請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96633完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂良鴻 | zh_TW |
| dc.contributor.advisor | Liang-Hung Lu | en |
| dc.contributor.author | 李政頡 | zh_TW |
| dc.contributor.author | Zheng-Jie Li | en |
| dc.date.accessioned | 2025-02-20T16:17:52Z | - |
| dc.date.available | 2025-02-21 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-01-09 | - |
| dc.identifier.citation | K. Kibaroglu, M. Sayginer and G. M. Rebeiz, “A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a 2 X 2 Beamformer Flip-Chip Unit Cell,” in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1260-1274, May 2018.
J. Park, S. Lee, J. Chun, L. Jeon and S. Hong, “A 28-GHz Four-Channel Beamforming Front-End IC With Dual-Vector Variable Gain Phase Shifters for 64-Element Phased Array Antenna Module,” in IEEE Journal of Solid-State Circuits, vol. 58, no. 4, pp. 1142-1159, April 2023. B. Sadhu et al., “A 28-GHz 32-Element TRX Phased-Array IC With Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications,” in IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3373-3391, Dec. 2017. S. Kundu and J. Paramesh, “A Compact, Supply-Voltage Scalable 45–66 GHz Baseband-Combining CMOS Phased-Array Receiver,” in IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 527-542, Feb. 2015. J. Pang et al., “A 28-GHz CMOS Phased-Array Transceiver Based on LO Phase-Shifting Architecture With Gain Invariant Phase Tuning for 5G New Radio,” in IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1228-1242, May 2019. N. Ebrahimi, P. -Y. Wu, M. Bagheri and J. F. Buckwalter, “A 71–86-GHz Phased Array Transceiver Using Wideband Injection-Locked Oscillator Phase Shifters,” in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 2, pp. 346-361, Feb. 2017. Code of Federal Regulations CFR title 47, part 30 Upper Microwave Flexible Use Service, Section 30.202. FCC, Washington, DC, USA, 2018. S. Hu, F. Wang and H. Wang, “2.1 A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications,” 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2017. S. Hu, F. Wang and H. Wang, “A 28-/37-/39-GHz Linear Doherty Power Amplifier in Silicon for 5G Applications,” in IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1586-1599, June 2019. E. Kaymaksut, D. Zhao and P. Reynaert, “Transformer-Based Doherty Power Amplifiers for mm-Wave Applications in 40-nm CMOS,” in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1186-1192, April 2015. C. Yu, J. Feng and D. Zhao, “A 28-GHz Doherty Power Amplifier With a Compact Transformer-Based Quadrature Hybrid in 65-nm CMOS,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2790-2794, Aug. 2021. Y. -T. Hsu, Z. -Y. Lin, J. -J. Lee and K. -H. Chen, “An Envelope Tracking Supply Modulator Utilizing a GaN-Based Integrated Four-Phase Switching Converter and Average Power Tracking-Based Switch Sizing With 85.7% Efficiency for 5G NR Power Amplifier,” in IEEE Journal of Solid-State Circuits, vol. 56, no. 10, pp. 3167-3176, Oct. 2021. S. A. Bassam, M. Helaoui and F. M. Ghannouchi, “2-D Digital Predistortion (2-D-DPD) Architecture for Concurrent Dual-Band Transmitters,” in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 10, pp. 2547-2553, Oct. 2011. R. N. Braithwaite, “A Combined Approach to Digital Predistortion and Crest Factor Reduction for the Linearization of an RF Power Amplifier,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 291-302, Jan. 2013. Y. -C. Chen, Y. -T. Chang and H. -C. Lu, “A K-band power amplifier with parasitic diode linearizer in 0.18-μm CMOS process using 1.8-V supply voltage,” 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, Taiwan, 2016. H. -W. Choi, S. Choi and C. -Y. Kim, “A 25-GHz Power Amplifier Using Three-Stage Antiphase Linearization in Bulk 65-nm CMOS Technology,” in IEEE Microwave and Wireless Components Letters, vol. 30, no. 5, pp. 489-491, May 2020. M. Fang, T. Sugiura and T. Yoshimasu, “A 28-GHz-Band Efficient Linear Power Amplifier with Novel Adaptive Bias Circuit for 5G Mobile Communications in 56-nm CMOS SOI,” 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 2020. Y. Jin and S. Hong, “A 24-GHz CMOS Power Amplifier With Dynamic Feedback and Adaptive Bias Controls,” in IEEE Microwave and Wireless Components Letters, vol. 31, no. 2, pp. 153-156, Feb. 2021. S. Shakib, H. -C. Park, J. Dunworth, V. Aparin and K. Entesari, “A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS,” in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 3020-3036, Dec. 2016. S. Kulkarni and P. Reynaert, “14.3 A Push-Pull mm-Wave power amplifier with <0.8° AM-PM distortion in 40nm CMOS,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 2014. M. Abdulaziz, H. V. Hünerli, K. Buisman and C. Fager, “Improvement of AM–PM in a 33-GHz CMOS SOI Power Amplifier Using pMOS Neutralization,” in IEEE Microwave and Wireless Components Letters, vol. 29, no. 12, pp. 798-801, Dec. 2019. M. Vigilante and P. Reynaert, “A Wideband Class-AB Power Amplifier With 29–57-GHz AM–PM Compensation in 0.9-V 28-nm Bulk CMOS,” in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1288-1301, May 2018. T. Xi, S. Huang, S. Guo, P. Gui, D. Huang and S. Chakraborty, “High-Efficiency E-Band Power Amplifiers and Transmitter Using Gate Capacitance Linearization in a 65-nm CMOS Process,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 3, pp. 234-238, March 2017. S. N. Ali, P. Agarwal, J. Baylon, S. Gopal, L. Renaud and D. Heo, “A 28GHz 41%-PAE linear CMOS power amplifier using a transformer-based AM-PM distortion-correction technique for 5G phased arrays,” 2018 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018. E. Rahimi, F. Bozorgi and G. Hueber, “A 22nm FD-SOI CMOS 2-way D-band Power Amplifier Achieving PAE of 7.7% at 9.6dBm OP1dB and 3.1% at 6dB Back-off by Leveraging Adaptive Back-Gate Bias Technique,” 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Denver, CO, USA, 2022. J. Lee and S. Hong, “A 24–30 GHz 31.7% Fractional Bandwidth Power Amplifier With an Adaptive Capacitance Linearizer,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1163-1167, April 2021. J. Zhao, A. Cooman, A. Shamsafar, M. Rousstia, D. Calzona and S. Pires, “A High-Linear Ka-Band Power Amplifier with Diode-Based Analogue Predistortion,” 2020 15th European Microwave Integrated Circuits Conference (EuMIC), Utrecht, Netherlands, 2021. S. Golara, Identifying Mechanisms of AM-PM Distortion in Large Signal Amplifiers, 2015. J. Yoo and S. Hong, “A 28-GHz 20.4-dBm CMOS Power Amplifier with Adaptive Common-Gate Cross Feedback Linearization,” 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 2021. J. Park, S. Kang and S. Hong, “Design of a Ka-Band Cascode Power Amplifier Linearized With Cold-FET Interstage Matching Network,” in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 2, pp. 1429-1438, Feb. 2021. X. Fang, J. Xia and S. Boumaiza, “A 28-GHz Beamforming Doherty Power Amplifier With Enhanced AM-PM Characteristic,” in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3017-3027, July 2020. F. Torres, M. De Matos, A. Cathelin and E. Kerhervé, “A 31 GHz 2-Stage Reconfigurable Balanced Power Amplifier with 32.6dB Power Gain, 25.5% PAEmax and 17.9dBm Psat in 28nm FD-SOI CMOS,” 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, USA, 2018. M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, “Low-Loss Highly Linear Integrated Passive Phase Shifters for 5G Front Ends on Bulk CMOS,” in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4563-4575, Oct. 2018. J. S. Park and H. Wang, “A Transformer-Based Poly-Phase Network for Ultra-Broadband Quadrature Signal Generation,” in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4444-4457, Dec. 2015. Y. Tian et al., “A 26-32GHz 6-bit Bidirectional Passive Phase Shifter with 14dBm IP1dB and 2.6° RMS Phase Error for Phased Array System in 40nm CMOS,” 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023. B. Wang, H. Gao, M. K. Matters-Kammerer and P. G. M. Baltus, “A 60 GHz 360° Phase Shifter with 2.7° Phase Resolution and 1.4° RMS Phase Error in a 40-nm CMOS Technology,” 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, USA, 2018. X. Quan et al., “A 52–57 GHz 6-Bit Phase Shifter With Hybrid of Passive and Active Structures,” in IEEE Microwave and Wireless Components Letters, vol. 28, no. 3, pp. 236-238, March 2018. A. Sethi, R. Akbar, M. Hietanen, T. Rahkonen and A. Pärssinen, “A 26GHz to 34GHz Active Phase Shifter with Tunable Polyphase Filter for 5G Wireless Systems,” 2021 16th European Microwave Integrated Circuits Conference (EuMIC), London, United Kingdom, 2022. F. Ellinger and H. Jackel, “Low-cost BiCMOS variable gain LNA at Ku-band with ultra-low power consumption,” in IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 2, pp. 702-708, Feb. 2004. P. -H. Lo, C. -C. Lin, H. -C. Kuo and H. -R. Chuang, “A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity,” 2012 9th European Radar Conference, Amsterdam, Netherlands, 2012. B. -W. Min and G. M. Rebeiz, “Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA,” in IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 272-274, April 2008. D. -W. Kang, J. -G. Kim, B. -W. Min and G. M. Rebeiz, “Single and Four-Element Ka-Band Transmit/Receive Phased-Array Silicon RFICs With 5-bit Amplitude and Phase Control,” in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3534-3543, Dec. 2009. Chia-Yu Hsieh, Jui-Chih Kao, J. -J. Kuo and K. -Y. Lin, “A 57–64 GHz low-phase-variation variable-gain amplifier,” 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012. B. Sadhu, J. F. Bulzacchelli and A. Valdes-Garcia, “A 28GHz SiGe BiCMOS phase invariant VGA,” 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Francisco, CA, USA, 2016. T. Wu, C. Zhao, H. Liu, Y. Wu, Y. Yu and K. Kang, “A 20 ~ 43 GHz VGA with 21.5 dB Gain Tuning Range and Low Phase Variation for 5G Communications in 65-nm CMOS,” 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019. Q. Li and Y. P. Zhang, “CMOS T/R Switch Design: Towards Ultra-Wideband and Higher Frequency,” in IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 563-570, March 2007. H. Jin, S. Lee, G. Jeong and S. Hong, “28-GHz Dual-Mode Phase-Invariant Variable-Gain Amplifier With Phase Compensators,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 11, pp. 4263-4267, Nov. 2022. S. Lee, J. Park and S. Hong, “A Ka-Band Phase-Compensated Variable-Gain CMOS Low-Noise Amplifier,” in IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 131-133, Feb. 2019. J. -H. Tsai and C. -L. Lin, “A 40-GHz 4-Bit Digitally Controlled VGA With Low Phase Variation Using 65-nm CMOS Process,” in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 729-732, Nov. 2019. C. Fang et al., “A 22.5–33.5-GHz Hybrid Phase Shifter With Low Phase and Amplitude Error for 5G and Satellite Communication,” in IEEE Transactions on Microwave Theory and Techniques, vol. 72, no. 5, pp. 3001-3015, May 2024. T. Xu et al., “A 17-33GHz 6-bit Vector-Sum Phase Shifter with Wideband All-Pass I/Q Generator using an LC Compensation Network in 28-nm CMOS,” 2023 IEEE MTT-S International Wireless Symposium (IWS), Qingdao, China, 2023. S. Londhe and E. Socher, “28–38-GHz 6-bit Compact Passive Phase Shifter in 130-nm CMOS,” in IEEE Microwave and Wireless Components Letters, vol. 31, no. 12, pp. 1311-1314, Dec. 2021. J. Park, G. Jeong and S. Hong, “A Ka-Band Variable-Gain Phase Shifter With Multiple Vector Generators,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 6, pp. 1798-1802, June 2021. J. Xia and S. Boumaiza, “Digitally Assisted 28 GHz Active Phase Shifter With 0.1 dB/0.5° RMS Magnitude/Phase Errors and Enhanced Linearity,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 6, pp. 914-918, June 2019. W. Zhu et al., “A 24–28-GHz Four-Element Phased-Array Transceiver Front End With 21.1%/16.6% Transmitter Peak/OP1dB PAE and Subdegree Phase Resolution Supporting 2.4 Gb/s in 256-QAM for 5-G Communications,” in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 6, pp. 2854-2869, June 2021. R. Kalyan et al., “A 29–31-GHz, 0.4-dB Amplitude Error and 1° Phase Error Beamforming IC and 20-dB Dynamic Range Power Detector for SatCom Phased Arrays,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 10, pp. 3837-3841, Oct. 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96633 | - |
| dc.description.abstract | 由於高速、低延遲的資料傳輸需求不斷增加,因此毫米波頻段收發器成為關鍵技術,本論文討論了採用TSMC 90-nm CMOS製程製造之適用於第五代行動通訊相位陣列發射器之28 GHz功率放大器、可變增益放大器以及相移器。
本論文所提出之功率放大器採用適應性偏壓和相位補償來降低振幅失真(AM-AM distortion)以及相位失真(AM-PM distortion)。論文所設計之功率放大器其增益為23.1 dB,而頻寬則為26至29 GHz,並在28 GHz時實現了35.1%的峰值功率附加效率和15.2 dBm的飽和輸出功率。此功率放大器在1 dB增益壓縮點的輸出功率(OP1dB)為14.4 dBm,並且此時的功率附加效率(PAEP1dB)為33.6%。最後,在1 dB增益壓縮點以前,論文所設計之功率放大器實現了小於1.5°的相位失真。 而本論文所提出之相移器利用兩個相位差為四十五度的向量進行相位合成,相較於傳統上使用相位差為九十度的向量進行相位合成,此方法可以有效降低相位誤差和增益誤差。另一方面,透過抵銷和彌補電晶體的閘極-源極間電容(Cgs)以及閘極-汲極間電容(Cgd)之影響,本論文所提出之可變增益放大器有效減少了其在增益控制範圍內的相位變化。論文所提出之可變增益相移器其增益為−9.5 dB,而頻寬則為25至31 GHz。在此頻寬內,此電路實現了小於0.34°的方均根相位誤差以及小於0.38 dB的方均根增益誤差。此電路同時實現了16 dB的增益控制範圍,並且在其頻寬以及增益控制範圍內,此電路的相位變化小於1.8°。 最後,本論文再提出了一種將可變增益放大器和相移器結合在單一電路模塊中的方法,此方法可以有效降低功耗和面積。論文所設計之發射器其增益為16.5 dB,其實現了27.1%的峰值功率附加效率和16.1 dBm的飽和輸出功率。此發射器在1 dB增益壓縮點的輸出功率為15 dBm,並且此時的功率附加效率為24%。對於波束控制功能,此發射器實現了小於0.2°的方均根相位誤差以及小於0.2 dB的方均根增益誤差。此電路同時實現了16 dB的增益控制範圍,並且在其頻寬以及增益控制範圍內,此電路的相位變化小於1.25°。 | zh_TW |
| dc.description.abstract | The increasing demand for high-data-rate, low-latency applications has elevated millimeter-wave transceivers to a pivotal technology. The 28 GHz power amplifier, variable-gain amplifier and phase shifter fabricated in TSMC 90-nm CMOS process for 5G wireless communication phased array transmitters are discussed in this thesis.
The proposed power amplifier employs adaptive bias and phase compensation to reduce AM-AM distortion and AM-PM distortion. The proposed PA has a peak gain of 23.1 dB with a bandwidth from 26 to 29 GHz. It achieves a peak power-added efficiency (PAE) of 35.1% and a saturated output power of 15.2 dBm at 28 GHz. Its output power (OP1dB) and PAE at the 1-dB compression point are 14.4 dBm and 33.6%, respectively. Furthermore, the AM-PM distortion of the proposed power amplifier is less than 1.5° before the P1dB. The proposed phase shifter utilizes two vectors with a 45-degree phase difference for phase synthesis, which can effectively reduce both phase and gain errors. On the other hand, by mitigating the influence of Cgs and Cgd, the phase variation of the proposed variable-gain amplifier within its gain control range is effectively minimized. The proposed variable-gain phase shifter has a peak gain of −9.5 dB with a bandwidth from 25 to 31 GHz. The RMS phase error and RMS gain error of the proposed circuit are less than 0.34° and 0.38 dB, respectively. Within its 16 dB gain control range, the phase variation of the proposed circuit is less than 1.8°. Finally, a method for combining the variable-gain amplifier and phase shifter into a single block is proposed to further reduce power consumption and area. The proposed transmitter has a peak gain of 16.5 dB. It achieves a peak transmitter PAE of 27.1% and a saturated output power of 16.1 dBm. Its OP1dB and transmitter PAEP1dB are 15 dBm and 24%, respectively. The RMS phase error and RMS gain error of the proposed transmitter are less than 0.2° and 0.2 dB, respectively. Within its 16 dB gain control range, the phase variation of the proposed circuit is less than 1.25°. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:17:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:17:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iii Contents v List of Figures viii List of Tables xv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 Background 4 2.1 Phased Array 4 2.1.1 Basic knowledge 4 2.1.2 Phased array architecture 5 2.2 Transmitter Building Block 7 2.2.1 Power amplifier 7 2.2.2 Phase shifter and variable-gain amplifier 9 Chapter 3 A 28 GHz Power Amplifier with Gain and Phase Compensation 11 3.1 Design Goals and Related Techniques 11 3.2 Architecture of the Power Amplifier 13 3.3 Circuit Implementation 15 3.3.1 Power stage and driver stage 15 3.3.2 Envelope detector 20 3.3.3 Adaptive bias network 25 3.3.4 Phase correction network 29 3.3.5 Matching network 34 3.3.6 Stability 39 3.4 Simulation Result 40 3.5 Measurement Result 45 3.6 Conclusion 50 Chapter 4 A 28 GHz Low-Error Variable-Gain Phase Shifter 51 4.1 Design Goals and Related Techniques 51 4.2 Architecture of the Variable-Gain Phase Shifter 53 4.2.1 Basic concept of the proposed phase shifter 53 4.2.2 Architecture of the proposed variable-gain phase shifter 56 4.3 Circuit Implementation 57 4.3.1 Eight-phase polyphase filter 57 4.3.2 Selector 67 4.3.3 Vector modulator 71 4.3.4 Variable-gain amplifier 75 4.3.5 Matching network 80 4.3.6 Stability 86 4.4 Simulation Result 87 4.5 Measurement Result 93 4.6 Conclusion 99 Chapter 5 A 28 GHz RF-Beamforming Transmitter for 5G Phased Arrays 101 5.1 Introduction 101 5.2 Architecture of the Transmitter 101 5.3 Circuit Implementation 102 5.3.1 Eight-phase polyphase filter and selector 102 5.3.2 Variable-gain vector modulator 104 5.3.3 Matching network 108 5.3.4 Stability 114 5.4 Simulation Result 115 5.5 Measurement Result 121 5.6 Conclusion 126 Chapter 6 Conclusion 128 Reference 130 | - |
| dc.language.iso | en | - |
| dc.subject | 射頻相移 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 相移器 | zh_TW |
| dc.subject | 相位陣列 | zh_TW |
| dc.subject | 線性度 | zh_TW |
| dc.subject | 相位誤差 | zh_TW |
| dc.subject | 增益誤差 | zh_TW |
| dc.subject | 可變增益放大器 | zh_TW |
| dc.subject | Gain error | en |
| dc.subject | Phased array | en |
| dc.subject | RF-phase shifting | en |
| dc.subject | Power amplifier | en |
| dc.subject | Phase shifter | en |
| dc.subject | Variable-gain amplifier | en |
| dc.subject | Linearity | en |
| dc.subject | Phase error | en |
| dc.title | 適用於第五代行動通訊相位陣列發射器之28 GHz低誤差可變增益相移器和具有增益及相位補償之功率放大器 | zh_TW |
| dc.title | A 28 GHz Low-Error Variable-Gain Phase Shifter and Power Amplifier with Gain and Phase Compensation for 5G Phased Array Transmitters | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林宗賢;郭建男 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Hsien Lin;Chien-Nan Kuo | en |
| dc.subject.keyword | 相位陣列,射頻相移,功率放大器,相移器,可變增益放大器,線性度,相位誤差,增益誤差, | zh_TW |
| dc.subject.keyword | Phased array,RF-phase shifting,Power amplifier,Phase shifter,Variable-gain amplifier,Linearity,Phase error,Gain error, | en |
| dc.relation.page | 137 | - |
| dc.identifier.doi | 10.6342/NTU202500068 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-01-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 10.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
