請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96643
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 范家銘 | zh_TW |
dc.contributor.advisor | Chiaming Fan | en |
dc.contributor.author | 陳予睿 | zh_TW |
dc.contributor.author | Yu-Jui Chen | en |
dc.date.accessioned | 2025-02-20T16:20:36Z | - |
dc.date.available | 2025-02-21 | - |
dc.date.copyright | 2025-02-20 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-21 | - |
dc.identifier.citation | Braun, S., & Clarici, A. (1996). Inaccuracy for numerals in simultaneous interpretation: Neurolinguistic and neuropsychological perspectives. Edizioni LINT Trieste.
Braun, S. (2019). Technology and interpreting. In M. O’Hagan (Ed.), The Routledge Handbook of Translation and Technology (pp. 382–397). Routledge. Meyer, B. (2008). Interpreting proper names: Different interventions in simultaneous and consecutive interpreting? trans-kom, 1(1), 105–122. Carl, M., & Braun, S. (2018). Translation, interpreting and new technologies. In K. Malmkjær (Ed.), The Routledge Handbook of Translation Studies and Linguistics (pp. 374-390). Routledge. Central Intelligence Agency. (2024). The World Factbook. https://www.cia.gov/the-world-factbook/ Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332. Cheung, A. K. F., & Li, T. (2018). Automatic speech recognition in simultaneous interpreting: A new approach to computer-aided interpreting. In Proceedings of the Ewha Research Institute for Translation Studies International Conference. Choudhury, Avishek & Shamszare, Hamid. (2023). Investigating the Impact of User Trust on the Adoption and Use of ChatGPT: Survey Analysis. Journal of Medical Internet Research. 25. 10.2196/47184. Chmiel, A., & Mazur, I. (2013). Eye-tracking research in audiovisual translation. Meta, 58(2), 308–325. Chmiel, Agnieszka & Janikowski, Przemysław & Cieślewicz, Anna. (2020). The eye or the ear? Source language interference in sight translation and simultaneous interpreting. Interpreting. 22. 187–210. 10.1075/intp.00043.chm. Chung, H., Li, J., Liu, P., Leung, W.-K., Wu, X., & Meng, H. (2023). Improving rare words recognition through homophone extension and unified writing for low-resource Cantonese speech recognition. In Proceedings of the 13th International Symposium on Chinese Spoken Language Processing (ISCSLP 2022). arXiv. https://doi.org/10.48550/arXiv.2302.00836 Clarke, A. R., Barry, R. J., Karamacoska, D., & Johnstone, S. J. (2019). The EEG Theta/Beta Ratio: A marker of Arousal or Cognitive Processing Capacity?. Applied psychophysiology and biofeedback, 44(2), 123–129. https://doi.org/10.1007/s10484-018-09428-6 Defrancq, B., & Fantinuoli, C. (2020). Automatic speech recognition in the booth: Assessment of system performance, interpreters’ performances and interactions in the context of numbers. Target. International Journal of Translation Studies, 33(1), 73-102. https://doi.org/10.1075/target.19112.def Dorst, A. G., Valdez, S., & Jongste, D. (2023). Professional translators’ and project managers’ perceptions of machine translation and post-editing: A survey study. In S. Castilho, R. Caro Quintana, M. Stasimioti, & V. Sosoni (Eds.), Proceedings of the New Trends in Translation and Technology Conference – NeTTT 2022 (pp. 50–59). Rhodes Island, Greece. https://tinyurl.com/57dxejkh Eberhard, D. M., Simons, G. F., & Fennig, C. D. (Eds.). (2023). Ethnologue: Languages of the world (26th ed.). SIL International. Fantinuoli, C. (2017). Speech recognition in the interpreter workstation. In Proceedings of Translating and the Computer 39 (pp. 25–34). AsLing – International Association for Advancement in Language Technology. Fantinuoli, C. (2018). Interpreting and technology: The upcoming technological turn. In C. Fantinuoli (Ed.), Interpreting and technology (pp. 1–12). Language Science Press. https://doi.org/10.5281/zenodo.1493289 Fantinuoli, C. (2018). Computer-assisted interpretation: Challenges and future perspectives. In I. Durán & G. Corpas (Eds.), Trends in e-tools and resources for translators and interpreters (pp. 153–174). Brill. https://doi.org/10.1163/9789004351790_009 Fantinuoli, C., Marchesini, G., Landan, D., & Horak, L. (2022). KUDO Interpreter Assist: Automated real-time support for remote interpretation. Proceedings of Translator and Computer 53 Conference (2022). https://doi.org/10.48550/arXiv.2201.01800 Fantinuoli, C., & Montecchio, M. (2022). Defining maximum acceptable latency of AI-enhanced CAI tools. Proceedings of LingTech21 (2022). https://doi.org/10.48550/arXiv.2201.02792 Fantinuoli, C., & Prandi, B. (2018). Teaching information and communication technologies: A proposal for the interpreting classroom. Transkom, 11(2), 162-182. Frittella, F. M. (2023). Usability research for interpreter-centred technology: The case study of SmarTerp. (Translation and Multilingual Natural Language Processing No. 21). Language Science Press. https://doi.org/10.5281/zenodo.7376351 George, A. S., Baskar, D., & Balaji Srikaanth, P. (2024). The Erosion of Cognitive Skills in the Technological Age: How Reliance on Technology Impacts Critical Thinking, Problem-Solving, and Creativity. Partners Universal Innovative Research Publication (PUIRP), 02(03), 147–163. https://doi.org/10.5281/zenodo.11671150 Gile, D. (1995). Basic concepts and models for interpreter and translator training. John Benjamins. Gile, D. (1999). Testing the Effort Models' tightrope hypothesis in simultaneous interpreting – A contribution. HERMES – Journal of Language and Communication in Business, 23, 153–172. Gile, D. (2009). Basic concepts and models for interpreter and translator training (Vol. 8). John Benjamins Publishing. Gile, D. (2017). Testing the Effort Models' Tightrope Hypothesis in simultaneous interpreting – A contribution. HERMES – Journal of Language and Communication in Business, 23(23), 153–172. https://doi.org/10.7146/hjlcb.v12i23.25553 Gile, D. (2020, August 4). Forty years of Effort Models of Interpreting: Looking back, looking ahead [Paper presentation]. Japan Translation and Interpretation Forum 2020, Japan. Gupta, S., & Boulianne, G. (2020). Automatic speech recognition for low-resource tonal languages: A review. Archives of Computational Methods in Engineering, 27(5), 1331–1353. https://doi.org/10.1007/s11831-020-09414-4 Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (pp. 139–183). North-Holland. https://doi.org/10.1016/S0166-4115(08)62386-9 Hemakumar, G., & Punitha, P. (2013). Speech recognition technology: A survey on Indian languages. International Journal of Information Science and Intelligent System, 2(4), 1-38. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97. Hoff, Kevin & Bashir, Masooda. (2015). Trust in Automation: Integrating Empirical Evidence on Factors That Influence Trust. Human Factors The Journal of the Human Factors and Ergonomics Society. 57. 407-434. 10.1177/0018720814547570. Huang, C., Lee, C.-H., & Wang, H. (1999). Context-dependent pronunciation variation in Mandarin: Implications for automatic speech recognition. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 1999). https://speech.ee.ntu.edu.tw/previous_version/03118.PDF Huang. (2013). An analysis on performances between English-Chinese simultaneous interpretation with text and without text [Master's thesis, National Changhua University of Education]. National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/2a68b5 Ivanova, A. (2000). The use of retrospection in research on simultaneous interpreting. In Benjamins Translation Library (Vol. 37, pp. 27–52). John Benjamins. Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329–354. Kang, Q. (2011). Grammatical differences in sentence structure between Mandarin and modern American standard English [Seminar paper, University of Wisconsin-Platteville]. University of Wisconsin-Platteville Digital Repository. Kim, H. G., Cheon, E. J., Bai, D. S., Lee, Y. H., & Koo, B. H. (2018). Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry investigation, 15(3), 235–245. https://doi.org/10.30773/pi.2017.08.17 Kohn, K., & Kalina, S. (1996). The strategic dimension of interpreting. Meta: Journal des traducteurs/Meta: Translators' Journal, 41(1), 118-138. Korpal, P., & Stachowiak-Szymczak, K. (2018). The whole picture: Processing of numbers and their context in simultaneous interpreting. Poznan Studies in Contemporary Linguistics, 54(3), 335-354. Lambert, S. (2004). Shared attention during sight translation, sight interpretation, and simultaneous interpretation. Meta: Journal des traducteurs/Meta: Translators' Journal, 49(2), 294-306. Li, C. N., & Thompson, S. A. (1989). Mandarin Chinese: A functional reference grammar (1st ed.). University of California Press. https://doi.org/10.1525/9780520911031 Li, T., & Chmiel, A. (2024). Automatic subtitles increase accuracy and decrease cognitive load in simultaneous interpreting. Interpreting, 26(2), 253–281. https://doi.org/10.1075/intp.00111.li Liu, M., & Chiu, Y.-H. (2009). Assessing source material difficulty for consecutive interpreting: Quantifiable measures and holistic judgment. Interpreting, 11(2), 244–266. https://doi.org/10.1075/intp.11.2.07liu Liu, H. (2018). Help or hinder? The impact of technology on the role of interpreters. FITISPos International Journal, 5(1), 13-32. https://doi.org/10.37536/FITISPos-IJ.2018.5.1.162 Lunceford, B. (2009). Reconsidering technology adoption and resistance: Observations of a semi-Luddite. Explorations in Media Ecology, 8(1), 29–47. Malik, M., Malik, M. K., Mehmood, K., & Makhdoom, I. (2021). Automatic speech recognition: A survey. Multimedia Tools and Applications, 80(6), 9411–9457. https://doi.org/10.1007/s11042-020-10153-6 Massaro, D. W., & Shlesinger, M. (1997). Information processing and a computational approach to the study of simultaneous interpretation. Interpreting, 2(1-2), 95-118. https://doi.org/10.1075/intp.2.1-2.02mas Mazza, C. (2001). Numbers in simultaneous interpretation. The Interpreters’ Newsletter, 11, 87– 104. Mayer, R. E. (2005). The Cambridge handbook of multimedia learning. Cambridge University Press. Meyer, B. (2008). Interpreting proper names: Different interventions in simultaneous and consecutive interpreting. Transkom, 1(1), 105-122. Mellinger, C. D., & Hanson, T. A. (2019). Meta-analyses of simultaneous interpreting and working memory. Interpreting: International Journal of Research and Practice in Interpreting, 21(2), 165-195. https://doi.org/10.1075/intp.00026.mel Morett, L. M. (2023). Observing gesture at learning enhances subsequent phonological and semantic processing of L2 words: An N400 study. Brain and Language, 236, 105327. https://doi.org/10.1016/j.bandl.2023.105327 Moser-Mercer, B. (1997). Process models in simultaneous interpretation. In C. Hauenschild & S. Heizmann (Eds.), Machine translation and translation theory (pp. 3–18). De Gruyter Mouton. Moser-Mercer, B. (2003). Remote interpreting: Assessment of human factors and performance parameters. Joint project of the International Telecommunication Union (ITU) and École de Traduction et d’Interprétation, Université de Genève (ETI). Moser-Mercer, B. (2005). Remote interpreting: Issues of multi-sensory integration in a multilingual task. Meta, 50(2), 727-738. Nguyen, T. S., Niehues, J., Cho, E., Ha, T.-L., Kilgour, K., Muller, M., Sperber, M., Stueker, S., & Waibel, A. (2020). Low latency ASR for simultaneous speech translation. arXiv. https://doi.org/10.48550/arXiv.2003.09891 O’Brien, S. (2017). Usability of web-based MT post-editing environments for screen reader users. In Proceedings of the MT Summit XVI (pp. 47–56). Asia-Pacific Association for Machine Translation. https://aclanthology.org/2017.mtsummit-commercial.3/ O’Brien, S., Ehrensberger-Dow, M., Connolly, M., & Hasler, M. (2017). Irritating CAT tool features that matter to translators. HERMES – Journal of Language and Communication in Business, 56, 145–162. https://doi.org/10.7146/hjlcb.v0i56.97229 Orlando, M. (2014). A study on the amenability of digital pen technology in a hybrid mode of interpreting: Consec-simul with notes. Translation & Interpreting, 6(2), 39-54. Pan, X. (2013). A Contrastive Study of the English and Chinese Comparative Constructions Gui. Pellatt, V. (2005). The trouble with numbers: How linguistic, arithmetical and contextual complexity affect the interpretation of numbers. In M. Chai & A. Zang (Eds.), Professionalisation in Interpreting: International experience and developments in China (pp. 350–365). Shanghai Foreign Languages Education Press. Pentus, K., Ploom, K., Mehine, T., Koiv, M., Tempel, A., & Kuusik, A. (2020). Mobile and stationary eye tracking comparison: Package design and in-store results. Journal of Consumer Marketing, 37(3), 259–269. https://doi.org/10.1108/JCM-04-2019-3190 Pisani, E., & Fantinuoli, C. (2021). Measuring the impact of automatic speech recognition on number rendition in simultaneous interpreting. In Empirical Studies of Translation and Interpreting (pp. 181–197). Routledge. Pinochi, D. (2009). Simultaneous interpretation of numbers: Comparing German and English to Italian. An experimental study. The Interpreters' Newsletter, 14, 51–69. Prandi, B. (2017). Designing a multimethod study on the use of CAI tools during simultaneous interpreting. In Proceedings of Translating and the Computer 39 (pp. 76–113). Prandi, B. (2023). Computer-assisted simultaneous interpreting: A cognitive-experimental study on terminology. (Translation and Multilingual Natural Language Processing No. 22). Language Science Press. https://doi.org/10.5281/zenodo.7143055 Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422. Rinne, J. O., Tommola, J., Laine, M., Krause, B. J., Schmidt, D., Kaasinen, V., Teräs, M., Sipilä, H., & Sunnari, M. (2000). The translating brain: Cerebral activation patterns during simultaneous interpreting. Neuroscience Letters, 294(2), 85–88. https://doi.org/10.1016/s0304-3940(00)01540-8 Roziner, I., & Shlesinger, M. (2010). Much ado about something remote: Stress and performance in remote interpreting. Interpreting, 12(2), 214-247. Salaets, H., & Balogh, K. (2023). Are interpreters and interpreting technology ready for the post-Covid era? Benjamins Translation Library. https://doi.org/10.1075/btl.160.13sal Saiz-Manzanares, Maria & Sánchez, Raúl & Martín Antón, Luis & González-Díez, Irene & Carbonero, Miguel. (2023). Multichannel Activities in University Students. International Journal of Human-Computer Interaction. 40. 10.1080/10447318.2023.2188532. Schotter, E. R., Angele, B., & Rayner, K. (2012). Parafoveal processing in reading. Attention, Perception, & Psychophysics, 74(1), 5–35. Seeber, K. G. (2011). Cognitive load in simultaneous interpreting: Measures and methods. Target, 23(2), 271–289. Seeber, Kilian & Kerzel, Dirk. (2012). Cognitive load in simultaneous interpreting: Model meets data. International Journal of Bilingualism. 1. 10.1177/1367006911402982. Stachowiak-Szymczak, K., & Korpal, P. (2019). Interpreting accuracy and visual processing of numbers in professional and student interpreters: An eye-tracking study. Across Languages and Cultures, 20(2), 235–256. https://doi.org/10.1556/084.2019.20.2.5 Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Sage Publications, Inc. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. CognitiveScience, 12(2), 257-285. https://doi.org/10.1207/s15516709cog1202_4 Tammasrisawat, P., & Rangponsumrit, N. (2023). The use of ASR-CAI tools and their impact on interpreters’ performance during simultaneous interpretation. New Voices in Translation Studies, 28(2), 25–51. https://doi.org/10.14456/nvts.2023.27 Tian, J., Yang, Y., & Chen, J. (2022). Analyzing tone sandhi variations in connected Mandarin speech: Acoustic and recognition challenges for ASR systems. In Proceedings of Interspeech 2022. https://www.isca-archive.org/interspeech_2022/tian22e_interspeech.pdf Timarová, Š., Čeňková, I., Meylaerts, R., Hertog, E., Szmalec, A., & Duyck, W. (2015). Simultaneous interpreting and working memory capacity. In A. Ferreira & J. W. Schwieter (Eds.), Psycholinguistic and cognitive inquiries into translation and interpreting (pp. 101–126). John Benjamins Publishing Company. https://doi.org/10.1075/btl.115.05tim Ünlü, C., & Doğan, A. (2022, November). Investigating the use of speech technologies in consecutive interpreting: A pilot study on ASR-enhanced CAI tool prototype 'Sight-Terp'. In Proceedings of Translating and the Computer 44 (TC44), Luxembourg. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926 Vianna, B. (2005). Simultaneous interpreting: A relevance-theoretic approach. Intercultural Pragmatics, 2(2), 169–187. https://doi.org/10.1515/IPRG.2005.2.2.169 Vogler, N., Stewart, C., & Neubig, G. (2019). Lost in interpretation: Predicting untranslated terminology in simultaneous interpretation. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 109–118. https://doi.org/10.18653/v1/N19-1010 Wang, Y.-R., & Chen, S.-H. (2013). Traditional Chinese parser and language modeling for Mandarin ASR. National Yang Ming Chiao Tung University. Retrieved from https://ir.lib.nycu.edu.tw/handle/11536/125033 Wang, Y., & Chen, J. (2013). Differences of English and Chinese as written languages and strategies in English writing teaching. Theory and Practice in Language Studies, 3(4), 647–652. https://doi.org/10.4304/tpls.3.4.647-652 Wang, H. (2006). Numbers as a quality variable in simultaneous interpreting: A case study of English into Chinese SI [Master's dissertation, National Taiwan Normal University]. https://hdl.handle.net/11296/s3743h Wang, H., & Li, Z. (2022). Constructing a competence framework for interpreting technologies, and related educational insights: An empirical study. The Interpreter and Translator Trainer, 16(3), 367-390. https://doi.org/10.1080/1750399X.2022.2101850 Wang, L., & Tong, R. (2014). Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer. Proceedings of INTERSPEECH 2014, 353–357. https://doi.org/10.21437/Interspeech.2014-353 Wang, L.J. (2022). The effects of ASR support on number and proper name renditions in student interpreters’ simultaneous interpreting from English into Chinese [Master's thesis, National Taiwan University]. National Taiwan University Repository. https://doi.org/10.6342/NTU202210108 Yang, X. (2022). Application of Speech Recognition Technology in Chinese English Simultaneous Interpretation of Law. Journal of Legal Studies, 16, 956-963. https://doi.org/10.46300/9106.2022.16.117 Yuan, L., & Wang, B. (2023). Cognitive processing of the extra visual layer of live captioning in simultaneous interpreting: Triangulation of eye-tracked process and performance data. Ampersand, 11, 100131. https://doi.org/10.1016/j.amper.2023.100131 Zapata, J., & Kirkedal, A. S. (2015, May). Assessing the performance of automatic speech recognition systems when used by native and non-native speakers of three major languages in dictation workflows. In Proceedings of the 20th Nordic Conference of Computational Linguistics (pp. 201–210). Zhai, C., Wibowo, S., & Li, L. D. (2024). The effects of over-reliance on AI dialogue systems on students' cognitive abilities: A systematic review. Smart Learning Environments, 11(28). https://doi.org/10.1186/s40561-024-00316-7 Zhang, C., & Lai, Y. (2016). The effects of phonetic similarity and tone on the identification of Mandarin words. Journal of Psycholinguistic Research, 45(6), 1317–1331. https://doi.org/10.1007/s10936-016-9422-6 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96643 | - |
dc.description.abstract | 本研究旨在探討未經編輯之自動語音辨識(ASR)字幕於中進英同步口譯(SI)任務中的影響,其中又聚焦於口譯員對ASR系統之理解、認知負荷的變化,以及在處理數字、日期與專有名詞等口譯難點時之表現。
本研究邀請十位經過正規訓練之專業口譯員,分別於有ASR輔助與無ASR輔助之情境下進行兩段同步口譯。透過口譯輸出分析、NASA-TLX認知負荷量表、眼動追蹤數據,以及回顧性訪談等多重方法進行資料蒐集與分析。量化結果顯示,在ASR輔助情境下,口譯員於數字及日期之翻譯準確度顯著提升。NASA-TLX結果則進一步顯示,ASR輔助有效降低口譯員主觀之認知負荷。而眼動追蹤數據則揭示,於ASR輔助條件下,口譯員之視覺焦點更多集中於ASR字幕區,並能適時利用ASR字幕解決口譯難點,惟亦需面對ASR潛在的轉錄錯誤。 質性分析方面,ASR輔助對口譯員於理解與確認數字及專有名詞時具有顯著助益。然而,當ASR字幕出現錯誤或延遲時,亦可能造成額外干擾,迫使口譯員分散注意力進行監控與修正。 綜上所述,本研究指出未經編輯之ASR字幕對同步口譯任務具有雙面效應:一方面,ASR輔助能提升口譯員於特定難點(如數字與專有名詞)之譯文準確性;另一方面,ASR錯誤或延遲輸出則增加了口譯員注意力分散之風險。本研究的發現進一步深化了對ASR在中文至英文同步口譯應用中效益與限制的理解,亦強調提升ASR準確性之必要性,以期更有效地輔助口譯工作。 | zh_TW |
dc.description.abstract | This study investigates the effects of unedited automatic speech recognition (ASR) support on simultaneous interpreting (SI) from Mandarin Chinese to English, focusing on interpreters' perceptions, cognitive load, and performance when encountering problem triggers such as numbers, dates, and proper names. Given the challenges interpreters face in real-time processing and managing cognitive overload, ASR has emerged as a potential tool to alleviate these demands.
The study involved ten institutionally trained interpreters performing two SI tasks—one with ASR support and one without. The study collected data from interpreting outputs, NASA-TLX workload scores, eye-tracking software, and retrospective interviews. Quantitative analysis of performance accuracy showed significant improvements in rendering numbers and dates with ASR support. The NASA-TLX results revealed a statistically significant reduction in perceived cognitive workload when ASR was available. Eye-tracking data confirmed increased visual attention on the ASR display, with interpreters leveraging ASR for problem triggers while mitigating its limitations. Qualitative analysis highlighted that ASR support was helpful for comprehension and confirmation of numbers and names but also introduced distractions due to transcription errors or delays. The study concludes that unedited ASR has a dual effect on interpreter performance: it enhances output accuracy for problem triggers while demanding additional attention for error monitoring. These findings contribute to understanding the practical benefits and limitations of ASR integration in Mandarin Chinese-English SI and underscore the need for improved ASR accuracy to fully support interpreters. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:20:36Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-20T16:20:36Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgment i
Abstract (Chinese) ii Abstract (English) iii Table of Contents v List of Figures viii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Literature Review 8 2.1 Effort Models and Competition Hypothesis 8 2.2 Interpreters’ Perception of Computer-assisted-interpreting 10 2.3 Characteristics of SI from Mandarin Chinese into English 12 2.4 Characteristics of interpreting with visual aids 13 Chapter 3 Methodology 16 3.1 Participants 16 3.2 Materials 17 3.3 Automatic Speech Recognition Service 21 3.4 Eye Tracking Software 21 3.5 Experiment Setup 23 3.6 Procedure and Data Collection 24 3.6.1 Warm-up Session 24 3.6.2 Main Interpreting Tasks 25 3.6.3 Stimulated Retrospective Interview 27 3.7 Data Analysis 28 Chapter 4 Results 32 4.1 Overview of Data Collection and Analysis 32 4.2 NASA-TLX Workload Analysis 33 4.3 Performance Data Analysis 38 4.3.1 Numbers and Dates 38 4.3.2 Proper Names 43 4.4 Eye-Tracking Data Analysis 49 4.5 Qualitative Analysis of Retrospective Interviews 53 4.5.1 Helpfulness of ASR 53 4.5.2 Distraction caused by ASR 58 4.5.3 Additional Insights and Observations 60 4.6 Summary of Results 63 Chapter 5 Discussion 65 5.1 Addressing the Research Questions 65 5.1.1 Perceptions and Interactions with Unedited ASR Support 66 5.1.2 Effects of Unedited ASR Transcripts on Performance 67 5.2 Variability in Interpreters’ Responses to ASR Support 69 5.3 Trust in ASR as a Pivotal Factor 79 5.4 Context-Dependence of ASR Effectiveness 85 5.4.1 Analysis of Numbers and Dates 85 5.4.2 Analysis of Proper Names 88 5.4.3 Comparing ASR Effectiveness for Numbers and Proper Names 90 5.5 Implications for ASR Design 92 Chapter 6 Conclusion 95 6.1 Summary of Findings 96 6.2 Limitations 97 6.3 Future Research Directions 99 References 101 Appendix 114 | - |
dc.language.iso | en | - |
dc.title | 未編輯自動語音辨識字幕對中譯英同步口譯之影響 | zh_TW |
dc.title | Effects of Unedited Automatic Speech Recognition (ASR) Transcript on Simultaneous Interpreting from Mandarin Chinese into English | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳敏嘉;詹柏勻 | zh_TW |
dc.contributor.oralexamcommittee | Min-chia Wu;Po-yun Chan | en |
dc.subject.keyword | 語音辨識字幕,眼動軟體,同步口譯,口譯難點, | zh_TW |
dc.subject.keyword | Automatic speech recognition,eye-tracking,simultaneous interpretation,problem triggers, | en |
dc.relation.page | 130 | - |
dc.identifier.doi | 10.6342/NTU202500246 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-01-22 | - |
dc.contributor.author-college | 文學院 | - |
dc.contributor.author-dept | 翻譯碩士學位學程 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 翻譯碩士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 13.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。