Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96621
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫珍理zh_TW
dc.contributor.advisorChen-Li Sunen
dc.contributor.author陳子淇zh_TW
dc.contributor.authorZih-Ci Chenen
dc.date.accessioned2025-02-20T16:14:35Z-
dc.date.available2025-02-21-
dc.date.copyright2025-02-20-
dc.date.issued2024-
dc.date.submitted2024-09-18-
dc.identifier.citationY.-W. Chang, C.-C. Chang, M.-T. Ke, and S.-L. Chen, "Thermoelectric air-cooling module for electronic devices," Applied Thermal Engineering, vol. 29, no. 13, pp. 2731-2737, 2009, doi: 10.1016/j.applthermaleng.2009.01.004.
A. Faghri, "Review and advances in heat pipe science and technology," Journal of Heat Transfer, vol. 134, no. 12, p. 123001, 2012, doi: 10.1115/1.4007407.
C. Roe et al., "Immersion cooling for lithium-ion batteries – a review," Journal of Power Sources, vol. 525, p. 231094, 2022, doi: 10.1016/j.jpowsour.2022.231094.
M. Chaudhari, B. Puranik, and A. Agrawal, "Heat transfer characteristics of synthetic jet impingement cooling," International Journal of Heat and Mass Transfer, vol. 53, no. 5, pp. 1057-1069, 2010, doi: 10.1016/j.ijheatmasstransfer.2009.11.005.
Y. Huo, Z. Rao, X. Liu, and J. Zhao, "Investigation of power battery thermal management by using mini-channel cold plate," Energy Conversion and Management, vol. 89, pp. 387-395, 2015, doi: 10.1016/j.enconman.2014.10.015.
W.-L. Cheng, Y.-H. Peng, H. Chen, L. Hu, and H.-P. Hu, "Experimental investigation on the heat transfer characteristics of vacuum spray flash evaporation cooling," International Journal of Heat and Mass Transfer, vol. 102, pp. 233-240, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.05.140.
R. Xu, G. Wang, and P. Jiang, "Spray cooling on enhanced surfaces: a review of the progress and mechanisms," Journal of Electronic Packaging, vol. 144, no. 1, p. 010802, 2021, doi: 10.1115/1.4050046.
F. Su, H. Ma, X. Han, H.-h. Chen, and B. Tian, "Ultra-high cooling rate utilizing thin film evaporation," Applied Physics Letters, vol. 101, no. 11, p. 113702, 2012, doi: 10.1063/1.4752253.
J.-X. Wang, W. Guo, K. Xiong, and S.-N. Wang, "Review of aerospace-oriented spray cooling technology," Progress in Aerospace Sciences, vol. 116, p. 100635, 2020, doi: 10.1016/j.paerosci.2020.100635.
Y. Miyata, K. Kamon, K. Ohashi, R. Kitaura, M. Yoshimura, and H. Shinohara, "A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling," Applied Physics Letters, vol. 96, no. 26, p. 263105, 2010, doi: 10.1063/1.3458797.
J. Nie, S. Yuan, L. Fang, Q. Zhang, and D. Li, "Experimental study on an innovative enthalpy recovery technology based on indirect flash evaporative cooling," Applied Thermal Engineering, vol. 129, pp. 22-30, 2018, doi: 10.1016/j.applthermaleng.2017.09.139.
G. Venkatesan, S. Iniyan, and R. Goic, "A prototype flash cooling desalination system using cooling water effluents," International Journal of Energy Research, vol. 37, no. 9, pp. 1132-1140, 2013, doi: 10.1002/er.2932.
A. G. Pautsch and T. A. Shedd, "Spray impingement cooling with single- and multiple-nozzle arrays. part I: heat transfer data using FC-72," International Journal of Heat and Mass Transfer, vol. 48, no. 15, pp. 3167-3175, 2005, doi: 10.1016/j.ijheatmasstransfer.2005.02.012.
Y. Hou, Y. Tao, and X. Huai, "The effects of micro-structured surfaces on multi-nozzle spray cooling," Applied Thermal Engineering, vol. 62, no. 2, pp. 613-621, 2014, doi: 10.1016/j.applthermaleng.2013.10.030.
Z. B. Yan et al., "Large area impingement spray cooling from multiple normal and inclined spray nozzles," Heat and Mass Transfer, vol. 49, no. 7, pp. 985-990, 2013, doi: 10.1007/s00231-013-1131-1.
J. L. Xie et al., "Multi-nozzle array spray cooling for large area high power devices in a closed loop system," International Journal of Heat and Mass Transfer, vol. 78, pp. 1177-1186, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.07.067.
S. V. R. Bandaru et al., "Upward-facing multi-nozzle spray cooling experiments for external cooling of reactor pressure vessels," International Journal of Heat and Mass Transfer, vol. 163, p. 120516, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120516.
W.-L. Cheng, W.-W. Zhang, L.-J. Jiang, S.-L. Yang, L. Hu, and H. Chen, "Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime," Applied Thermal Engineering, vol. 80, pp. 160-167, 2015, doi: 10.1016/j.applthermaleng.2015.01.055.
J. H. Kim, S. M. You, and S. U. S. Choi, "Evaporative spray cooling of plain and microporous coated surfaces," International Journal of Heat and Mass Transfer, vol. 47, no. 14, pp. 3307-3315, 2004, doi: 10.1016/j.ijheatmasstransfer.2004.01.018.
P. J. Linstrom and W. G. Mallard, "The NIST chemistry webbook:  A chemical data resource on the internet," Journal of Chemical & Engineering Data, vol. 46, pp. 1059-1063, 2001, doi: 10.1021/je000236i.
LabVIEW. (2014). National Instruents. [Online]. Available: https://www.ni.com/en/shop/labview.html
C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, "National Instruments LabVIEW: A Programming Environment for Laboratory Automation and Measurement," JALA: Journal of the Association for Laboratory Automation, vol. 12, pp. 17-24, 2007, doi: 10.1016/j.jala.2006.07.012.
"Pressure transducer." AirTAC. https://as-tw.airtac.com/pro_det_c_kind_4&c_kind2_19&c_kind3_39&c_kind4_538&c_kind5_480&id_351.html (accessed May 10, 2023).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96621-
dc.description.abstract本研究架設一套低壓下間歇噴霧冷卻實驗裝置,旨在探討系統壓力在10 kPa下,固定工作流體之體積流率,散熱表面結構、噴嘴數量、工作週期以及噴灑時間對熱傳性能的影響。表面結構包含光滑表面以及周圍燒結表面 (簡稱燒結表面) 二種,單噴頭時工作週期為40%,噴灑時間由0.6 s增加至2 s;四噴頭噴灑時工作週期為10%,噴灑時間由0.15 s增加至0.5 s,使用的工作流體為純水。
依據實驗結果,於相同噴灑條件下,燒結表面有更低的表面溫度,溫度振幅也較小。而在光滑表面上,溫度隨時間變化較易隨機波動,液滴在光滑表面容易形成不均勻的團塊狀分布,而燒結表面則能達到較穩定的溫度變化,推測是因為毛細結構能將液體拉引至表面外圍,在表面中心處形成薄液膜,可穩定藉由蒸發散熱,故表面溫度較低,冷卻性能較佳。在固定流率下,四噴嘴噴灑可達較低的表面溫度,這是因為四噴嘴噴灑下有較大的液體覆蓋面積,表面上液膜較薄,熱阻較低,因此有較低的表面溫度,此外四噴嘴噴灑時,液體較不會堆積在表面中央,故能更快被排除,溫度受噴灑時間的影響較小。在相同工作週期之下,增加噴灑時間溫度震盪幅度也隨之提升,這是因為間隔時間隨噴灑時間增加而變長所致。同時,噴灑時間增加,也會導致表面液膜厚度增加,從而提高熱阻並導致表面溫度升高。然而,燒結表面的液膜厚度隨噴灑時間增加而變化不大,燒結結構能有效地排除多餘液體,使溫度相對穩定,能有效減少溫度振幅並保持表面溫度的穩定,將加熱表面維持在較低的溫度,在低壓間歇性噴灑時表現的更優異。
zh_TW
dc.description.abstractThis study builds an intermittent spray cooling apparatus to investigate the effects of surface microstructures, nozzle quantity, and spray duration on the heat transfer performance. Two types of surfaces are tested: smooth surface and a surface with smooth center region and sintered peripheral (a.k.a. sintered surface). When single nozzle is used, duty cycle is set to 40%, with a spray duration increased from 0.6 s to 2 s. When four nozzles are implemented, duty cycle is 10%, with a spray duration between 0.15 s and 0.5 s so that is the volumetric flow rate is kept at constant. The working fluid is pure water, and the system pressure is 10 kPa.
The experimental results show that, the sintered surface can result in lower surface temperatures and smaller temperature fluctuations. In contrast, temperature variations on the smooth surface are more prone to random fluctuations due to patchy distribution of liquid after the spray. The sintered surface has more stable thermal response, likely because its porous structure helps to draw liquid towards the edge and forms a thin film at the center. This thin liquid film leads to better evaporative cooling, resulting in lower surface temperatures. For a given flow rate, the use of four nozzles results in lower surface temperatures because the larger coverage of spray helps to distribute liquid more evenly. Under the same duty cycle, longer spray durations increase the amplitude of temperature fluctuation. This is attributed to the longer intervals between sprays. Moreover, a longer spray duration injects more liquid onto the surface per spray, subsequently thickeming the liquid layer, increasing the heat resistance and the surface temperature. However, the sintered structure can effectively remove excess liquid, maintaining more stable temperatures even with the increase of the spray duration. The sintered surface exhibits superior cooling performance across various spray conditions, effectively minimizing temperature fluctuations and stabilizing surface temperature.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:14:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-20T16:14:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致 謝 ii
摘 要 iii
Abstract iv
目 次 vi
符號索引 ix
表 次 xi
圖 次 xii
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 多噴頭噴霧冷卻 2
1.2.2 不同表面結構的影響 3
1.3 研究目的 4
第二章 實驗架構與不確定性分析 5
2.1 實驗架構 5
2.1.1 加熱裝置 5
2.1.2 腔體結構 6
2.1.3 噴霧裝置 8
2.1.4 真空系統及過濾裝置 10
2.1.5 數據擷取系統 10
2.2 實驗步驟及量測程序 12
2.3 實驗數據分析 14
2.3.1 導熱塊不同區域的最高溫度 14
2.3.2 導熱塊溫度振幅 15
2.3.3 散熱系統之熱阻 15
2.3.4 散熱系統之熱容值 16
2.3.5 工作流體使用率 16
2.4 不確定性分析 17
2.4.1 腔體尺寸 18
2.4.2 溫度 18
2.4.3 壓力 18
2.4.4 噴霧時間 19
2.4.5 噴霧之質量流率 19
2.4.6 燒結結構 20
2.4.7 區域最高溫度 21
2.4.8 區域溫度振幅 21
2.4.9 散熱系統熱阻 22
2.4.10 散熱系統熱容值 22
第三章 實驗結果 24
3.1 導熱塊各分區溫度響應 24
3.2 不同噴灑條件下系統熱阻之差異 31
3.3 不同噴灑條件下系統熱容之差異 33
第四章 結論與建議 35
4.1 結論 35
4.2 建議及未來展望 36
參考文獻 38
附錄 41
-
dc.language.isozh_TW-
dc.subject噴霧冷卻zh_TW
dc.subject熱阻zh_TW
dc.subject燒結結構zh_TW
dc.subject多噴頭zh_TW
dc.subject低壓zh_TW
dc.subject間歇zh_TW
dc.subjectmultiple nozzlesen
dc.subjectlow pressureen
dc.subjectspray coolingen
dc.subjectintermittenten
dc.subjectthermal resistanceen
dc.subjectsintered surfaceen
dc.title低壓下間歇多噴嘴噴霧冷卻於不同表面結構之熱傳分析zh_TW
dc.titleHeat transfer analysis of intermittent multi-nozzle spray cooling on different surface structures at low pressureen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃美嬌;廖英志zh_TW
dc.contributor.oralexamcommitteeMei-Jiau Huang;Ying-Chih Liaoen
dc.subject.keyword間歇,噴霧冷卻,低壓,多噴頭,燒結結構,熱阻,zh_TW
dc.subject.keywordintermittent,spray cooling,low pressure,multiple nozzles,sintered surface,thermal resistance,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202404373-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-09-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-02-21-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf16.27 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved