Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96632
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭宇翔zh_TW
dc.contributor.advisorYu-Hsiang Chengen
dc.contributor.author曹盛鈞zh_TW
dc.contributor.authorSheng-Chun Tsaoen
dc.date.accessioned2025-02-20T16:17:36Z-
dc.date.available2025-02-21-
dc.date.copyright2025-02-20-
dc.date.issued2025-
dc.date.submitted2025-01-23-
dc.identifier.citation[1]"Principles of Terahertz science and technology – lecture notes." Terasense. https://terasense.com/news/principles-of-terahertz-science-and-technology-lecture-notes/ (accessed 07/09, 2024).
[2]Y. Yang, A. Shutler, and D. Grischkowsky, "Measurement of the transmission of the atmosphere from 0.2 to 2 THz," Optics express, vol. 19, no. 9, pp. 8830-8838, 2011.
[3]"Mail screening for drug detection." Terahertz imaging for mail and parcel screening | TeraSense (accessed 2024).
[4]"Samsung Electronics and University of California Santa Barbara Demonstrate 6G Terahertz Wireless Communication Prototype." https://news.samsung.com/global/samsung-electronics-and-university-of-california-santa-barbara-demonstrate-6g-terahertz-wireless-communication-prototype (accessed 2024).
[5]A. Dyck et al., "A transmitter system-in-package at 300 GHz with an off-chip antenna and GaAs-based MMICs," IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 3, pp. 335-344, 2019.
[6]I. Abdo et al., "A bi-directional 300-GHz-band phased-array transceiver in 65-nm CMOS with outphasing transmitting mode and LO emission cancellation," IEEE Journal of Solid-State Circuits, vol. 57, no. 8, pp. 2292-2308, 2022.
[7]L. Yan, W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui, "Simulation and experiment on SIW slot array antennas," IEEE Microwave and Wireless Components Letters, vol. 14, no. 9, pp. 446-448, 2004.
[8]T. V. Trinh, S. Trinh-Van, K.-Y. Lee, Y. Yang, and K. C. Hwang, "Design of a low-cost, low-sidelobe-level, differential-fed SIW slot array antenna with zero beam squint," Applied Sciences, vol. 12, no. 21, p. 10826, 2022.
[9]X. Liao et al., "Substrate Integrated Waveguide Slot Array Antenna for 77 GHz Automotive Angular Radar Applications," Prog Electromagn Res C, vol. 112, pp. 153-164, 2021.
[10]Y. Wang, B. Du, Z. Cao, X. Chen, and H. Meng, "A Substrate Integrated Cavity Backed Slot Antenna Array in Y-Band," IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 12, pp. 2998-3002, 2023.
[11]K. Sun, Y. Zhao, D. Yang, and J. Pan, "A single-layer differential substrate-integrated slot antenna with common-mode rejection," IEEE antennas and wireless propagation letters, vol. 18, no. 2, pp. 392-396, 2019.
[12]Y.-W. Wu, Z.-C. Hao, and Z.-W. Miao, "A planar W-band large-scale high-gain substrate-integrated waveguide slot array," IEEE Transactions on Antennas and Propagation, vol. 68, no. 8, pp. 6429-6434, 2020.
[13]D. K. Karmokar, S.-L. Chen, D. Thalakotuna, P.-Y. Qin, T. S. Bird, and Y. J. Guo, "Continuous backward-to-forward scanning 1-D slot-array leaky-wave antenna with improved gain," IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 1, pp. 89-93, 2019.
[14]E. K. Chemweno, P. Kumar, and T. J. Afullo, "Design of Dual-band Substrate Integrated Waveguide Dielectric Resonator Antenna in D-band," in 2023 IEEE AFRICON, 2023: IEEE, pp. 1-5.
[15]I. Mohamed and A. Sebak, "Broadband transition of substrate-integrated waveguide-to-air-filled rectangular waveguide," IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 966-968, 2018.
[16]K. Dongjin and J. Hirokawa, "64x64-element and 32x32-element slot array antennas using double-layer hollow-waveguide corporate-feed in the 120 GHz band," 電子情報通信学会技術研究報告= IEICE technical report: 信学技報, vol. 113, no. 34, pp. 77-80, 2013.
[17]G.-L. Huang, S.-G. Zhou, T.-H. Chio, H.-T. Hui, and T.-S. Yeo, "A low profile and low sidelobe wideband slot antenna array feb by an amplitude-tapering waveguide feed-network," IEEE Transactions on Antennas and Propagation, vol. 63, no. 1, pp. 419-423, 2014.
[18]Y.-W. Wu, Z.-C. Hao, Z.-W. Miao, W. Hong, and J.-S. Hong, "A 140 GHz high-efficiency slotted waveguide antenna using a low-loss feeding network," IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 1, pp. 94-98, 2019.
[19]W.-G. Zhao, W. Dai, J. Wang, L. Tian, and F. Wu, "A High-Efficiency Slotted Waveguide Antenna Based on Higher-Order Mode Cavity," in 2023 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2023: IEEE, pp. 1-3.
[20]Y.-W. Wu and Z.-C. Hao, "Compact High Efficiency Terahertz Filtering Antenna with Low Cross-Polarization Based on the Mixed-Mode Cavity," in 2020 International Symposium on Antennas and Propagation (ISAP), 2021: IEEE, pp. 367-368.
[21]W. Y. Yong, A. Haddadi, T. Emanuelsson, and A. A. Glazunov, "A bandwidth-enhanced cavity-backed slot array antenna for mmWave fixed-beam applications," IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 11, pp. 1924-1928, 2020.
[22]S. Shad and H. Mehrpouyan, "60 GHz waveguide-fed cavity array antenna by multistepped slot aperture," IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 3, pp. 438-442, 2020.
[23]T. Li, A. Bhutani, and T. Zwick, "A D-band corporate-feed gap-cavity slot array antenna using virtual PEC method," IEEE Transactions on Antennas and Propagation, vol. 70, no. 8, pp. 7258-7263, 2022.
[24]C.-Y. Ding et al., "A 220 GHz High-Gain Low-Cost Slot Array Antenna with Integrated Fabry-Perot Cavity," IEEE Antennas and Wireless Propagation Letters, 2023.
[25]P. Wu, K. Liu, and Z. Yu, "220 GHz high-gain substrate integrated antennas with low fabrication cost based on higher order mode and PCB technology," IEEE Transactions on Antennas and Propagation, vol. 71, no. 1, pp. 18-28, 2022.
[26]S. Wang, B. Zhou, and G. Fang, "A Method for Low Sidelobe Substrate-Integrated Waveguide Slot Antenna Design Applied for Millimeter-Wave Radars," Remote Sensing, vol. 16, no. 3, p. 474, 2024.
[27]T. Djerafi and K. Wu, "A low-cost wideband 77-GHz planar Butler matrix in SIW technology," IEEE Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4949-4954, 2012.
[28]B.-Y. Guo and H. Jiang, "Design and Simulation of 77GHz Substrate Integrated Waveguide Slot Array Antenna," The Applied Computational Electromagnetics Society Journal (ACES), pp. 453-460, 2020.
[29]C.-Y. Ding et al., "A 220 GHz High-Gain Low-Cost Slot Array Antenna with Integrated Fabry-Perot Cavity," IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 3, pp. 1045-1049, 2024.
[30]M. A. Shashank Kumar Srivastava, Ratnajit Bhattacharjee, "A 279 GHz 8×8 Slotted Waveguide Antenna Array with Low Sidelobe Level," presented at the 2024 Asia-Pacific Microwave Conference Proceedings, 2024.
[31]D. M. Pozar, Microwave engineering: theory and techniques. John wiley & sons, 2021.
[32]C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 2012.
[33]R. S. Elliot, Antenna theory and design. John Wiley & Sons, 2006.
[34]C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2016.
[35]J. S. Stone, "United States Patents No.1,643,323 and No.1,715,433,"
[36]R. Elliott and L. Kurtz, "The design of small slot arrays," IEEE Transactions on Antennas and Propagation, vol. 26, no. 2, pp. 214-219, 1978.
[37]A. Stevenson, "Theory of slots in rectangular wave‐guides," Journal of Applied physics, vol. 19, no. 1, pp. 24-38, 1948.
[38]M.-Q. Qi, W. Wang, and M.-P. Jin, "A method of calculating admittance of waveguide slot," in 2005 Asia-Pacific Microwave Conference Proceedings, 2005, vol. 4: IEEE, p. 3 pp.
[39]Y.-H. Cheng, "太赫茲波段材料量測與超穎表面設計Material characterization and metasurface design in the terahertz band," Graduate Institute of Communication Engineering, National Taiwan University, 2024.
[40]F. Xu and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on microwave theory and techniques, vol. 53, no. 1, pp. 66-73, 2005.
[41]D. Deslandes and K. Wu, "Design consideration and performance analysis of substrate integrated waveguide components," in 2002 32nd European microwave conference, 2002: IEEE, pp. 1-4.
[42]Y. Lou, C. H. Chan, and Q. Xue, "An in-line waveguide-to-microstrip transition using radial-shaped probe," IEEE Microwave and Wireless Components Letters, vol. 18, no. 5, pp. 311-313, 2008.
[43]T. Li, W. Dou, and H. Meng, "Wideband transition between substrate integrated waveguide (SIW) and rectangular waveguide (RWG) based on bend waveguide," in 2014 Asia-Pacific Microwave Conference, 2014: IEEE, pp. 438-440.
[44]L. Li, X. Chen, R. Khazaka, and K. Wu, "A transition from substrate integrated waveguide (SIW) to rectangular waveguide," in 2009 Asia Pacific Microwave Conference, 2009: IEEE, pp. 2605-2608.
[45]R.-Y. Fang, C.-T. Wang, and C.-L. Wang, "Coplanar-to-rectangular waveguide transitions using slot antennas," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 5, pp. 681-688, 2011.
[46]T. Li and W. Dou, "Broadband right‐angle transition from substrate‐integrated waveguide to rectangular waveguide," Electronics Letters, vol. 50, no. 19, pp. 1355-1356, 2014.
[47]C. L. a. Y.-H. Cheng, "Empty Substrate Integrated Waveguide Coupler and Transition Structure to WR-3 Waveguide."
[48]P. G. Huray, O. Oluwafemi, J. Loyer, E. Bogatin, and X. Ye, "Impact of copper surface texture on loss: A model that works," DesignCon 2010, vol. 1, pp. 462-483, 2010.
[49]Z.-H. Tu, "玻璃基板IPD太赫茲天線設計以及太赫茲天線量測系統 Terahertz Antenna Design in Glass Integrated Passive DeviceProcess and Terahertz Antenna Measurement System," Graduate Institute of Communication Engineering, National Taiwan University, 2024.
[50]Z.-H. Tu, P.-F. Chen, S.-L. Ho, M.-W. Li, T.-W. Chiu, and Y.-H. Cheng, "Probe-Based Antenna Measurements at Sub-THz Frequencies," in 2023 Asia-Pacific Microwave Conference (APMC), 2023: IEEE, pp. 826-828.
[51]J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
[52]D. Senior and R. Elliot, "Higher-order mode coupling effects in shunt-series coupling junctions of planar slot arrays," in 1986 Antennas and Propagation Society International Symposium, 1986, vol. 24: IEEE, pp. 15-18.
[53]P. Park, M. Slaterbeck, and S. Bradshaw, "Shunt/series coupling slot in rectangular waveguides," in 1984 Antennas and Propagation Society International Symposium, 1984, vol. 22: IEEE, pp. 62-65.
[54]J. Chen, X. Fan, and Q. Cheng, "A high-order TE50 mode waveguide with single mode transmission property and its application in slot array antenna," Journal of Physics D: Applied Physics, vol. 56, no. 50, p. 505101, 2023.
[55]Y.-W. Wu, Z.-C. Hao, R. Lu, and J.-S. Hong, "A high-selectivity D-band mixed-mode filter based on the coupled overmode cavities," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2331-2342, 2020.
[56]T. Zhang, R. Tang, L. Chen, S. Yang, X. Liu, and J. Yang, "Ultra-wideband full-metal planar array antenna with a combination of ridge gap waveguide and E-plane groove gap waveguide," IEEE Transactions on Antennas and Propagation, vol. 70, no. 9, pp. 8051-8058, 2022.
[57]J. Liu, A. Vosoogh, A. U. Zaman, and J. Yang, "A slot array antenna with single-layered corporate-feed based on ridge gap waveguide in the 60 GHz band," IEEE Transactions on Antennas and Propagation, vol. 67, no. 3, pp. 1650-1658, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96632-
dc.description.abstract本論文講述太赫茲頻段之槽孔陣列天線設計,根據不同的實現方式分為兩部分,第一部分是利用PCB設計操作頻段位於WR-3.4之槽孔天線陣列,利用PCB製作天線具有低成本以及低剖面特性,使用Rogers RT/duroid 5880單層板,此基板之介電常數為2.2,損耗正切0.0026,其板材特性是利用太赫茲時域光譜測得。天線設計之中心頻率為290 GHz,藉由分析單一槽孔天線的阻抗設計天線陣列,其中包含轉接結構以及功率分配器,量測結果顯示8×8陣列天線其反射係數於273 GHz至296 GHz皆低於-10 dB,最大增益為16.7 dBi,量測場型與模擬十分相近,並加入表面粗糙度模擬比較,顯示其對於太赫茲頻段的影響。
第二部分為採用CNC工藝實現之槽孔陣列天線,將天線陣列設計於高階模態共振腔之上,此種架構相較於串聯式饋入較易於太赫茲頻段上實現,其設計過程可從串聯式饋入之槽孔陣列天線拓展,各層槽孔天線可利用其等效電路達到匹配,並探討此架構的濾波耦合矩陣,以及利用蝶型槽孔改善共振點匹配,反射係數可從-15 dB 改善至-25 dB。均勻分布之8×8天線陣列最大增益約22.3 dBi,模擬效率在頻寬內為90%以上。最後介紹了不均勻阻抗分布的8×8天線陣列,達到控制天線輻射場型的效果,其旁波瓣位準可達24.6 dB。
zh_TW
dc.description.abstractThis thesis discusses the design of slot array antennas operating in the terahertz frequency band, which is divided into two parts based on different implementation methods. The first part focuses on a slot array antenna operating in the WR-3.4 band, designed using printed circuit board (PCB) technology. Antennas fabricated using PCB technology offer advantages such as low cost and low profile. The design utilizes a Rogers RT/duroid 5880 single-layer substrate, which has a dielectric constant of 2.2 and a loss tangent of 0.0026. The material properties were characterized using terahertz time-domain spectroscopy. The antenna is designed for a center frequency of 290 GHz, with the array design based on an analysis of the impedance of a single-slot antenna. The design incorporates a transition structure and a power divider. Measurement results show that the 8×8 array antenna achieves a reflection coefficient below -10 dB from 273 GHz to 296 GHz, with a maximum gain of 16.7 dBi. The measured radiation patterns align closely with simulations, and additional simulations incorporating surface roughness effects demonstrate its impact on terahertz performance.
The second part involves the implementation of a slot array antenna using CNC machining. The antenna array is designed on a high-order mode resonator cavity, offering easier realization at terahertz frequencies compared to series-fed structures. The design process extends from series-fed slot array antennas, and equivalent circuits are utilized to achieve matching for each layer of slot antennas. The filtering coupling matrix of this structure is analyzed, and bowtie slots are employed to improve resonance matching, improving the reflection coefficient from -15 dB to -25 dB. A uniformly distributed 8×8 antenna array achieves a maximum gain of approximately 22.3 dBi, with a simulated efficiency of over 90% across the bandwidth. Finally, a non-uniform impedance distribution 8×8 antenna array is introduced to control the antenna's radiation pattern, achieving a sidelobe level of up to 24.6 dB.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:17:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-20T16:17:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目 次 v
圖 次 ix
表 次 xvi
第1章 緒論 1
1.1 太赫茲簡介 1
1.2 研究動機 3
1.3 文獻回顧 4
1.3.1 PCB槽孔天線 4
1.3.2 CNC槽孔天線 5
1.4 論文貢獻 7
1.5 章節概要 8
第2章 波導與槽孔天線相關理論 9
2.1 波導理論 9
2.1.1 矩形波導 9
2.1.2 波導槽孔天線 11
2.2 天線陣列理論 12
2.2.1 天線陣列因子理論 12
2.2.2 二項式分布之天線陣列 15
2.2.3 Dolph-Tschebyscheff 分布之天線陣列 16
2.2.4 天線間距與天線陣列因子關係 17
2.2.5 天線陣列數量與增益關係 18
2.3 Elliot迭代法 18
2.4 傳輸線法萃取槽孔天線參數 19
第3章 PCB槽孔陣列天線設計與量測 22
3.1 板材選擇與板材特性量測 22
3.2 290 GHz槽孔天線參數萃取 23
3.3 1×8陣列天線 24
3.4 8×8陣列天線 26
3.5 基板合成波導 27
3.6 1分8功率分配器 28
3.7 轉接結構 29
3.8 模擬結果 30
3.8.1 8×8陣列天線 30
3.8.2 4×8陣列天線 31
3.8.3 1×8陣列天線 32
3.9 製作討論與電路板成品 33
3.9.1 製程公差分析 33
3.9.2 電路板與夾具對位 34
3.9.3 電路板成品 36
3.10 S參數量測結果 36
3.11 場型量測結果 39
第4章 耦合共振腔理論 45
4.1 不同形式的耦合 45
4.1.1 電場性耦合 45
4.1.2 磁場性耦合 46
4.1.3 混合性耦合 48
4.2 外部品質因子 49
4.2.1 單端負載共振器 49
4.2.2 雙端負載共振器 51
4.3 波導共振腔 52
第5章 基於CNC加工技術之槽孔天線 53
5.1 CNC線切割 53
5.2 4×4槽孔陣列天線設計過程 53
5.2.1 天線結構 54
5.2.2 耦合結構之槽孔天線阻抗 54
5.2.3 共振腔模態與天線激發原理 62
5.2.4 抑制高階模態 64
5.2.5 天線拓樸 66
5.2.6 蝶形槽孔天線 68
5.2.7 4×4陣列天線模擬場型 69
5.3 8×8陣列天線 73
5.3.1 均勻分布(Uniform distribution)之槽孔陣列天線 73
5.3.2 不均勻分布(Nonuniform distribution)之槽孔陣列天線 78
第6章 結論 85
參考文獻 86
-
dc.language.isozh_TW-
dc.title太赫茲槽孔陣列天線之設計zh_TW
dc.titleDesign of terahertz slot array antennasen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周錫增;張家宏zh_TW
dc.contributor.oralexamcommitteeHsi-Tseng Chou;Chia-Hung Changen
dc.subject.keyword太赫茲,天線陣列,槽孔天線,基板合成波導,金屬波導,zh_TW
dc.subject.keywordTerahertz,antenna array,slot antenna,substrate integrated waveguide,waveguide,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202500263-
dc.rights.note未授權-
dc.date.accepted2025-01-23-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
12.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved