請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96629
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 藍俊宏 | zh_TW |
dc.contributor.advisor | Jakey Blue | en |
dc.contributor.author | 吳永智 | zh_TW |
dc.contributor.author | Yung-Chih Wu | en |
dc.date.accessioned | 2025-02-20T16:16:47Z | - |
dc.date.available | 2025-02-21 | - |
dc.date.copyright | 2025-02-20 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2025-01-16 | - |
dc.identifier.citation | Al-Badour, F., Sunar, M., & Cheded, L. (2011). Vibration analysis of rotating machinery using time–frequency analysis and wavelet techniques. Mechanical Systems and Signal Processing, 25(6), 2083-2101.
Baraldi, P., Mangili, F., Gola, G., Nystad, B. H., & Zio, E. (2014). A hybrid ensemble-based approach for process parameter estimation and degradation assessment in offshore oil platforms. International Journal of Performability Engineering, 10(5), 497. Bibi, I., Akhunzada, A., Malik, J., Iqbal, J., Musaddiq, A., & Kim, S. (2020). A dynamic DL-driven architecture to combat sophisticated Android malware. IEEE Access, 8, 129600-129612. Chaudhuri, T., Wu, M., Zhang, Y., Liu, P., & Li, X. (2020). An attention-based deep sequential GRU model for sensor drift compensation. IEEE Sensors Journal, 21(6), 7908-7917. Chen, Z., Deng, Q., Ren, H., Zhao, Z., Peng, T., Yang, C., & Gui, W. (2022). A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data. Applied Energy, 310, 118410. Chen, K., Hu, J., Zhang, Y., Yu, Z., & He, J. (2019). Fault location in power distribution systems via deep graph convolutional networks. IEEE Journal on Selected Areas in Communications, 38(1), 119-131. Chen, J., Jing, H., Chang, Y., & Liu, Q. (2019). Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process. Reliability Engineering & System Safety, 185, 372-382. Cho, K. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. Cui, Y., Shao, C., Luo, L., Wang, L., Gao, S., & Chen, L. (2023). Center weighted convolution and GraphSAGE cooperative network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-16. Deng, A., & Hooi, B. (2021). Graph Neural Network-Based Anomaly Detection in Multivariate Time Series. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5), 4027-4035. Fan, S. K. S., Hsu, C. Y., Tsai, D. M., He, F., & Cheng, C. C. (2020). Data-driven approach for fault detection and diagnostic in semiconductor manufacturing. IEEE Transactions on Automation Science and Engineering, 17(4), 1925-1936. Ferreira, C., & Gonçalves, G. (2022). Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods. Journal of Manufacturing Systems, 63, 550-562. Ghorbani, M., Kazi, A., Baghshah, M. S., Rabiee, H. R., & Navab, N. (2022). RA-GCN: Graph convolutional network for disease prediction problems with imbalanced data. Medical image analysis, 75, 102272. He, Q. P., Wang, J., Gilicia, H. E., Stuber, J. D., & Gill, B. S. (2012, June). Statistics pattern analysis based virtual metrology for plasma etch processes. In 2012 American Control Conference (ACC) (pp. 4897-4902). IEEE. Hess, A., & Fila, L. (2002). The joint strike fighter (JSF) PHM concept: potential impact on aging aircraft problems. In Proceedings, ieee aerospace conference (Vol. 6, pp. 6-6). IEEE. Hirai, T., Hazama, K., and Kano, M. (2014). Application of locally weighted partial least squares to design of semiconductor virtual metrology. In 2014 IEEE Conference on Control Applications (CCA), pages 1771–1776. IEEE. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. Hu, Y., Miao, X., Si, Y., Pan, E., & Zio, E. (2022). Prognostics and health management: A review from the perspectives of design, development and decision. Reliability Engineering & System Safety, 217, 108063. Islam, M. M., & Kim, J. M. (2019). Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines. Reliability Engineering & System Safety, 184, 55-66. Jalan, A. K., & Mohanty, A. R. (2009). Model based fault diagnosis of a rotor–bearing system for misalignment and unbalance under steady-state condition. Journal of sound and vibration, 327(3-5), 604-622. Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7), 1483-1510. Jiang, L., Li, X., Wu, L., & Li, Y. (2022). Bearing fault diagnosis method based on a multi-head graph attention network. Measurement Science and Technology, 33(7), 075012. Kim, D., Kim, M., & Kim, W. (2020). Wafer edge yield prediction using a combined long short-term memory and feed-forward neural network model for semiconductor manufacturing. IEEE Access, 8, 215125-215132. Kwon, D., Hodkiewicz, M. R., Fan, J., Shibutani, T., & Pecht, M. G. (2016). IoT-based prognostics and systems health management for industrial applications. IEEE access, 4, 3659-3670. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. Lee, K. B., & Kim, C. O. (2020). Recurrent feature-incorporated convolutional neural network for virtual metrology of the chemical mechanical planarization process. Journal of Intelligent Manufacturing, 31(1), 73-86. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical systems and signal processing, 42(1-2), 314-334. Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical systems and signal processing, 104, 799-834. Li, S., & Wen, J. (2014). A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform. Energy and Buildings, 68, 63-71. Li, Z., Wu, D., & Yu, T. (2019). Prediction of material removal rate for chemical mechanical planarization using decision tree-based ensemble learning. Journal of Manufacturing Science and Engineering, 141(3), 031003. Li, X., Zhang, W., & Ding, Q. (2019). Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Reliability engineering & system safety, 182, 208-218. Liao, L., & Köttig, F. (2016). A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction. Applied Soft Computing, 44, 191-199. Liao, W., Yang, D., Wang, Y., & Ren, X. (2020). Fault diagnosis of power transformers using graph convolutional network. CSEE Journal of Power and Energy Systems, 7(2), 241-249. Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: a survey. Philosophical Transactions of the Royal Society A, 379(2194), 20200209. Liu, Z., Zhu, Z., Gao, J., & Xu, C. (2021). Forecast methods for time series data: a survey. IEEE Access, 9, 91896-91912. Lo, W. W., Layeghy, S., Sarhan, M., Gallagher, M., & Portmann, M. (2022, April). E-graphsage: A graph neural network based intrusion detection system for iot. In NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium (pp. 1-9). IEEE. Luo, J., & Dornfeld, D. A. (2001). Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE transactions on semiconductor manufacturing, 14(2), 112-133. Ma, M., Han, L., & Zhou, C. (2023). BTAD: A binary transformer deep neural network model for anomaly detection in multivariate time series data. Advanced Engineering Informatics, 56, 101949. Miao, H., Li, B., Sun, C., & Liu, J. (2019). Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks. IEEE Transactions on Industrial Informatics, 15(9), 5023-5032. Micheli, A. (2009). Neural network for graphs: A contextual constructive approach. IEEE Transactions on Neural Networks, 20(3), 498-511. Nguyen, K. T., & Medjaher, K. (2019). A new dynamic predictive maintenance framework using deep learning for failure prognostics. Reliability Engineering & System Safety, 188, 251-262. Quintanilha, I. M., Elias, V. R., da Silva, F. B., Fonini, P. A., da Silva, E. A., Netto, S. L., ... & Andersen, R. B. (2021). A fault detector/classifier for closed-ring power generators using machine learning. Reliability Engineering & System Safety, 212, 107614. Raj, A. S., & Murali, N. (2012). Early classification of bearing faults using morphological operators and fuzzy inference. IEEE Transactions on industrial electronics, 60(2), 567-574. Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A survey of predictive maintenance: Systems, purposes and approaches. arXiv preprint arXiv:1912.07383. Roeder, G., Mattes, A., Pfeffer, M., Schellenberger, M., Pfitzner, L., Knapp, A., ... & Fazio, G. (2012, May). Framework for integration of virtual metrology and predictive maintenance. In 2012 SEMI Advanced Semiconductor Manufacturing Conference (pp. 288-293). IEEE. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE transactions on neural networks, 20(1), 61-80. Schmidt, J., Pettersson, L., Verdozzi, C., Botti, S., & Marques, M. A. (2021). Crystal graph attention networks for the prediction of stable materials. Science advances, 7(49), eabi7948. Schneider, C., Pfitzner, L., & Ryssel, H. (2001, April). Integrated metrology: An enabler for advanced process control (APC). In In-Line Characterization, Yield, Reliability, and Failure Analysis in Microelectronic Manufacturing II (Vol. 4406, pp. 118-130). SPIE. Soualhi, A., Lamraoui, M., Elyousfi, B., & Razik, H. (2022). PHM SURVEY: Implementation of prognostic methods for monitoring industrial systems. Energies, 15(19), 6909. Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures. IEEE transactions on neural networks, 8(3), 714-735. Suthar, K., Shah, D., Wang, J., & He, Q. P. (2019). Next-generation virtual metrology for semiconductor manufacturing: A feature-based framework. Computers & Chemical Engineering, 127, 140-149. Sutharssan, T., Stoyanov, S., Bailey, C., & Yin, C. (2015). Prognostic and health management for engineering systems: a review of the data‐driven approach and algorithms. The Journal of engineering, 2015(7), 215-222. Timothy, F., Devinder, M., & Iain, H. (2009). F-35 joint strike fighter structural prognosis and health management an overview. In ICAF 2009, Bridging the Gap between Theory and Operational Practice: Proceedings of the 25th Symposium of the International Committee on Aeronautical Fatigue, Rotterdam, The Netherlands, 27–29 May 2009 (pp. 1215-1215). Dordrecht: Springer Netherlands. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710, 10903. Vollert, S., & Theissler, A. (2021, September). Challenges of machine learning-based RUL prognosis: A review on NASA's C-MAPSS data set. In 2021 26th IEEE international conference on emerging technologies and factory automation (ETFA) (pp. 1-8). IEEE. Wang, P., Gao, R. X., & Yan, R. (2017). A deep learning-based approach to material removal rate prediction in polishing. CIRP annals, 66(1), 429-432. Wang, T., Yu, J., Siegel, D., & Lee, J. (2008, October). A similarity-based prognostics approach for remaining useful life estimation of engineered systems. In 2008 international conference on prognostics and health management (pp. 1-6). IEEE. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1), 4-24. Zhang, C., James, J. Q., & Liu, Y. (2019). Spatial-temporal graph attention networks: A deep learning approach for traffic forecasting. Ieee Access, 7, 166246-166256. Zhang, J., Tang, Q., & Liu, D. (2019). Research into the LSTM neural network-based crystal growth process model identification. IEEE Transactions on Semiconductor Manufacturing, 32(2), 220-225. Zhang, Y., Xiong, R., He, H., & Liu, Z. (2017, July). A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction. In 2017 prognostics and system health management conference (phm-harbin) (pp. 1-4). IEEE. Zhao, D., & Lu, X. (2013). Chemical mechanical polishing: theory and experiment. Friction, 1, 306-326. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C. & Sun, M. (2020). Graph neural networks: A review of methods and applications. AI open, 1, 57-81. Zhu, Y., & Gao, Z. (2014, June). Robust observer-based fault detection via evolutionary optimization with applications to wind turbine systems. In 2014 9th IEEE Conference on Industrial Electronics and Applications (pp. 1627-1632). IEEE. Zio E. (2022). Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice. Reliability Engineering & System Safety, 218(A), 108119. Zonta, T., da Costa, C. A., Righi, R. da R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889. PHM Society. (2016). PHM data challenge. Annual Conference of the Prognostics and Health Management Society. 李冠德(2022)。單維轉二維卷積神經網路虛擬量測模型及其可釋性發展。[未發表碩士論文]。國立臺灣大學 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96629 | - |
dc.description.abstract | 智慧製造已成為近年來半導體產業中的焦點。先進製程控制(APC)系統對精進製造技術具有重要貢獻,而設備故障預測及健康管理(PHM)則是實現APC製程監測功能的關鍵,因此設備健康狀態預測任務具有極高的實用價值。然而在預測上存在一系列挑戰,最明顯的是能夠代表設備狀態的資訊往往難以取得,使得模型的建構及訓練受到阻礙。常見的線性多項式推估方法,無法滿足設備損耗的複雜行為。即使轉而使用設備感測器資料,也將面臨多變量時間序列複雜的時間特性及變數間交互作用的不確定性等問題,這使得傳統的統計特徵萃取方法在健康狀態預測任務中表現出明顯的局限性。更甚者,當預測更長期的狀態趨勢時,由於缺乏任何設備運作資訊,這類模型幾乎無法發揮作用。
為此本研究提出一基於深度學習模型的創新設備健康狀態預測框架,通過預測未來時間點的品質量測值,對設備健康狀態間接推論,以克服前述挑戰。模型始於處理複雜多變量時間序列,採用基於資訊聚合及注意力機制的圖離差網路(GDN),捕捉設備感測器資料之間的交互作用,同時藉由圖結構的自我學習能力,在訓練過程發現變數的潛在關聯性,萃取出代表整體系統的特徵圖。接著交由閘門循環單元(GRU)進一步萃取與時間順序相關之特徵。在架構中特別將由虛擬量測(VM)模型所預測之虛擬品質資料納入考量,確保有關製程與品質的時間特性皆被保留於最終特徵中,從而得到更全面的預測結果。以本框架為基礎執行之PHM,將可協助APC系統建立潛在故障反應及預警機制,減少產線意外中斷的風險,提升設備維護計畫的準確性,為半導體製造系統的效率及穩定做出貢獻。 本研究以半導體化學機械研磨(CMP)製程的公開資料集進行案例分析。針對CMP製程的材料移除率(MRR)進行預測,並與傳統時間序列模型及其他基線模型進行效能比較,經實驗證實本框架無論在品質全檢或抽樣檢測情況下皆能展現更佳的效能,並可藉由模型學習之圖結構確立感測器資料對預測結果的貢獻程度。 | zh_TW |
dc.description.abstract | Smart manufacturing has emerged as a key focus in the semiconductor industry in recent years. Advanced Process Control(APC)systems play a critical role in enhancing manufacturing technologies, with Prognostics and Health Management(PHM)being key to enabling APC's process monitoring capabilities. Consequently, the task of predicting equipment health states holds significant practical value. However, this task faces numerous challenges, the most prominent being the difficulty in acquiring information that effectively represents equipment conditions, which hinders the construction and training of models. Conventional linear polynomial estimation methods are inadequate for capturing the complex behavior of equipment degradation. Even when utilizing equipment sensor data, challenges arise from the intricate temporal characteristics of multivariate time series and the uncertainties in interactions between variables, highlight the limitations of traditional statistical feature extraction methods in health prognostics tasks. Furthermore, when predicting long-term trends, the absence of operational information renders such models nearly ineffective.
This study proposes an innovative deep learning-based framework for health prognostics. By forecasting quality measurement values at future time points, the framework infers equipment health states indirectly, addressing the aforementioned challenges. The model begins by processing complex multivariate time series, utilizing a Graph Deviation Network(GDN)based on information transfer and attention mechanism to capture the interactions among equipment sensor data. Through the self-learning capability of the graph structure, the model uncovers the underlying relationships between variables and extracts feature maps that represent the overall system. Subsequently, these features are further processed by Gated Recurrent Units(GRU)to extract temporal characteristics. Within this framework, virtual quality data predicted by the Virtual Metrology(VM)model is specifically integrated, ensuring that both process and quality temporal characteristics are preserved in the final features, leading to more comprehensive prediction results. PHM implemented based on this framework can assist APC systems in establishing potential failure responses and early warning mechanisms, reducing the risk of unexpected production line disruptions, improving the accuracy of equipment maintenance plans, and contributing to the efficiency and stability of semiconductor manufacturing systems. The case study using a publicly available dataset from the semiconductor Chemical Mechanical Polishing(CMP)process is conducted in this research. The framework predicts the Material Removal Rate(MRR)of the CMP process and compares its performance with traditional time-series models and other baseline models. Experimental results confirm that our proposed framework outperforms under both full inspection and sampling conditions, Moreover, the graph structure learned by the model can identify the contribution of sensor data to the prediction outcomes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:16:47Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-20T16:16:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii 目次 iv 圖次 vi 表次 viii 第一章 緒論 1 1.1 背景與問題 1 1.2 動機與目的 5 1.3 研究架構 8 第二章 文獻回顧 9 2.1 故障預測及健康管理 9 2.1.1 健康狀態預測 10 2.1.2 虛擬量測整合 14 2.2 時間序列預測 15 2.2.1 傳統時間序列模型 15 2.2.2 深度學習模型 16 2.3 圖神經網路 20 2.3.1 圖卷積網路 21 2.3.2 圖注意力網路 22 2.3.3 圖離差網路 23 第三章 研究方法 27 3.1 健康狀態預測框架 30 3.1.1 框架流程 30 3.1.2 資料格式 31 3.2 虛擬量測模型 34 3.2.1 基於統計數值特徵 35 3.2.2 基於圖離差網路 36 3.3 設備狀態模型 38 3.3.1 圖離差網路層 39 3.3.2 閘門循環單元層 42 3.3.3 全連接層 43 3.4 模型圖解釋性 45 第四章 案例探討 48 4.1 案例說明 48 4.2 資料前處理 50 4.2.1 設備監測資料 51 4.2.2 品質量測資料 52 4.3 模型建立 53 4.3.1 全量測情況 53 4.3.2 抽樣量測情況 55 4.4 模型效能評估 59 4.4.1 基線模型 59 4.4.2 效能比較 60 4.5 圖解釋性分析 65 第五章 結論 69 5.1 研究總結 69 5.2 未來展望 71 參考文獻 73 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於圖離差網路模型之設備健康狀態預測框架 | zh_TW |
dc.title | On the Development of Graph Deviation Networks-based Equipment Health Prognostics Framework | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 邱俊智;許嘉裕 | zh_TW |
dc.contributor.oralexamcommittee | Chun-Chih Chiu;Chia-Yu Hsu | en |
dc.subject.keyword | 故障預測及健康管理,虛擬量測,圖離差網路,多變量時間序列, | zh_TW |
dc.subject.keyword | Prognostics and Health Management,Virtual Metrology,Graph Deviation Network(GDN),Multivariate Time Series, | en |
dc.relation.page | 80 | - |
dc.identifier.doi | 10.6342/NTU202500154 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-01-17 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工業工程學研究所 | - |
dc.date.embargo-lift | 2030-01-16 | - |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 4.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。