Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96640
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧zh_TW
dc.contributor.advisorShan-Hui Hsuen
dc.contributor.author楊佩旋zh_TW
dc.contributor.authorPei-Syuan Yangen
dc.date.accessioned2025-02-20T16:19:46Z-
dc.date.available2025-02-21-
dc.date.copyright2025-02-20-
dc.date.issued2025-
dc.date.submitted2025-01-21-
dc.identifier.citation[1] P. Datta, M. Dey, Z. Ataie, D. Unutmaz, I.T. Ozbolat, 3D bioprinting for reconstituting the cancer microenvironment, NPJ Precis Oncol 4 (2020) 18. https://doi.org/10.1038/s41698-020-0121-2.
[2] F. Chiellini, D. Puppi, A.M. Piras, A. Morelli, C. Bartoli, C. Migone, Modelling of pancreatic ductal adenocarcinoma in vitro with three-dimensional microstructured hydrogels, RSC Advances 6(59) (2016) 54226-54235. https://doi.org/10.1039/c6ra08420f.
[3] Y. Zhao, R. Yao, L. Ouyang, H. Ding, T. Zhang, K. Zhang, S. Cheng, W. Sun, Three-dimensional printing of Hela cells for cervical tumor model in vitro, Biofabrication 6(3) (2014) 035001. https://doi.org/10.1088/1758-5082/6/3/035001.
[4] X. Dai, C. Ma, Q. Lan, T. Xu, 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility, Biofabrication 8(4) (2016) 045005. https://doi.org/10.1088/1758-5090/8/4/045005.
[5] C.R. Thoma, M. Zimmermann, I. Agarkova, J.M. Kelm, W. Krek, 3D cell culture systems modeling tumor growth determinants in cancer target discovery, Adv Drug Deliv Rev 69-70 (2014) 29-41. https://doi.org/10.1016/j.addr.2014.03.001.
[6] M.J. Ware, V. Keshishian, J.J. Law, J.C. Ho, C.A. Favela, P. Rees, B. Smith, S. Mohammad, R.F. Hwang, K. Rajapakshe, C. Coarfa, S. Huang, D.P. Edwards, S.J. Corr, B. Godin, S.A. Curley, Generation of an in vitro 3D PDAC stroma rich spheroid model, Biomaterials 108 (2016) 129-142. https://doi.org/10.1016/j.biomaterials.2016.08.041.
[7] V. Brancato, V. Comunanza, G. Imparato, D. Cora, F. Urciuolo, A. Noghero, F. Bussolino, P.A. Netti, Bioengineered tumoral microtissues recapitulate desmoplastic reaction of pancreatic cancer, Acta biomaterialia CD44 expression level and isoform contributes to pancreatic cancer cell plasticity (2017) 152-166. https://doi.org/10.1016/j.actbio.2016.11.072.
[8] C.W. Wong, H.W. Han, Y.W. Tien, S.H. Hsu, Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment, Biomaterials 213 (2019) 119202. https://doi.org/10.1016/j.biomaterials.2019.05.013.
[9] M.V. Monteiro, M. Rocha, V.M. Gaspar, J.F. Mano, Programmable living units for emulating pancreatic tumor-stroma interplay, Adv Healthc Mater 11(13) (2022) e2102574. https://doi.org/10.1002/adhm.202102574.
[10] S.F. Boj, C.I. Hwang, L.A. Baker, Chio, II, D.D. Engle, V. Corbo, M. Jager, M. Ponz-Sarvise, H. Tiriac, M.S. Spector, A. Gracanin, T. Oni, K.H. Yu, R. van Boxtel, M. Huch, K.D. Rivera, J.P. Wilson, M.E. Feigin, D. Ohlund, A. Handly-Santana, C.M. Ardito-Abraham, M. Ludwig, E. Elyada, B. Alagesan, G. Biffi, G.N. Yordanov, B. Delcuze, B. Creighton, K. Wright, Y. Park, F.H. Morsink, I.Q. Molenaar, I.H. Borel Rinkes, E. Cuppen, Y. Hao, Y. Jin, I.J. Nijman, C. Iacobuzio-Donahue, S.D. Leach, D.J. Pappin, M. Hammell, D.S. Klimstra, O. Basturk, R.H. Hruban, G.J. Offerhaus, R.G. Vries, H. Clevers, D.A. Tuveson, Organoid models of human and mouse ductal pancreatic cancer, Cell 160(1-2) (2015) 324-338. https://doi.org/10.1016/j.cell.2014.12.021.
[11] F. Di Maggio, P. Arumugam, F.R. Delvecchio, S. Batista, T. Lechertier, K. Hodivala-Dilke, H.M. Kocher, Pancreatic stellate cells regulate blood vessel density in the stroma of pancreatic ductal adenocarcinoma, Pancreatology 16(6) (2016) 995-1004. https://doi.org/10.1016/j.pan.2016.05.393.
[12] J. Kokkinos, G. Sharbeen, K.S. Haghighi, R.M.C. Ignacio, C. Kopecky, E. Gonzales-Aloy, J. Youkhana, P. Timpson, B.A. Pereira, S. Ritchie, E. Pandzic, C. Boyer, T.P. Davis, L.M. Butler, D. Goldstein, J.A. McCarroll, P.A. Phillips, Ex vivo culture of intact human patient derived pancreatic tumour tissue, Sci Rep 11(1) (2021) 1944. https://doi.org/10.1038/s41598-021-81299-0.
[13] T. Okumura, K. Ohuchida, M. Nakamura, An in vitro three-dimensional organotypic model to analyze peripancreatic fat invasion in pancreatic cancer: A culture system based on collagen gel embedding, Methods Mol Biol 1882 (2019) 135-141. https://doi.org/10.1007/978-1-4939-8879-2_11.
[14] R. Curvello, V. Kast, M.H. Abuwarwar, A.L. Fletcher, G. Garnier, D. Loessner, 3D collagen-nanocellulose matrices model the tumour microenvironment of pancreatic cancer, Front Digit Health 3 (2021) 704584. https://doi.org/10.3389/fdgth.2021.704584.
[15] D. Osuna de la Pena, S.M.D. Trabulo, E. Collin, Y. Liu, S. Sharma, M. Tatari, D. Behrens, M. Erkan, R.T. Lawlor, A. Scarpa, C. Heeschen, A. Mata, D. Loessner, Bioengineered 3D models of human pancreatic cancer recapitulate in vivo tumour biology, Nat Commun 12(1) (2021) 5623. https://doi.org/10.1038/s41467-021-25921-9.
[16] S. Totti, M.C. Allenby, S.B. Dos Santos, A. Mantalaris, E.G. Velliou, A 3D bioinspired highly porous polymeric scaffolding system for in vitro simulation of pancreatic ductal adenocarcinoma, RSC Adv 8(37) (2018) 20928-20940. https://doi.org/10.1039/c8ra02633e.
[17] P. Gupta, P.A. Perez-Mancera, H. Kocher, A. Nisbet, G. Schettino, E.G. Velliou, A novel scaffold-based hybrid multicellular model for pancreatic ductal adenocarcinoma-toward a better mimicry of the in vivo tumor microenvironment, Front Bioeng Biotechnol 8 (2020) 290. https://doi.org/10.3389/fbioe.2020.00290.
[18] B. He, G. Chen, Y. Zeng, Three-dimensional cell culture models for investigating human viruses, Virol Sin 31(5) (2016) 363-379. https://doi.org/10.1007/s12250-016-3889-z.
[19] R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer Statistics, 2021, CA Cancer J Clin 71(1) (2021) 7-33. https://doi.org/10.3322/caac.21654.
[20] H. Kuniyasu, J.L. Abbruzzese, K.R. Cleary, I.J. Fidler, Induction of ductal and stromal hyperplasia by basic fibroblast growth factor produced by human pancreatic carcinoma, Int J Oncol 19(4) (2001) 681-685. https://doi.org/10.3892/ijo.19.4.681.
[21] J.A. McCarroll, S. Naim, G. Sharbeen, N. Russia, J. Lee, M. Kavallaris, D. Goldstein, P.A. Phillips, Role of pancreatic stellate cells in chemoresistance in pancreatic cancer, Front Physiol 5 (2014) 141. https://doi.org/10.3389/fphys.2014.00141.
[22] C.J. Whatcott, C.H. Diep, P. Jiang, A. Watanabe, J. LoBello, C. Sima, G. Hostetter, H.M. Shepard, D.D. Von Hoff, H. Han, Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer, Clinical cancer research 21(15) (2015) 3561-3568. https://doi.org/10.1158/1078-0432.CCR-14-1051.
[23] D. Öhlund, O. Franklin, E. Lundberg, C. Lundin, M. Sund, Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop, BMC Cancer 13(154) (2013). https://doi.org/10.1186/1471-2407-13-154.
[24] N. Sato, S. Kohi, K. Hirata, M. Goggins, Role of hyaluronan in pancreatic cancer biology and therapy: Once again in the spotlight, Cancer Sci 107(5) (2016) 569-575. https://doi.org/10.1111/cas.12913.
[25] P.P. Provenzano, C. Cuevas, A.E. Chang, V.K. Goel, D.D. Von Hoff, S.R. Hingorani, Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma, Cancer Cell 21(3) (2012) 418-429. https://doi.org/10.1016/j.ccr.2012.01.007.
[26] C. Feig, A. Gopinathan, A. Neesse, D.S. Chan, N. Cook, D.A. Tuveson, The pancreas cancer microenvironment, Clin Cancer Res 18(16) (2012) 4266-4276. https://doi.org/10.1158/1078-0432.CCR-11-3114.
[27] J. Du, J. Gu, J. Li, Mechanisms of drug resistance of pancreatic ductal adenocarcinoma at different levels, Biosci Rep 40(7) (2020) BSR20200401. https://doi.org/10.1042/BSR20200401.
[28] Y. Binenbaum, S. Na'ara, Z. Gil, Gemcitabine resistance in pancreatic ductal adenocarcinoma, Drug Resist Updat 23 (2015) 55-68. https://doi.org/10.1016/j.drup.2015.10.002.
[29] A.C. Koong, V.K. Mehta, Q.T. Le, G.A. Fisher, D.J. Terris, J.M. Brown, A.J. Bastidas, M. Vierra, Pancreatic tumors show high levels of hypoxia, Int. J. Radiation Oncology Biol. Phys. 48(4) (2000) 919-922. https://doi.org/10.1016/s0360-3016(00)00803-8.
[30] J. Tao, G. Yang, W. Zhou, J. Qiu, G. Chen, W. Luo, F. Zhao, L. You, L. Zheng, T. Zhang, Y. Zhao, Targeting hypoxic tumor microenvironment in pancreatic cancer, J Hematol Oncol 14(1) (2021) 14. https://doi.org/10.1186/s13045-020-01030-w.
[31] J. Entwistle, C.L. Hall, E.A. Turley, HA receptors: regulators of signalling to the cytoskeleton, Journal of Cellular Biochemistry 61 (1996) 569-577. https://doi.org/10.1002/(SICI)1097-4644(19960616)61:4<569::AID-JCB10>3.0.CO;2-B.
[32] C. Loebel, C.B. Rodell, M.H. Chen, J.A. Burdick, Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing, Nat Protoc 12(8) (2017) 1521-1541. https://doi.org/10.1038/nprot.2017.053.
[33] A.D. Theocharis, M.E. Tsara, N. Papageorgacopoulou, D.D. Karavias, D.A. Theocharis, Pancreatic carcinoma is characterized by elevated content of hyaluronan and chondroitin sulfate with altered disaccharide composition, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1502(2) (2000) 201-206. https://doi.org/10.1016/S0925-4439(00)00051-X.
[34] M. Bhattacharyya, H. Jariyal, A. Srivastava, Hyaluronic acid: More than a carrier, having an overpowering extracellular and intracellular impact on cancer, Carbohydrate Polymers 317 (2023) 121081. https://doi.org/10.1016/j.carbpol.2023.121081.
[35] C.L. Scaife, J.E. Shea, Q. Dai, M.A. Firpo, G.D. Prestwich, S.J. Mulvihill, Synthetic extracellular matrix enhances tumor growth and metastasis in an orthotopic mouse model of pancreatic adenocarcinoma, J Gastrointest Surg 12(6) (2008) 1074-1080. https://doi.org/10.1007/s11605-007-0425-3.
[36] H. Shih, T. Greene, M. Korc, C.C. Lin, Modular and adaptable tumor niche prepared from visible light initiated thiol-norbornene photopolymerization, Biomacromolecules 17(12) (2016) 3872-3882. https://doi.org/10.1021/acs.biomac.6b00931.
[37] B.H. Lee, N. Lum, L.Y. Seow, P.Q. Lim, L.P. Tan, Synthesis and characterization of types A and B gelatin methacryloyl for bioink applications, Materials (Basel) 9(10) (2016) 797. https://doi.org/10.3390/ma9100797.
[38] L. Giorleo, F. Tegazzini, L. Sartore, 3D printing of gelatin/chitosan biodegradable hybrid hydrogel: Critical issues due to the crosslinking reaction, degradation phenomena and process parameters, Bioprinting 24 (2021) e00170. https://doi.org/10.1016/j.bprint.2021.e00170.
[39] D. Kang, Z. Liu, C. Qian, J. Huang, Y. Zhou, X. Mao, Q. Qu, B. Liu, J. Wang, Z. Hu, Y. Miao, 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration, Acta biomaterialia 165 (2023) 19-30. https://doi.org/10.1016/j.actbio.2022.03.011.
[40] A. Suo, W. Xu, Y. Wang, T. Sun, L. Ji, J. Qian, Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells, Carbohydr Polym 211 (2019) 336-348. https://doi.org/10.1016/j.carbpol.2019.01.115.
[41] D.A. Fancy, T. Kodadek, Chemistry for the analysis of protein–protein interactions: Rapid and efficient cross-linking triggered by long wavelength light, Proceedings of the National Academy of Sciences 96(11) (1999) 6020-6024. https://doi.org/10.1073/pnas.96.11.6020.
[42] J. Markowitz, W.E. Carson, 3rd, Review of S100A9 biology and its role in cancer, Biochim Biophys Acta 1835(1) (2013) 100-109. https://doi.org/10.1016/j.bbcan.2012.10.003.
[43] Z. Li, T. Qu, C. Ding, C. Ma, H. Sun, S. Li, X. Liu, Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis, Acta Biomaterialia 13 (2015) 88-100. https://doi.org/10.1016/j.actbio.2014.11.002.
[44] G. Bond-Smith, N. Banga, T.M. Hammond, C.J. Imber, Pancreatic adenocarcinoma, BMJ 344 (2012) e2476. https://doi.org/10.1136/bmj.e2476.
[45] D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma, N Engl J Med 371(11) (2014) 1039-1049. https://doi.org/10.1056/NEJMra1404198.
[46] E. Biazar, S.M. Najafi, K.S. Heidari, M. Yazdankhah, A. Rafiei, D. Biazar, 3D bio-printing technology for body tissues and organs regeneration, J Med Eng Technol 42(3) (2018) 187-202. https://doi.org/10.1080/03091902.2018.1457094.
[47] E.V. Cutsem, G. Prager, M. Hidalgo, M. Ducreux, T. Seufferlein, More than a gel & hyaluronic acid, a central component in the microenvironment of pancreatic cancer, European Oncology & Haematology 14(1) (2018) 40-44. https://doi.org/10.17925/eoh.2018.14.1.40.
[48] P.K. Kim, C.J. Halbrook, S.A. Kerk, M. Radyk, S. Wisner, D.M. Kremer, P. Sajjakulnukit, A. Andren, S.W. Hou, A. Trivedi, G. Thurston, A. Anand, L. Yan, L. Salamanca-Cardona, S.D. Welling, L. Zhang, M.R. Pratt, K.R. Keshari, H. Ying, C.A. Lyssiotis, Hyaluronic acid fuels pancreatic cancer cell growth, Elife 10 (2021). https://doi.org/10.7554/eLife.62645.
[49] M.V. Apte, J.S. Wilson, A. Lugea, S.J. Pandol, A starring role for stellate cells in the pancreatic cancer microenvironment, Gastroenterology 144(6) (2013) 1210-1219. https://doi.org/10.1053/j.gastro.2012.11.037.
[50] B.B. Mandal, S.C. Kundu, Cell proliferation and migration in silk fibroin 3D scaffolds, Biomaterials 30(15) (2009) 2956-2965. https://doi.org/10.1016/j.biomaterials.2009.02.006.
[51] S.M. Lien, L.Y. Ko, T.J. Huang, Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering, Acta biomaterialia 5(2) (2009) 670-679. https://doi.org/10.1016/j.actbio.2008.09.020.
[52] M. Erkan, C. Reiser-Erkan, C.W. Michalski, S. Deucker, D. Sauliunaite, S. Streit, I. Esposito, H. Friess, J. Kleeff, Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma, Neoplasia 11(5) (2009) 497-508. https://doi.org/10.1593/neo.81618.
[53] X.B. Cheng, N. Sato, S. Kohi, K. Yamaguchi, Prognostic impact of hyaluronan and its regulators in pancreatic ductal adenocarcinoma, PLoS One 8(11) (2013) e80765. https://doi.org/10.1371/journal.pone.0080765.
[54] X.B. Cheng, S. Kohi, A. Koga, K. Hirata, N. Sato, Hyaluronan stimulates pancreatic cancer cell motility, Oncotarget 7(4) (2015) 4829-4840. https://doi.org/10.18632/oncotarget.6617.
[55] S. Zhao, C. Chen, K. Chang, A. Karnad, J. Jagirdar, A.P. Kumar, J.W. Freeman, CD44 expression level and isoform contributes to pancreatic cancer cell plasticity, invasiveness, and response to therapy, Clinical Cancer Research 22(22) (2016) 5592-5604. https://doi.org/10.1158/1078-0432.CCR-15-3115.
[56] A. Jurj, C. Ionescu, I. Berindan-Neagoe, C. Braicu, The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes?, Journal of Experimental & Clinical Cancer Research 41(1) (2022) 276. https://doi.org/10.1186/s13046-022-02484-1.
[57] N. Gaianigo, D. Melisi, C. Carbone, EMT and treatment resistance in pancreatic cancer, Cancers (Basel) 9(9) (2017). https://doi.org/10.3390/cancers9090122.
[58] S. Watanabe, Y. Ueda, S. Akaboshi, Y. Hino, Y. Sekita, M. Nakao, HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells, Am J Pathol 174(3) (2009) 854-868. https://doi.org/10.2353/ajpath.2009.080523.
[59] W.C. Liao, B.S. Huang, Y.H. Yu, H.H. Yang, P.R. Chen, C.C. Huang, H.Y. Huang, M.S. Wu, L.P. Chow, Galectin-3 and S100A9: Novel diabetogenic factors mediating pancreatic cancer-associated diabetes, Diabetes Care 42(9) (2019) 1752-1759. https://doi.org/10.2337/dc19-0217.
[60] Y. Liu, C.W. Wong, S.W. Chang, S.H. Hsu, An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing, Acta biomaterialia 122 (2021) 211-219. https://doi.org/10.1016/j.actbio.2020.12.051.
[61] A. Rubiano, D. Delitto, S. Han, M. Gerber, C. Galitz, J. Trevino, R.M. Thomas, S.J. Hughes, C.S. Simmons, Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties, Acta biomaterialia 67 (2018) 331-340. https://doi.org/10.1016/j.actbio.2017.11.037.
[62] L. Moller, A. Krause, J. Dahlmann, I. Gruh, A. Kirschning, G. Drager, Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering, Int J Artif Organs 34(2) (2011) 93-102. https://doi.org/10.5301/ijao.2011.6397.
[63] G. Camci-Unal, D. Cuttica, N. Annabi, D. Demarchi, A. Khademhosseini, Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels, Biomacromolecules 14(4) (2013) 1085-1092. https://doi.org/10.1021/bm3019856.
[64] R. Lavker, K. Kaidbey, The spectral dependence for UVA-induced cumulative damage in human skin, J Invest Dermatol 108(1) (1997) 17-21. https://doi.org/10.1111/1523-1747.ep12285613.
[65] F. Noori, H.R.G. Jafarbeigloo, M. Jirehnezhadyan, M. Mohajer, M. Khanmohammadi, A. Goodarzi, Fabrication of alginate-based hydrogel microparticle via ruthenium-catalyzed photocrosslinking, Journal of Biomedical Materials Research Part A 112(3) (2024) 348-358. https://doi.org/10.1002/jbm.a.37631.
[66] M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lunec, Oxidative DNA damage: Mechanisms, mutation, and disease, FASEB J 17(10) (2003) 1195-1214. https://doi.org/10.1096/fj.02-0752rev.
[67] C.M. Elvin, T. Vuocolo, A.G. Brownlee, L. Sando, M.G. Huson, N.E. Liyou, P.R. Stockwell, R.E. Lyons, M. Kim, G.A. Edwards, G. Johnson, G.A. McFarland, J.A. Ramshaw, J.A. Werkmeister, A highly elastic tissue sealant based on photopolymerised gelatin, Biomaterials 31(32) (2010) 8323-8331. https://doi.org/10.1016/j.biomaterials.2010.07.032.
[68] C. Elvin, T. Vuocolo, Photochemical crosslinking of proteins to make novel biomedical materials, Aust. Biochem 42 (2011) 15-18.
[69] L. Ouyang, J.P.K. Armstrong, Q. Chen, Y. Lin, M.M. Stevens, Void-free 3D bioprinting for in-situ endothelialization and microfluidic perfusion, Adv Funct Mater 30(1) (2020). https://doi.org/10.1002/adfm.201908349.
[70] L. Guo, R.H. Colby, C.P. Lusignan, A.M. Howe, Physical gelation of gelatin studied with rheo-optics, Macromolecules 36(26) (2003) 10009-10020. https://doi.org/10.1021/ma034266c.
[71] M.P. Lutolf, J.A. Hubbell, Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by michael-type addition, Biomacromolecules 4(3) (2003) 713-722. https://doi.org/10.1021/bm025744e.
[72] K. Ghosh, X.Z. Shu, R. Mou, J. Lombardi, G.D. Prestwich, M.H. Rafailovich, R.A. Clark, Rheological characterization of in situ cross-linkable hyaluronan hydrogels, Biomacromolecules 6(5) (2005) 2857-2865. https://doi.org/10.1021/bm050361c.
[73] A. Maleki, A.L. Kjøniksen, B. Nyström, Anomalous viscosity behavior in aqueous solutions of hyaluronic acid, Polymer Bulletin 59(2) (2007) 217-226. https://doi.org/10.1007/s00289-007-0760-2.
[74] J.G. Prieto, M.M. Pulido, J. Zapico, A.J. Molina, M. Gimeno, P. Coronel, A.I. Alvarez, Comparative study of hyaluronic derivatives: rheological behaviour, mechanical and chemical degradation, Int J Biol Macromol 35(1-2) (2005) 63-69. https://doi.org/10.1016/j.ijbiomac.2004.12.003.
[75] M.A. Jacobetz, D.S. Chan, A. Neesse, T.E. Bapiro, N. Cook, K.K. Frese, C. Feig, T. Nakagawa, M.E. Caldwell, H.I. Zecchini, M.P. Lolkema, P. Jiang, A. Kultti, C.B. Thompson, D.C. Maneval, D.I. Jodrell, G.I. Frost, H.M. Shepard, J.N. Skepper, D.A. Tuveson, Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer, Gut 62(1) (2013) 112-120. https://doi.org/10.1136/gutjnl-2012-302529.
[76] R. Moll, Cytokeratins in the histological diagnosis of malignant tumors, Int J Biol Markers 9(2) (1994) 63-69. https://doi.org/10.1177/172460089400900201.
[77] M.D. Dabeva, S.G. Hwang, S.R.G. Vasa, E. Hurston, P.M. Novikoff, D.C. Hixson, S. Gupta, D.A. Shafritz, Differentiation of pancreatic epithelial progenitor cells into hepatocytes following transplantation into rat liver, Proc. Natl. Acad. Sci. USA 94(14) (1997) 7356-7361. https://doi.org/10.1073/pnas.94.14.7356.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96640-
dc.description.abstract三維 (3D) 生物列印技術可用於製造類癌症組織,以模擬腫瘤微環境中的複雜交互作用。在人類胰腺導管腺癌 (PDAC) 中,其主要涉及了細胞外基質 (ECM)、癌細胞和胰腺星狀細胞之間的交互作用。透明質酸 (HA) 是ECM的主要成分,有利於促進PDAC的腫瘤進展和化療耐藥性。在目前的研究中,通過將多細胞胰腺腫瘤樣球體包封於新型HA-明膠光交聯水凝膠 (即GHP水凝膠) 中,並利用3D生物列印技術在體外創建出類PDAC組織平台。這種最佳化的GHP水凝膠 (含7 wt%明膠和0.2 wt%酚官能基化HA) 達到了與臨床人類PDAC樣本相似的模量 (~5.46 kPa),其更加緻密且均勻的結構優於純明膠水凝膠 (即GN水凝膠)。於3D生物列印之GHP水凝膠 (GHP 3DP構建體) 內的腫瘤樣球體呈現出顯著的侵襲性和轉移性,伴隨典型上皮-間質轉化 (EMT) 標誌基因的表達上調。此外,其餘基因表達分析顯示CD44基因的表達增加約290倍,而S100A9 (一種用於早期診斷的新型胰腺癌生物標誌物) 則增加了7.3倍的表達。在GHP 3DP構建體的腫瘤樣球體中還觀察到顯著的化療耐藥性,在接受臨床聯合藥物 (吉西他濱和白蛋白結合-紫杉醇) 處理48小時後,其腫瘤樣球體的細胞存活率仍高達98.5%。這與未含水凝膠之單獨培養的腫瘤樣球體和雙細胞類型的共同培養組別所觀察到的較低耐藥性形成鮮明對比 (細胞存活率分别為32.5%和28.9%)。深入研究3D生物列印之類PDAC組織構建體內的HA分布,可發現其分布模式與真實胰腺癌樣本中的結果相似,此展現了於體外再現腫瘤生物學中惡性程度及癌細胞重編程的可能性。綜上所述,該3D生物列印之類PDAC模型具有推動胰腺癌研究和臨床前藥物篩選的巨大潛力。zh_TW
dc.description.abstract3D bioprinting can be utilized to fabricate cancer-like tissue that models complex interactions within the cancer microenvironment. In human pancreatic ductal adenocarcinoma (PDAC), these interactions involve the extracellular matrix (ECM), cancer cells, and pancreatic stellate cells. Hyaluronan (HA) is a major component of ECM supporting tumor progression and chemoresistance in PDAC. In the current study, an in vitro PDAC-like tissue platform was developed by embedding multicellular pancreatic tumor-like spheroids within a novel 3D bioprinting HA-gelatin photocrosslinked hydrogel (GHP). This optimized GHP bioink (7 wt% gelatin and 0.2 wt% phenolic HA) achieved a modulus (~5.46 kPa) closely resembling that of clinical PDAC tissue, with a dense and uniform structure superior to gelatin-only hydrogel (GN). The bioprinted 3D tumor-like spheroids within GHP exhibited distinct invasive and metastatic behavior, along with up-regulated expression of epithelial-mesenchymal transition (EMT) markers. Furthermore, gene expression analysis also revealed a ~290-fold increase in CD44 gene and a 7.3-fold rise in S100A9 (a novel pancreatic cancer biomarker for early diagnosis). These tumor-like spheroids within 3D-bioprinted GHP constructs further demonstrated substantial chemoresistance, maintaining remarkable 98.5% viability after 48 h of exposure to a Gemcitabine and Abraxane combination, in contrast to significantly lower resistance observed in spheroids alone or co-cultured monolayers. An in-depth investigation of HA distribution within the 3D-bioprinted PDAC-like construct revealed a pattern consistent with clinical PDAC, indicating enhanced malignancy and potential tumor reprogramming. This 3D-bioprinted PDAC model holds significant potential for advancing pancreatic cancer research and preclinical drug testing.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:19:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-20T16:19:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 ............................................................................ I
致謝 .................................................................................... II
摘要 ................................................................................... III
Abstract ............................................................................... IV
目次...................................................................................... V
圖次 ................................................................................... VII
表次 ................................................................................... IX
第一章 文獻回顧 .......................................................................... 1
1.1. 三維生物列印技術於腫瘤微環境模擬中的應用價值 ........................................... 1
1.2. 三維細胞培養技術在腫瘤研究中的優勢與進展 ............................................... 1
1.3. 胰腺導管腺癌微環境的挑戰與三維生物列印技術的應用策略 .................................... 2
1.4. 透明質酸對胰腺癌微環境的重要性與其三維生物列印的應用進展 ................................. 2
1.5. 體外三維胰腺癌模型的開發與應用研究 ..................................................... 3
第二章 研究方法 ........................................................................... 5
2.1. 研究架構 ............................................................................ 5
2.2. 透明質酸-苯酚之合成 .................................................................. 6
2.3. 製備明膠/透明質酸-苯酚之澆注或3D生物列印結構 ........................................... 7
2.4. 明膠/透明質酸-苯酚水凝膠之表徵 ........................................................ 8
2.4.1. 原位小角度X光散射分析 .............................................................. 8
2.4.2. 流變性質分析 ....................................................................... 8
2.4.3. 掃描式電子顯微鏡 ................................................................... 9
2.4.4. 動態機械分析 ....................................................................... 9
2.4.5. 體外降解測試 ....................................................................... 9
2.5. 細胞培養 ............................................................................ 9
2.6. 水凝膠包封腫瘤樣球體之澆注和3D生物列印結構 ............................................ 10
2.7. 澆注和3D列印結構中腫瘤樣球體之表徵 ................................................... 11
2.7.1. 細胞螢光標記與腫瘤樣球體之形態觀察 .................................................. 11
2.7.2. 腫瘤樣球體之細胞活性分析 ........................................................... 11
2.7.3. 腫瘤樣球體之共軛焦顯微鏡觀察 ....................................................... 11
2.8. 基因表達分析以評估不同水凝膠結構對於腫瘤樣球體之影響 ................................... 12
2.9. 不同水凝膠結構中腫瘤樣球體之體外化療藥物毒性評估 ....................................... 14
2.10. 不同水凝膠結構中腫瘤樣球體之免疫組織化學染色 ......................................... 14
2.11. 統計學分析 ........................................................................ 15
第三章 實驗結果 .......................................................................... 16
3.1. 透明質酸-苯酚的合成 ................................................................. 16
3.2. 光交聯GHP水凝膠的製備 ............................................................... 18
3.3. 光交聯GHP水凝膠的表徵 ............................................................... 20
3.4. 光交聯GHP水凝膠的流變特性 ........................................................... 23
3.5. 光交聯GHP水凝膠之3D列印 ............................................................ 25
3.6. 包封於不同水凝膠結構中腫瘤樣MIA-PSC共球體之表徵 ...................................... 28
3.7. 包封於水凝膠結構中腫瘤樣MIA-PSC共球體之基因表達 ...................................... 33
3.8. 化療藥物對於水凝膠結構中腫瘤樣MIA-PSC共球體的影響 .................................... 36
3.9. 類胰腺腫瘤3DP建構體的免疫組織化學染色分析 ............................................ 40
第四章 討論 ............................................................................. 43
第五章 結論 ............................................................................. 49
參考文獻 ................................................................................ 50
-
dc.language.isozh_TW-
dc.title包封多細胞腫瘤球體之可光交聯透明質酸-明膠基質作為3D生物列印體外工程化胰腺癌組織研究zh_TW
dc.title3D bioprinting of multicellular tumor spheroids in photocrosslinkable hyaluronan-gelatin for engineering pancreatic cancer microenvironmenten
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee田郁文;廖昭仰zh_TW
dc.contributor.oralexamcommitteeYun-Wen Tien;Chao-Yaug Liaoen
dc.subject.keyword3D生物列印,腫瘤樣球體,透明質酸,胰腺導管腺癌,腫瘤微環境,zh_TW
dc.subject.keyword3D bioprinting,tumor spheroids,hyaluronan,pancreatic ductal adenocarcinoma (PDAC),tumor microenvironment,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202500241-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-22-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-lift2025-02-21-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf3.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved