Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96631
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均zh_TW
dc.contributor.advisorJian-Jiun Dingen
dc.contributor.authorDaisuke Osakozh_TW
dc.contributor.authorDaisuke Oskaoen
dc.date.accessioned2025-02-20T16:17:20Z-
dc.date.available2025-02-21-
dc.date.copyright2025-02-20-
dc.date.issued2025-
dc.date.submitted2025-01-22-
dc.identifier.citation[1] Kaus, M.R.; Warfield, S.K.; Nabavi, A.; Black, P.M.; Jolesz, F.A.; Kikinis, R. Automated Segmentation of MR Images of Brain Tumors. Radiology 2001, 218, 586–591.
[2] Prastawa, M.; Bullitt, E.; Ho, S.; Gerig, G. A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 2004, 8, 275–283.
[3] Hui, J.; Xixi, J.; Lei, Z. Clustering based content and color adaptive tone mapping. Comput. Vis. Image Underst. CVIU 2018, 168, 37–49.
[4] Nanda, A.; Barik, R.C.; Bakshi, S. SSO-RBNN driven brain tumor classification with Saliency-K-means segmentation technique. Biomed. Signal Process. Control 2023, 81, 104356.
[5] Usman Akbar, M., Larsson, M., Blystad, I. et al. Brain tumor segmentation using synthetic MR images - A comparison of GANs and diffusion models. Sci Data 2024, 11, 259.
[6] Wang, T.; Cheng, I.; Basu, A. Fluid vector flow and applications in brain tumor segmentation. IEEE Trans. Biomed. Eng. 2009, 56, 781-789.
[7] Khotanlou, H.; Colliot, O.; Atif, J.; Bloch, I. 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 2009, 160, 1457-1473.
[8] Kermi, A.; Andjouh, K.; Zidane, F. Fully automated brain tumour segmentation system in 3D-MRI using symmetry analysis of brain and level sets. IET Image Process. 2018, 12, 1964-1971.
[9] Khosravanian, A.; Rahmanimanesh, M.; Keshavarzi, P.; Mozaffari, S.; Kazemi, K. Level set method for automated 3D brain tumor segmentation using symmetry analysis and kernel induced fuzzy clustering. Multimed. Tools Appl. 2022, 22, 89.
[10] El-Dahshan, E.S.A.; Hosny, T.; Salem, A.B.M. Hybrid intelligent techniques for MRI brain images classification. Digit. Signal Process. 2010, 20, 433-441.
[11] Abd-Ellah, M.K.; Awad, A.I.; Khalaf, A.A.M.; Hamed, H.F.A. Design and implementation of a computer-aided diagnosis system for brain tumor classification. J. Comput. Sci. 2016, 16, 1-13.
[12] Zhang, Y.; Dong, Z.; Wu, L.; Wang, S. A hybrid method for MRI brain image classification. Expert Syst. Appl. 2011, 38, 10049-10053.
[13] Devasena, T.; Hemalatha, M. A hybrid approach for brain tumor detection and classification using support vector machine and artificial neural networks. Int. J. Comput. Appl. 2014, 93, 21-25.
[14] Sarith, M.; Sreeja, S. A novel approach for brain tumor detection using hybrid techniques. Int. J. Comput. Appl. 2015, 116, 1-5.
[15] Khairandish, M.; Khosravi, A.; Nahavandi, S.; Nguyen, T. A hybrid deep learning model for brain tumor classification. Comput. Methods Programs Biomed. 2020, 190, 105-123.
[16] Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Int. Conf. Med. Image Comput. Comput.-Assist. Interv. 2015, 9351, 234-241.
[17] Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. Int. Conf. 3D Vis. 2016, 10, 565-571.
[18] Isensee, F.; Jaeger, P. F.; Kohl, S. A.; Petersen, J.; Maier-Hein, K. H. nnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation. Nat. Methods 2021, 18, 203-211.
[19] Xu, Y.; Xu, C.; Zou, L.; Li, X.; Zhao, Y.; Cai, J. Hybrid Transformer and Convolutional Neural Network for Medical Image Segmentation. Med. Image Anal. 2022, 79, 102472.
[20] Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. IEEE Int. Conf. Comput. Vis. 2017, 618-626.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96631-
dc.description.abstractNonezh_TW
dc.description.abstractTumor segmentation in medical imaging plays a critical role in the accurate diagnosis and treatment planning of cancer. This study proposes a hybrid framework that combines complementary convolutional neural network (CNN) models and advanced post-processing techniques to achieve robust and accurate tumor segmentation. The initial model (Model 1) employs CLAHE preprocessing, CNN-based predictions, and active contour refinement to provide a baseline segmentation. However, its performance is limited by difficulties in capturing complex tumor boundaries. To address these challenges, a second model (Model 2) incorporates noise-augmented preprocessing and iterative detection, enhancing the segmentation of subtle and irregular tumor regions.
The outputs of both models are merged using logical operations and refined further with edge correction and size filtering. Additionally, an enhanced merging model integrates a Spatial Intensity Metric (SIM) expansion, which leverages spatial and intensity relationships to refine and expand tumor regions, particularly addressing under-segmented areas. This enhancement results in significant improvements, as demonstrated by higher F1 and IoU scores compared to earlier models.
The study also highlights the limitations of the grid-based 16×16 classification approach, especially for large tumors, and suggests future directions such as adaptive grid sizes, more detailed labeling schemes, and the incorporation of local texture analysis for malignancy assessment. The proposed framework demonstrates the potential of integrating machine learning and traditional image processing techniques for accurate tumor segmentation, paving the way for more reliable and clinically valuable diagnostic tools.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:17:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-20T16:17:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGMENTS I
ABSTRACT II
CONTENT IV
LIST OF FIGURES VI
LIST OF TABLES VII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 1
Chapter 2 Related Works 4
2.1. General Image Processing Method 4
2.1.1 Morphological processing 4
2.1.2 Gaussian filter 5
2.1.3 Contrast Limited Adaptive Histogram Equalization (CLAHE) 5
2.1.4 Active Contour Model 6
2.2. Deep Learning Method 7
2.2.1 Convolutional Neural Networks (CNN) 7
2.3. Evaluation Method 8
2.3.1 Intersection over Union (IoU) 8
2.3.2 F1 Score 8
Chapter 3 Grid-based CNN Model Part 10
3.1. Preprocessing 10
3.1.1 Model 1 10
3.1.2 Model 2 11
3.2. Model Structure 12
3.3. Performance 13
3.4. Grid Prediction 13
3.4.1 Model Prediction 13
3.4.2 Grid Connection 14
Chapter 4 Post Processing Part 15
4.1 Region Expansion Method 15
4.1.1 Refinement of Predicted Regions Using Active Contour Model 15
4.1.2 Region Expansion Using Spatial Intensity Metric (SIM) 16
4.2 Region Exclusion Method 18
4.2.1 Region Exclusion Based on Geometric Feature 18
4.2.2 Region Exclusion Based on Positional Constraints 21
4.2.3 Region Exclusion Based on Size Constraints 22
Chapter 5 Experiments 24
5.1 Tumor Segmentation Using Model 1 24
5.1.1 Experimental Methodology 1 24
5.1.2 Results and Analysis 1 26
5.2 Tumor Segmentation Using Model 2 29
5.2.1 Experimental Methodology 2 30
5.2.2 Results and Analysis 2 31
5.3 First Merged Models 34
5.3.1 Experimental Methodology 3 34
5.3.2 Results and Analysis 3 35
5.4 Second Merged Models 37
5.4.1 Experimental Methodology 4 37
5.4.2 Results and Analysis 4 38
Chapter 6 Conclusion and future work 41
6.1. Conclusion 41
6.2. Future Work 43
References 45

LIST OF FIGURES
Fig 1 Model1 Preprocessing Flow Chart 11
Fig 2 Model2 Preprocessing Flow Chart 11
Fig 3 Overall layer structure 12
Fig 4 Selected Points Example 16
Fig 5 Geometric Feature 20
Fig 6 Flow Chart of Tumor Segmentation Using Model1 24
Fig 7 F1 score distribution using Model 1 27
Fig 8 IoU score distribution using Model 1 27
Fig 9 Results of each step in successful case of Experiment1 28
Fig 10 Results of each step in failure case of Experiment1 29
Fig 11 Flow Chart of Tumor Segmentation Using Model2 30
Fig 12 F1 score distribution using Model 2 32
Fig 13 IoU score distribution using Model 2 32
Fig 14 Successful iterative refinement and final segmentation results using Model 2 33
Fig 15 Flow Chart of Tumor Segmentation Using First Merged Model 34
Fig 16 F1 score distribution merging Model 1 and Model 2 35
Fig 17 IoU score distribution merging Model 1 and Model 2 36
Fig 18 Example of a case where the active contour model does not work well 37
Fig 19 Flow Chart of Tumor Segmentation Using Second Merged Model 37
Fig 20 F1 score distribution incorporating the Spatial Intensity Metric (SIM) 39
Fig 21 IoU score distribution incorporating the Spatial Intensity Metric (SIM) 39
Fig 22 Example of a case where the SIM is working effectively 40
Fig 23 Examples of cases where improvements are needed 43

LIST OF TABLES
Table 1 Layer Structure Details 13
Table 2 Test accuracy of CNN models 13
Table 3 Average F1 and IoU Score using Model1 26
Table 4 Average F1 and IoU Score using Model2 31
Table 5 Average F1 and IoU Score merging Model 1 and Model 2 35
Table 6 Average F1 and IoU Score incorporating the Spatial Intensity Metric (SIM) 39
-
dc.language.isoen-
dc.titleFilters and Learning-based Methods for Tumor Detection from Ultrasonic Imageszh_TW
dc.titleFilters and Learning-based Methods for Tumor Detection from Ultrasonic Imagesen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee余執彰;許文良;歐陽良昱zh_TW
dc.contributor.oralexamcommitteeChih-Chang Yu;Wen-Liang Hsue;Liang-Yu Ou Yangen
dc.subject.keywordnone,zh_TW
dc.subject.keywordTumor segmentation,Machine learning,en
dc.relation.page47-
dc.identifier.doi10.6342/NTU202500232-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-23-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-02-21-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf2.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved