviews, 26, 645-662. 6. Denis, F., Garaud, P., Manceau, A., Beutter, P., Garand, G., Le Floch, O., & Calais, G. (2001). Prognostic value of the number of involved nodes after neck dissection in oropharyngeal and oral cavity carcinoma. Cancer radiotherapie: journal de la societe francaise de radiotherapie oncologique, 5(1), 12-22. 7. Sharma, A., Kim, J. W., Paeng, J. Y., Rezaei Esfahrood, Z., Yadegari, Z., Veysari, S. K., & Kadkhodazadeh, M. (2018). Gingival crevicular fluid levels of sclerostin in chronic periodontitis and healthy subjects. Journal of the korean association of oral and maxillofacial surgeons, 44(6), 289-292. 8. Woolgar, J. A., Triantafyllou, A., Lewis, J. S., Hunt, J., Williams, M. D., Takes, R. P, Thompson, L. D., Slootweg, P. J., Devaney, K. O., & Ferlito, A. (2013). Prognostic biological features in neck dissection specimens. European archives of oto-rhino-laryngology, 270, 1581-1592. 9. Gonçalves, A. S., Arantes, D. A. C., Bernardes, V. F., Jaeger, F., Silva, J. M., Silva, T. A., Aguiar, M. C., & Batista, A. C. (2015). Immunosuppressive mediators of oral squamous cell carcinoma in tumour samples and saliva. Human immunology, 76(1), 52-58. 10. Rescala, B., Rosalem, W., Jr, Teles, R. P., Fischer, R. G., Haffajee, A. D., Socransky, S. S., Gustafsson, A., & Figueredo, C. M. (2010). Immunologic and microbiologic profiles of chronic and aggressive periodontitis subjects. Journal of periodontology, 81(9), 1308–1316. 11. Slavish, D. C., Graham-Engeland, J. E., Smyth, J. M., & Engeland, C. G. (2015). Salivary markers of inflammation in response to acute stress. Brain, behavior, and immunity, 44, 253-269. 12. Kaskas, N. M., Moore-Medlin, T., McClure, G. B., Ekshyyan, O., Vanchiere, J. A., & Nathan, C. A. O. (2014). Serum biomarkers in head and neck squamous cell cancer. JAMA otolaryngology–head & neck surgery, 140(1), 5-11. 13. Hamzavi, M., Tadbir, A. A., Rezvani, G., Ashraf, M. J., Fattahi, M. J., Khademi, B., Sardari, Y., & Jeirudi, N. (2013). Tissue expression, serum and salivary levels of IL-10 in patients with head and neck squamous cell carcinoma. Asian pacific journal of cancer prevention: APJCP, 14(3), 1681–1685. 14. Kioi, M., Shimamura, T., Nakashima, H., Hirota, M., Tohnai, I., Husain, S. R., & Puri, R. K. (2009). IL‐13 cytotoxin has potent antitumor activity and synergizes with paclitaxel in a mouse model of oral squamous cell carcinoma. International journal of cancer, 124(6), 1440-1448. 15. Furness, S., Glenny, A. M., Worthington, H. V., Pavitt, S., Oliver, R., Clarkson, J. E., Macluskey, M., Chan, K. K., Conway, D. I., & CSROC Expert Panel (2010). Interventions for the treatment of oral cavity and oropharyngeal cancer: chemotherapy. The cochrane database of systematic reviews, (9). 16. Hartner, L. (2018). Chemotherapy for oral cancer. Dental clinics, 62(1), 87-97. 17. Zraik, I. M., & Heß-Busch, Y. (2021). Management von nebenwirkungen der chemotherapie und deren langzeitfolgen. Der urologe, 60(7), 862-871. 18. Romani, A. M. (2022). Cisplatin in cancer treatment. Biochemical pharmacology, 206, 115323. 19. Kartalou, M., & Essigmann, J. M. (2001). Mechanisms of resistance to cisplatin. Mutation research/fundamental and molecular mechanisms of mutagenesis, 478(1-2), 23-43. 20. Beck, D. J., & Brubaker, R. R. (1973). Effect of cis-platinum (II) diamminodichloride on wild type and deoxyribonucleic acid repair-deficient mutants of Escherichia coli. Journal of bacteriology, 116(3), 1247-1252. 21. Konishi, H., Usui, T., Sawada, H., Uchino, H., & Kidani, Y. (1981). Effects of anticancer platinum compounds on Escherichia coli strains with normal and defective DNA repair capacity. Generative adversarial network, 72(4), 627-630. 22. Alazard, R., Germanier, M., & Johnson, N. P. (1982). Mechanism of toxicity of platinum (II) compounds in repair-deficient strains of Escherichia coli. Mutation research/fundamental and molecularmechanisms of mutagenesis, 93(2), 327-337. 23. Beck, D. J., Popoff, S., Sancar, A., & Rupp, W. D. (1985). Reactions of the UVRABC excision nuclease with DNA damaged by diamminedichloroplatinum (II). nucleic acids research, 13(20), 7395-7412. 24. Salles, B., Butour, J. L., Lesca, C., & Macquet, J. P. (1983). cis-pt (NH3) 2Cl2 and trans-Pt (NH3) 2Cl2 inhibit DNA synthesis in cultured L1210 leukemia cells. Biochemical and biophysical research communications, 112(2), 555-563. 25. Ciccarelli, R. B., Solomon, M. J., Varshavsky, A., & Lippard, S. J. (1985). In vivo effects of cis-and trans-diamminedichloroplatinum (II) on SV40 chromosomes: differential repair, DNA-protein crosslinking, and inhibition of replication. Biochemistry, 24(26), 7533-7540. 26. Uchida, K., Tanaka, Y., Nishimura, T., Hashimoto, Y., Watanabe, T., & Harada, I. (1986). Effect of serum on inhibition of DNA synthesis in leukemia cells by cis-and trans-[Pt (NH3) 2Cl2]. Biochemical and biophysical research communications, 138(2), 631-637. 27. Sorenson, C. M., Barry, M. A., & Eastman, A. (1990). Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin. Journal of the national cancer institute, 82(9), 749-755. 28. Sorenson, C. M., & Eastman, A. (1988). Influence of cis-diamminedichloroplatinum (II) on DNA synthesis and cell cycle progression in excision repair proficient and deficient Chinese hamster ovary cells. Cancer research, 48(23), 6703-6707. 29. Sorenson, C. M., & Eastman, A. (1988). Mechanism of cis-diamminedichloroplatinum (II)-induced cytotoxicity: role of G2 arrest and DNA double-strand breaks. Cancer research, 48(16), 4484-4488. 30. Qiu, Z., Liu, Q., Wang, L., Xiong, Y., Wu, J., Wang, M., Yan, X., & Deng, H. (2024). The copper transporter, SLC31A1, transcriptionally activated by ELF3, imbalances copper homeostasis to exacerbate cisplatin-induced acute kidney injury through mitochondrial dysfunction. Chemico-biological interactions, 393, 110943. 31. Caiado, J., Venemalm, L., Pereira-Santos, M. C., Costa, L., Barbosa, M. P., & Castells, M. (2013). Carboplatin-, oxaliplatin-, and cisplatin–specific IgE: cross-reactivity and value in the diagnosis of carboplatin and oxaliplatin allergy. The journal of allergy and clinical immunology: in practice, 1(5), 494-500. 32. Al-Eisawi, Z., Beale, P., Chan, C., Yu, J. Q., & Huq, F. (2013). Carboplatin and oxaliplatin in sequenced combination with bortezomib in ovarian tumour models. Journal of ovarian research, 6, 1-11. 33. Mita, C., Chatelut, E., Bekradda, M., Soulie, P., Canal, P., Misset, J. L., ... & Bugat, R. (2003). Phase I and pharmacological study of an oxaliplatin and carboplatin combination in advanced malignancies. Annals of oncology, 14(12), 1776-1782. 34. Amreddy, N., Babu, A., Muralidharan, R., Panneerselvam, J., Srivastava, A., Ahmed, R., Mehta, M., Munshi, A., & Ramesh, R. (2018). Recent advances in nanoparticle-based cancer drug and gene delivery. Advances in cancer research, 137, 115–170. 35. Zhang, H., Zhang, H., Zhu, X., Zhang, X., Chen, Q., Chen, J., Hou, L., & Zhang, Z. (2017). Visible-light-sensitive titanium dioxide nanoplatform for tumor-responsive Fe2+ liberating and artemisinin delivery. Oncotarget, 8(35), 58738–58753. 36. De La Rica, R., Aili, D., & Stevens, M. M. (2012). Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced drug delivery reviews, 64(11), 967-978. 37. Madani, S. Y., Naderi, N., Dissanayake, O., Tan, A., & Seifalian, A. M. (2011). A new era of cancer treatment: carbon nanotubes as drug delivery tools. International journal of nanomedicine, 2963-2979. 38. Xu, J., Singh, A., & Amiji, M. M. (2014). Redox-responsive targeted gelatin nanoparticles for delivery of combination wt-p53 expressing plasmid DNA and gemcitabine in the treatment of pancreatic cancer. BMC cancer, 14, 1-12. 39. McBain, S. C., Yiu, H. H., & Dobson, J. (2008). Magnetic nanoparticles for gene and drug delivery. International journal of nanomedicine, 3(2), 169-180. 40. Cai, W., Gao, T., Hong, H., & Sun, J. (2008). Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, science and applications, 17-32. 41. Madaan, K., Kumar, S., Poonia, N., Lather, V., & Pandita, D. (2014). Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. Journal of pharmacy and bioallied sciences, 6(3), 139-150. 42. Dufès, C., Uchegbu, I. F., & Schätzlein, A. G. (2005). Dendrimers in gene delivery. Advanced drug delivery reviews, 57(15), 2177-2202. 43. Decuzzi, P., & Ferrari, M. (2007). The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials, 28(18), 2915-2922. 44. Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature materials, 8(7), 543–557. 45. Lin, J., & Alexander-Katz, A. (2013). Cell membranes open “doors” for cationic nanoparticles/biomolecules: insights into uptake kinetics. ACS nano, 7(12), 10799-10808. 46. Zhang, H., Ji, Q., Huang, C., Zhang, S., Yuan, B., Yang, K., & Ma, Y. Q. (2015). Cooperative transmembrane penetration of nanoparticles. Scientific reports, 5(1), 10525. 47. Yang, K., & Ma, Y. Q. (2010). Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature nanotechnology, 5(8), 579-583. 48. Wong-Ekkabut, J., Baoukina, S., Triampo, W., Tang, I. M., Tieleman, D. P., & Monticelli, L. (2008). Computer simulation study of fullerene translocation through lipid membranes. Nature nanotechnology, 3(6), 363-368. 49. Ding, H. M., Tian, W. D., & Ma, Y. Q. (2012). Designing nanoparticle translocation through membranes by computer simulations. ACS nano, 6(2), 1230-1238. 50. Abd El-Hack, M. E., El-Saadony, M. T., Shafi, M. E., Zabermawi, N. M., Arif, M., Batiha, G. E., Khafaga, A. F., Abd El-Hakim, Y. M., & Al-Sagheer, A. A. (2020). Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review. International journal of biological macromolecules, 164, 2726–2744. 51. Cheah, W. Y., Show, P. L., Ng, I. S., Lin, G. Y., Chiu, C. Y., & Chang, Y. K. (2019). Antibacterial activity of quaternized chitosan modified nanofiber membrane. International journal of biological macromolecules, 126, 569-577. 52. Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & De La Caba, K. (2017). Chitosan as a bioactive polymer: Processing, properties and applications. International journal of biological macromolecules, 105, 1358-1368. 53. Cheah, W. Y., Show, P. L., Ng, I. S., Lin, G. Y., Chiu, C. Y., & Chang, Y. K. (2019). Antibacterial activity of quaternized chitosan modified nanofiber membrane. International journal of biological macromolecules, 126, 569-577. 54. Amato, A., Migneco, L. M., Martinelli, A., Pietrelli, L., Piozzi, A., & Francolini, I. (2018). Antimicrobial activity of catechol functionalized-chitosan versus Staphylococcus epidermidis. Carbohydrate polymers, 179, 273-281. 55. Martins, A. F., Facchi, S. P., Follmann, H. D., Pereira, A. G., Rubira, A. F., & Muniz, E. C. (2014). Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. International journal of molecular sciences, 15(11), 20800-20832. 56. Goy, R. C., Britto, D. D., & Assis, O. B. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19, 241-247. 57. Sahariah, P., Hjálmarsdóttir, M. Á., & Másson, M. (2016). Antimicrobial properties of chitosan and chitosan derivatives. Marine Glycobiology, 365-388. 58. Jayakumar, R., Prabaharan, M., Kumar, P. S., Nair, S. V., & Tamura, H. J. B. A. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology advances, 29(3), 322-337. 59. Curcio, M., Puoci, F., Iemma, F., Parisi, O. I., Cirillo, G., Spizzirri, U. G., & Picci, N. (2009). Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Journal of agricultural and food chemistry, 57(13), 5933-5938. 60. Sinha, V. R., Singla, A. K., Wadhawan, S., Kaushik, R., Kumria, R., Bansal, K., & Dhawan, S. (2004). Chitosan microspheres as a potential carrier for drugs. International journal of pharmaceutics, 274(1-2), 1-33. 61. Minke, R. A. M., & Blackwell, J. (1978). The structure of α-chitin. Journal of molecular biology, 120(2), 167-181. 62. Chandy, T., & Sharma, C. P. (1990). Chitosan-as a biomaterial. Biomaterials, artificial cells and artificial organs, 18(1), 1-24. 63. Byrne, J. D., Yeh, J. J., & DeSimone, J. M. (2018). Use of iontophoresis for the treatment of cancer. Journal of controlled release, 284, 144-151. 64. Kalia, Y. N., Naik, A., Garrison, J., & Guy, R. H. (2004). Iontophoretic drug delivery. Advanced drug delivery reviews, 56(5), 619-658. 65. Fang, J. Y., Lee, W. R., Shen, S. C., Fang, Y. P., & Hu, C. H. (2004). Enhancement of topical 5‐aminolaevulinic acid delivery by erbium: YAG laser and microdermabrasion: a comparison with iontophoresis and electroporation. British journal of dermatology, 151(1), 132-140. 66. Bacro, T. R., Holladay, E. B., Stith, M. J., Maize, J. C., & Smith, C. M. (2000). Iontophoresis treatment of basal cell carcinoma with cisplatin: a case report. Cancer detection and prevention, 24(6), 610-619. 67. Chang, B. K., Guthrie, T. H., Hayakawa, K., & Gangarosa, L. P. (1993). A pilot study of iontophoretic cisplatin chemotherapy of basal and squamous cell carcinomas of the skin. Archives of dermatology, 129(4), 425-427. 68. Chandrashekar, N. S., & RH, S. R. (2007). Microprocessor-controlled iontophoretic drug delivery of 5-fluorouracil: pharmacodynamic and pharmacokinetic study. Journal of the balkan union of oncology, 12(4), 529-534. 69. Welch, M. L., Grabski, W. J., McCollough, M. L., Skelton, H. G., Smith, K. J., Menon, P. A., & Anderson, L. L. (1997). 5-fluorouracil iontophoretic therapy for Bowen's disease. Journal of the american academy of dermatology, 36(6), 956-958. 70. Fang, J. Y., Hung, C. F., Fang, Y. P., & Chan, T. F. (2004). Transdermal iontophoresis of 5-fluorouracil combined with electroporation and laser treatment. International journal of pharmaceutics, 270(1-2), 241-249. 71. Fang, J. Y., Lee, W. R., Shen, S. C., Fang, Y. P., & Hu, C. H. (2004). Enhancement of topical 5‐aminolaevulinic acid delivery by erbium: YAG laser and microdermabrasion: a comparison with iontophoresis and electroporation. British journal of dermatology, 151(1), 132-140. 72. Leslie, N., & Mauzeroll, J. (2024). Spatially resolved electrochemical measurements. Encyclopedia of solid-liquid interfaces, 461-478. 73. Andrade, J. F., Cunha-Filho, M., Gelfuso, G. M., & Gratieri, T. (2023). Iontophoresis for the cutaneous delivery of nanoentraped drugs. Expert opinion on drug delivery, 20(6), 785-798. 74. Kashyap, B., & Kumar, R. (2022). A novel multi-set differential pulse voltammetry technique for improving precision in electrochemical sensing. Biosensors and bioelectronics, 216, 114628. 75. Caskey, C. F. (2017). Ultrasound molecular imaging and drug delivery. Molecular imaging and biology, 19, 336-340. 76. Bachmann, C., Klibanov, A. L., Olson, T. S., Sonnenschein, J. R., Rivera-Nieves, J., Cominelli, F., Ley, K. F., Lindner, J. R., & Pizarro, T. T. (2006). Targeting mucosal addressin cellular adhesion molecule (MAdCAM)-1 to noninvasively image experimental Crohn's disease. Gastroenterology, 130(1), 8–16. 77. Kaufmann, B. A., Lewis, C., Xie, A., Mirza-Mohd, A., & Lindner, J. R. (2007). Detection of recent myocardial ischaemia by molecular imaging of P-selectin with targeted contrast echocardiography. European heart journal, 28(16), 2011-2017. 78. Khanicheh, E., Qi, Y., Xie, A., Mitterhuber, M., Xu, L., Mochizuki, M., Daali, Y., Jaquet, V., Krause, K. H., Ruggeri, Z. M., Kuster, G. M., Lindner, J. R., & Kaufmann, B. A. (2013). Molecular imaging reveals rapid reduction of endothelial activation in early atherosclerosis with apocynin independent of antioxidative properties. Arteriosclerosis, thrombosis, and vascular biology, 33(9), 2187–2192. 79. Abou-Elkacem, L., Bachawal, S. V., & Willmann, J. K. (2015). Ultrasound molecular imaging: moving toward clinical translation. European journal of radiology, 84(9), 1685-1693. 80. OˈReilly, M. A., & Hynynen, K. (2013). A super‐resolution ultrasound method for brain vascular mapping. Medical physics, 40(11), 110701. 81. Desailly, Y., Couture, O., Fink, M., & Tanter, M. (2013). Sono-activated ultrasound localization microscopy. Applied physics letters, 103(17). 82. Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR imaging–guided focal opening of the blood-brain barrier in rabbits. Radiology, 220(3), 640-646. 83. Carpentier, A., Canney, M., Vignot, A., Reina, V., Beccaria, K., Horodyckid, C., Karachi, C., Leclercq, D., Lafon, C., Chapelon, J. Y., Capelle, L., Cornu, P., Sanson, M., Hoang-Xuan, K., Delattre, J. Y., & Idbaih, A. (2016). Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Science translational medicine, 8(343), 343re2. 84. Samiotaki, G., Acosta, C., Wang, S., & Konofagou, E. E. (2015). Enhanced delivery and bioactivity of the neurturin neurotrophic factor through focused ultrasound—mediated blood—brain barrier opening in vivo. Journal of cerebral blood flow & metabolism, 35(4), 611-622. 85. Omata, D., Unga, J., Suzuki, R., & Maruyama, K. (2020). Lipid-based microbubbles and ultrasound for therapeutic application. Advanced drug delivery reviews, 154, 236-244. 86. Unga, J., & Hashida, M. (2014). Ultrasound induced cancer immunotherapy. Advanced drug delivery reviews, 72, 144-153. 87. Unger, E. C., Porter, T., Culp, W., Labell, R., Matsunaga, T., & Zutshi, R. (2004). Therapeutic applications of lipid-coated microbubbles. Advanced drug delivery reviews, 56(9), 1291-1314. 88. Sirsi, S. R., & Borden, M. A. (2009). Microbubble compositions, properties and biomedical applications. Bubble science, engineering & technology, 1(1-2), 3-17. 89. Negishi, Y., Endo-Takahashi, Y., & Maruyama, K. (2016). Gene delivery systems by the combination of lipid bubbles and ultrasound. Drug discoveries & therapeutics, 10(5), 248-255. 90. Escoffre, J. M., Deckers, R., Bos, C., & Moonen, C. (2016). Bubble-assisted ultrasound: application in immunotherapy and vaccination. Therapeutic ultrasound, 243-261. 91. Omata, D., Unga, J., Suzuki, R., & Maruyama, K. (2020). Lipid-based microbubbles and ultrasound for therapeutic application. Advanced drug delivery reviews, 154, 236-244. 92. Rich, J., Tian, Z., & Huang, T. J. (2022). Sonoporation: Past, present, and future. Advanced materials technologies, 7(1), 2100885. 93. Sundaram, J., Mellein, B. R., & Mitragotri, S. (2003). An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophysical journal, 84(5), 3087-3101. 94. Krasovitski, B., Frenkel, V., Shoham, S., & Kimmel, E. (2011). Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proceedings of the national academy of sciences, 108(8), 3258-3263. 95. Zupanc, M., Pandur, Ž., Perdih, T. S., Stopar, D., Petkovšek, M., & Dular, M. (2019). Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics sonochemistry, 57, 147-165. 96. Liu, Y., Yan, J., & Prausnitz, M. R. (2012). Can ultrasound enable efficient intracellular uptake of molecules? A retrospective literature review and analysis. Ultrasound in medicine & biology, 38(5), 876-888. 97. Wiklund, M., Green, R., & Ohlin, M. (2012). Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab on a Chip, 12(14), 2438-2451. 98. Liu, S., Yang, Y., Ni, Z., Guo, X., Luo, L., Tu, J., Zhang, D., & Zhang, A. J. (2017). Investigation into the effect of acoustic radiation force and acoustic streaming on particle patterning in acoustic standing wave fields. Sensors (basel, switzerland), 17(7), 1664. 99. Ahmed, D., Ozcelik, A., Bojanala, N., Nama, N., Upadhyay, A., Chen, Y., Hanna-Rose, W., & Huang, T. J. (2016). Rotational manipulation of single cells and organisms using acoustic waves. Nature communications, 7, 11085. 100. Sadhal, S. S. (2012). Acoustofluidics 13: Analysis of acoustic streaming by perturbation methods. Lab on a Chip, 12(13), 2292-2300. 101. Barnkob, R., Augustsson, P., Laurell, T., & Bruus, H. (2012). Acoustic radiation-and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Physical review e-statistical, nonlinear, and soft matter physics, 86(5), 056307. 102. Aibani, N., Rai, R., Patel, P., Cuddihy, G., & Wasan, E. K. (2021). Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics, 13(10), 1686. 103. Tığlı Aydın, R. S., & Pulat, M. (2012). 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. Journal of nanomaterials, 2012(1), (2012): 313961. 104. Basotra, M., Singh, S. K., & Gulati, M. (2013). Development and validation of a simple and sensitive spectrometric method for estimation of cisplatin hydrochloride in tablet dosage forms: application to dissolution studies. International scholarly research notices, 2013(1), 936254. 105. Lai D. H. (2021). Promote the penetration efficiency of anti-oral cancer patches by electrochemical reaction. NTU theses and dissertations repository. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82719. 106. He A. C. (2023). Iontophoresis enhancing efficacy of cisplatin-encapsulated chitosan nanoparticle in oral tumor treatment- an animal model. NTU theses and dissertations repository. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91659. 107. Liu, Q., Yuan, Y., Shang, X., & Xin, L. (2024). Cyclin B2 impairs the p53 signaling in nasopharyngeal carcinoma. BMC cancer, 24(1), 25. 108. Sun, X., & Kaufman, P. D. (2018). Ki-67: more than a proliferation marker. Chromosoma, 127(2), 175–186. 109. Aibani, N., Rai, R., Patel, P., Cuddihy, G., & Wasan, E. K. (2021). Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics, 13(10), 1686. 110. Ing, L. Y., Zin, N. M., Sarwar, A., & Katas, H. (2012). Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International journal of biomaterials, 2012, 632698. 111. Calvo, P., Remuñan-López, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharmaceutical research, 14(10), 1431–1436. 112. Ma, Z., Garrido-Maestu, A., & Jeong, K. C. (2017). Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: a review. Carbohydrate polymers, 176, 257–265. 113. Mazancová, P., Némethová, V., Treľová, D., Kleščíková, L., Lacík, I., & Rázga, F. (2018). Dissociation of chitosan/tripolyphosphate complexes into separate components upon pH elevation. Carbohydrate polymers, 192, 104–110. 114. de Carvalho, F. G., Magalhães, T. C., Teixeira, N. M., Gondim, B. L. C., Carlo, H. L., Dos Santos, R. L., de Oliveira, A. R., & Denadai, Â. M. L. (2019). Synthesis and characterization of TPP/chitosan nanoparticles: colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Materials science & engineering. C, materials for biological applications, 104, 109885. 115. Nasti, A., Zaki, N. M., De Leonardis, P., Ungphaiboon, S., Sansongsak, P., Rimoli, M. G., & Tirelli, N. (2009). Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharmaceutical research, 26, 1918-1930. 116. Calvo, P., Remunan‐Lopez, C., Vila‐Jato, J. L., & Alonso, M. J. (1997). Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. Journal of applied polymer science, 63(1), 125-132. 117. Schipper, N. G., Vårum, K. M., & Artursson, P. (1996). Chitosans as absorption enhancers for poorly absorbable drugs. 1: Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (caco-2) cells. Pharmaceutical research, 13, 1686-1692. 118. Moussa, S. H., Tayel, A. A., & Al-Turki, A. I. (2013). Evaluation of fungal chitosan as a biocontrol and antibacterial agent using fluorescence-labeling. International journal of biological macromolecules, 54, 204–208. 119. Li, Z., Zhang, Y., Zhu, D., Li, S., Yu, X., Zhao, Y., & Li, L. (2017). Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways. Drug delivery, 24(2), 45-55. 120. Huang, M., Ma, Z., Khor, E., & Lim, L. Y. (2002). Uptake of FITC-chitosan nanoparticles by A549 cells. Pharmaceutical research, 19, 1488-1494. 121. Park, J. S., & Cho, Y. W. (2007). In vitro cellular uptake and cytotoxicity of paclitaxel-loaded glycol chitosan self-assembled nanoparticles. Macromolecular Research, 15, 513-519. 122. Aibani, N., Rai, R., Patel, P., Cuddihy, G., & Wasan, E. K. (2021). Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics, 13(10), 1686. 123. Nuñez, G., Benedict, M. A., Hu, Y., & Inohara, N. (1998). Caspases: the proteases of the apoptotic pathway. Oncogene, 17(25), 3237-3245. 124. Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H., & Peter, M. E. (1995). Cytotoxicity‐dependent APO‐1 (Fas/CD95)‐associated proteins form a death‐inducing signaling complex (DISC) with the receptor. The EMBO journal, 14(22), 5579-5588. 125. Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology, 740, 364-378. 126. Raiman, J., Koljonen, M., Huikko, K., Kostiainen, R., & Hirvonen, J. (2004). Delivery and stability of LHRH and nafarelin in human skin: the effect of constant/pulsed iontophoresis. European journal of pharmaceutical sciences : official journal of the european federation for pharmaceutical sciences, 21(2-3), 371–377. 127. Smith, J., Wood, E., & Dornish, M. (2004). Effect of chitosan on epithelial cell tight junctions. Pharmaceutical research, 21(1), 43–49. 128. Nguyen, T. P., Otani, T., Tsutsumi, M., Kinoshita, N., Fujiwara, S., Nemoto, T., Fujimori, T., & Furuse, M. (2024). Tight junction membrane proteins regulate the mechanical resistance of the apical junctional complex. The journal of cell biology, 223(5), e202307104. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96665 | - |
dc.description.abstract | 口腔癌為全球常見之癌症之一,目前針對口腔癌的治療,以手術切除作為主要手段。然而治療時常結合放射治療和化學治療以提高治療效果,順鉑(cisplatin)透過與細胞內的DNA交聯,干擾細胞的DNA修復機制促使細胞凋亡,然而強烈的副作用限制其廣泛應用之主要障礙,藥物遞送系統對於化療之進展至為關鍵,在此,我們通過超音波物理力使細胞膜產生聲孔效應,改變細胞膜的通透性來促進藥物的進入以及利用施予外加電場增強帶電藥物分子在皮膚或其他生物屏障中的滲透性之離子電泳法,使藥物能夠精確地釋放至目標位置,從而提高治療的靶向性和療效。通過此二種局部給藥系統,減少藥物導致之全身性副作用,並實現長效、持久的藥物釋放。在此背景下,本實驗於體外試驗及體內試驗中皆證明超音波物理力和離子電泳法增強包裹順鉑藥物之殼聚醣奈米顆粒於口腔鱗狀細胞癌中遞送之有效性,冀望為口腔鱗狀細胞癌化學治療提出了新的可能性方案。 | zh_TW |
dc.description.abstract | Oral cancer was one of the most common cancers worldwide. At present, the primary treatment for oral cancer was surgical resection. However, the treatment was often combined with radiotherapy and chemotherapy to enhance therapeutic efficacy. Cisplatin was a chemotherapy drug, worked by cross-linking with DNA inside the cell, disrupting the DNA repair mechanisms, and inducing apoptosis. However, its severe side effects were a major barrier to its widespread use. Drug delivery systems were crucial for the advancement of chemotherapy. In this study, ultrasound-induced physical force was used to create sonoporation effect, altering membrane permeability to promote drug entry. Additionally, iontophoresis, an electric field-assisted method, was applied to enhance the penetration of charged drug molecules through the skin or other biological barriers. This allowed for the precise release of drugs to targeted sites, improving the specificity and efficacy of treatment. Through these two local drug delivery systems, systemic side effects of the drugs were minimized, and long-lasting, sustained drug release was achieved. In this context, our in vitro and in vivo experiments demonstrated the effectiveness of ultrasound and iontophoresis-enhanced chitosan nanoparticle-based delivery of cisplatin in oral squamous cell carcinoma. We hoped to provide a new potential approach for chemotherapy in the treatment of oral squamous cell carcinoma. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:26:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-20T16:26:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目次
口試委員審定書 i 致謝 ii 摘要 iii abstract iv 目次 v 圖次 viii 表次 x 第一章 緒論 1 1.1前言 1 第二章 文獻回顧 2 2.1口腔鱗狀細胞癌(oral squamous cell carcinoma) 2 2.2化學治療(chemotherapy) 3 2.2.1 順鉑 3 2.2.2 奈米顆粒藥物遞送系統 4 2.2.3 殼聚醣奈米顆粒 5 2.3離子電泳法輔助之藥物遞送 6 2.3.1計時電位法(constant-current chronopotentiometry, CCCP) 6 2.3.2變動電流法(cyclic chronopotentiometry, CCP) 7 2.3.3微分脈衝伏安法(differential pulse voltammetry, DPV) 7 2.4超音波輔助之藥物遞送 7 2.4.1微米氣泡(microbubble)與超音波之影響 8 第三章 材料與方法 10 3.1 實驗材料 10 3.1.1實驗藥品 10 3.1.2細胞實驗藥品 13 3.1.3動物實驗藥品、器械 14 3.1.6實驗儀器 14 3.2試驗架構 15 3.3實驗方法 15 3.3.1 幾丁聚醣/順鉑奈米粒子製備 15 3.3.2不同質量比之幾丁聚醣/順鉑奈米粒子粒徑分析 16 3.3.3不同質量比之幾丁聚醣/順鉑奈米粒子藥物包覆率 17 3.3.4不同質量比之幾丁聚醣/順鉑奈米粒子藥物釋放效率 17 3.3.5 FITC標定之幾丁聚醣奈米粒子製備 18 3.3.6 NIPAAm及agarose膠體及藥物貼片製備 18 3.3.7 細胞培養及實驗 19 3.3.8 iontophoresis離子電泳法 21 3.3.9 Ultrasound-assisted drug delivery 超音波輔助之藥物遞送 28 第四章 結果 35 4.1 chitosan/cisplatin 奈米粒子之性質分析 35 4.1.1 不同chitosan/TPP質量比奈米顆粒之粒徑大小及表面電位分析 35 4.1.2 不同chitosan/TPP質量比奈米粒子之藥物包覆率 37 4.1.3不同chitosan/TPP質量比奈米粒子之藥物釋放效率 39 4.1.4 chitosan/TPP奈米粒子之細胞攝取 45 4.2 chitosan/cisplatin奈米粒子之電化學導入結果 45 4.2.1 鼠皮厚度與電阻 45 4.2.2 cisplatin於MOC2細胞活性之影響 46 4.2.3 cisplatin奈米顆粒於MOC2細胞活性之影響 47 4.2.4 不同電化學參數於cisplatin奈米粒子釋放之影響 48 4.2.5 不同電化學參數於cisplatin奈米粒子於細胞毒殺之影響 49 4.3 chitosan/cisplatin奈米粒子之超音波導入結果 51 4.3.1 不同超音波參數對於cisplatin奈米粒子釋放之影響 51 4.3.2 不同超音波參數對於cisplatin奈米粒子於MOC2細胞毒殺之影響 54 4.3.3 不同超音波參數對於MOC2細胞之聲穿孔效應 58 4.4 經給予不同條件治療後之體內試驗結果 60 4.4.1 經給予不同條件治療後之腫瘤體積及體重變化 60 4.4.2 tumor、lymph nodes組織切片H&E染色及IHC染色之結果 72 4.4.3 腫瘤組織之pt含量檢測 78 第五章 討論 79 5.1 不同質量比之chitosan/TPP奈米顆粒粒徑之差異 79 5.2 奈米顆粒經MOC2細胞胞吞之效果探討 80 5.3 cisplatin 奈米顆粒之細胞毒殺效果探討 81 5.4以離子電泳法進行奈米顆粒遞送之體外試驗 82 5.5以超音波物理力進行奈米顆粒遞送之體外試驗 82 5.6 以離子電泳法及超音波物理力之體內試驗結果探討 83 第六章 結論 85 第七章 參考文獻 86 圖次 圖一 以電化學輔助藥物經皮遞送之實驗示意圖 22 圖二 電化學電流變化之示意圖 24 圖三 以電化學輔助藥物遞送之細胞實驗示意圖 26 圖四 動物試驗流程圖 28 圖五 以電化學輔助藥物遞送之動物實驗示意圖 28 圖六 超音波輔助藥物遞送之實驗示意圖 30 圖七 超音波輔助藥物遞送之參數變化示意圖 32 圖八 超音波輔助藥物遞送之細胞試驗示意圖 33 圖九 以超音波輔助藥物遞送之動物實驗示意圖 35 圖4-1 不同chitosan/TPP質量比奈米粒子之粒徑分析 37 圖4-2 不同chitosan/TPP質量比奈米粒子之zeta電位分析 37 圖4-3 cisplatin/ddH2O之檢量線 39 圖4-4 不同chitosan/TPP質量比奈米粒子之藥物包覆率 39 圖4-5 cisplatin/PBS之檢量線 41 圖4-6 chitosan/TPP質量比5:1奈米粒子之cisplatin釋放量 42 圖4-7 chitosan/TPP質量比5:1奈米粒子之cisplatin釋放百分率 42 圖4-8 chitosan/TPP質量比10:1奈米粒子之cisplatin釋放量 43 圖4-9 chitosan/TPP質量比10:1奈米粒子之cisplatin釋放百分率 43 圖4-10 chitosan/TPP質量比15:1奈米粒子之cisplatin釋放量 44 圖4-11 chitosan/TPP質量比15:1奈米粒子之cisplatin釋放百分率 44 圖4-12 chitosan/TPP質量比20:1奈米粒子之cisplatin釋放量 45 圖4-13 chitosan/TPP質量比20:1奈米粒子之cisplatin釋放百分率 45 圖4-14 MOC2細胞對chitosan/TPP奈米粒子之細胞攝取 46 圖4-15 不同濃度cisplatin之MOC2細胞存活率 48 圖4-16 不同時間點cisplatin奈米顆粒對MOC2細胞之存活率影響 49 圖4-17 電化學參數於cisplatin奈米顆粒釋放之影響 50 圖4-18 電化學參數於細胞試驗中對cisplatin奈米顆粒釋放之影響 51 圖4-19 電化學參數引起之cisplatin奈米顆粒釋放對MOC2細胞存活率之影響 52 圖4-20 超音波對cisplatin奈米顆粒釋放之影響(上層液體,流失量) 53 圖4-21 超音波對cisplatin奈米顆粒釋放之影響(agarose試片,未釋放量) 54 圖4-22 超音波對cisplatin奈米顆粒釋放之影響(下層液體,釋放量) 54 圖4-23 cisplatin奈米顆粒釋放對MOC2細胞存活率之影響 56 圖4-24 超音波引起cisplatin奈米顆粒釋放對MOC2細胞存活率之影響 58 圖4-25 超音波引起之MOC2細胞聲穿孔效應 60 圖4-26 超音波引起之MOC2細胞聲穿孔比例(%) 61 圖4-27 以超高頻超音波量測未經治療組別(NTX)腫瘤之影像圖 64 圖4-28 以超高頻超音波量測NIPAAm藥物貼片被動滲透組(nCisNP)腫瘤之 影像圖 65 圖4-29 以超高頻超音波量測agarose藥物貼片被動滲透組(aCisNP)腫瘤之影像圖 66 圖4-30 以超高頻超音波量測微分脈衝伏安法(DPV)進行藥物遞送組別腫瘤之影像圖 67 圖4-31 以超高頻超音波量測變動電流法(CCP)進行藥物遞送組別腫瘤之影像圖 68 圖4-32 以超高頻超音波量測未給予藥物貼片下,超音波作用時間60秒、作功時間on 70 ms/ off 70 ms(US 60 s/ 70 ms)組別腫瘤之影像圖 69 圖4-33 以超高頻超音波量測未給予藥物貼片下,超音波作用時間60秒、作功時間on 250 ms/ off 250 ms(US 60 s/ 250 ms)組別腫瘤之影像圖 70 圖4-34 以超高頻超音波經超音波作用時間60秒、作功時間on 70 ms/ off 70 ms進行藥物遞送組別(US 60 s/ 70 ms+aCisNP)腫瘤之影像圖 71 圖4-35 以超高頻超音波經超音波作用時間60秒、作功時間on 250 ms/ off 250 ms進行藥物遞送組別(US 60 s/ 250 ms+aCisNP)腫瘤之影像圖 72 圖4-36 以超高頻超音波量測各組別腫瘤體積變化之折線圖 73 圖4-37 以超高頻超音波量測各組別腫瘤體積變化之柱狀圖 73 圖4-38 以電子天平量測各組別小鼠體重變化之折線圖 74 圖4-39 腫瘤組織之H&E結果 76 圖4-40 腫瘤組織之IHC(Ki-67)結果 77 圖4-41 各實驗組別之Ki67 positive cell比例(%) 78 圖4-42 同側淋巴結之H&E及IHC(pan-CK)之結果 79 圖4-43 以ICP-MS檢測腫瘤組織中pt含量 …80 表次 表一 不同chitosan及TPP質量比計算 16 表二 超音波導入參數表 31 表4-1 鼠皮厚度及電阻值 47 表4-2 超音波對cisplatin奈米顆粒釋放率 55 表4-3 超音波引起之cisplatin奈米顆粒於細胞盤中之釋放率 59 | - |
dc.language.iso | zh_TW | - |
dc.title | 以離子電泳法及超音波機械力增強包裹順鉑之幾丁聚醣奈米顆粒於口腔鱗狀細胞癌中之遞送 | zh_TW |
dc.title | Enhanced delivery of cisplatin-encapsulated chitosan nanoparticles into oral squamous cell carcinoma using iontophoresis and ultrasound mechanical force | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉瑋文;陳景欣 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Wen Liu;Gin-Shin Chen | en |
dc.subject.keyword | 口腔鱗狀細胞癌,超音波物理力,離子電泳法,化學治療,順鉑, | zh_TW |
dc.subject.keyword | oral squamous cell carcinoma,ultrasound mechanical force,iontophoresis,chemotherapy,cisplatin, | en |
dc.relation.page | 98 | - |
dc.identifier.doi | 10.6342/NTU202500499 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-02-13 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 口腔生物科學研究所 | - |
dc.date.embargo-lift | 2030-02-07 | - |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 此日期後於網路公開 2030-02-07 | 7.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。