請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96615
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳文方 | zh_TW |
dc.contributor.advisor | Wen-Fang Wu | en |
dc.contributor.author | 王宇正 | zh_TW |
dc.contributor.author | Yu-Cheng Wang | en |
dc.date.accessioned | 2025-02-20T16:12:56Z | - |
dc.date.available | 2025-02-21 | - |
dc.date.copyright | 2025-02-20 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-16 | - |
dc.identifier.citation | Liu, G. L., Li, X., Wang, J. H., Kuo, Y., & Wang, X. P. (2020). Research on the Statistical Characteristics of Typhoon Frequency. Ocean Engineering, 209, 107489.
https://doi.org/10.1016/j.oceaneng.2020.107489 李軒誠 (2014)。台灣地區風速機率分布特性及年最大風速之模擬。淡江大學土木工程學系碩士班碩士論文。 莊月璇 (2001)。台灣地區風速機率分佈之研究。國立中央大學土木工程研究所碩士論文。 張憲國、彭雅琴 (2001)。侵台颱風的最低中心氣壓與最大風速之極值統計。海洋工程學刊, 1(1),55–70。 https://doi.org/10.6266/JCOE.2001.0101.03 朱佳仁、羅仕亮 (2019)。台灣颱風路徑與風場之蒙地卡羅模擬。中國土木水利工程學刊, 31(8),681–691。 https://doi.org/10.6652/JoCICHE.201912_31(8).0001. 陳雨青 (2010)。颱風侵台期間路徑發生打轉之研究。國立臺灣大學理學院大氣科學研究所碩士論文。 https://doi.org/10.6342/NTU.2010.01986 Li, P. F., Zhang, Y. H., Wang, Z. M., Teng, Y. N., Yi, J. J., Mu, T., Wu, J. J., & Wu, Q. (2023). Development of Design Typhoon Profile for Offshore Wind Turbine Foundation Design in Southern China. Marine Structures, 92, 103479. https://doi.org/10.1016/j.marstruc.2023.103479 Yi, G. X., Pan, J. J., Zhao, L., Song, L. L., Fang, G. S., Cui, W., & Ge, Y. J. (2022). Profiles of Mean Wind and Turbulence Intensity during Strong Typhoon Landfall. Journal of Wind Engineering and Industrial Aerodynamics, 228, 105106. https://doi.org/10.1016/j.jweia.2022.105106 Ang, A. H-S., & Tang, W. H. (1984). Probability Concepts in Engineering Planning and Design (Vol. 2). John Wiley & Sons. 張靜觀 (2022)。透過量測所得風速資料之統計分析預測風場之最大風速分布。 國立臺灣大學工學院機械工程學系碩士論文。 Xiao, Y.Q., Li, Q.S., Li, Z.N., Chow,Y.W., & Li, G.Q.(2006). Probability Distributions of Extreme Wind Speed and Its Occurrence Interval. Engineering Structures, 28, 1173–1181. https://doi.org/10.1016/j.engstruct.2006.01.001 Palutikof, J. P., Brabson, B. B., Lister, D. H., & Adcock, S. T. (1999). A Review of Methods to Calculate Extreme Wind Speeds. Meteorological Applications, 6(2), 119–132. https://doi.org/10.1017/S1350482799001103 Zhang, S., Solari, G., Yang, Q. S., & Repetto, M. P. (2018). Extreme Wind Speed Distribution in a Mixed Wind Climate. Journal of Wind Engineering and Industrial Aerodynamics, 176, 239–253. https://doi.org/https://doi.org/10.1016/j.jweia.2018.03.019 Choi, E. C. C, & Hidayat, F. A. (2002). Gust Factors for Thunderstorm and Non-Thunderstorm Winds. Journal of Wind Engineering and Industrial Aerodynamics, 90, 1683–1696. https://doi.org/https://doi.org/10.1016/S0167-6105(02)00279-9 Riera, J. D., & Nanni, L. F. (1989). Pilot Study of Extreme Wind Velocities in a Mixed Climate Considering Wind Orientation. Journal of Wind Engineering and Industrial Aerodynamics, 32, 11–20. https://doi.org/10.1016/0167-6105(89)90012-3 Jiang, F. Y., Zhang, J. X., Zhang, M. J., Li, Y. L., & Qin, J. X. (2023). Field Measurement Study on Classification for Mixed Intense Wind Climate in Mountainous Terrain. Measurement, 217, 113064. https://doi.org/10.1016/j.measurement.2023.113064 Ribeiro, R., & Fanzeres, B. (2024). Identifying Representative Days of Solar Irradiance and Wind Speed in Brazil Using Machine Learning Techniques. Energy and AI, 15, 100320. https://doi.org/10.1016/j.egyai.2023.100320 Jin, H. Y., Chen, X. H., Wu, P., Song, C., & Xia, W. J. (2021). Evaluation of Spatial-Temporal Distribution of Precipitation in Mainland China by Statistic and Clustering Methods. Atmospheric Research, 262, 105772. https://doi.org/10.1016/j.atmosres.2021.105772 蔡益超、陳瑞華、項維邦 (1996)。建築物風力規範條文解說及示範例之研訂。 內政部建築研究所研究報告。 陳瑞華 (1995)。風力規範中標稱風速與載重係數之研究(I) (NSC84-2211-E-011–013)。國科會專題研究報告。 經濟部標準檢驗局 (2023)。離岸風力發電場址調查及設計技術指引。 https://www.bsmi.gov.tw/wSite/public/Attachment/f1676518128597.pdf | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96615 | - |
dc.description.abstract | 由於全球氣候暖化,永續發展的意識推動,各國莫不減少石化能源的消耗,大力提倡綠能發電,而台灣也跟隨世界腳步大量建造離岸風力發電機。風力發電機的發電效率受到風速影響,但其結構能否抵抗強風則受最大風速影響,而台灣夏季時的最大風速則常受到颱風影響。針對颱風可能造成特定風場裡的最大風速,國內似乎缺乏較深入的研究,有待吾人探討。本研究收集一特定陸上氣象測站近14年來每年最大值風速和33年來颱風警報期內所量測到的逐時風速資料;針對前者,引進統計理論,求取該風場特定再現期可能最大風速強度,作為預測的比較值;針對後者,則引進Gumbel極值統計理論,依颱風路徑、颱風強度、Kmeans法與暴風半徑內等不同分類方式,預測該測站在未來1、5、10、25、50年可能遇到的最大風速,並以機率分佈呈現。本研究後半段延續前述研究結果,透過簡單的線性迴歸式,將陸上測站風速轉換為附近離岸測站風速,並依據離岸測站短期內量到的風速資料,預測離岸長期會遭遇到的最大風速。數值分析結果顯示,颱風造成的最大風速高於颱風以外整體考量的最大風速;在路徑分類中,橫越台灣的穿心颱帶來的最大風速最劇;在強度分類中,強烈颱風在所有分類中會有最大的長期風速,可作為考量最大風速的上限值;在暴風半徑內分類中,颱風中心區域的風速確實大於其餘周遭風速;在K-means分類中,成功辨識最大風速分群特徵,準確預測長期風速。因離岸風場缺乏長期觀測風速資料,本研究成功預測出離岸風場最大風速,可提供風場內結構與機械設備壽命期間內的風速設計參考。 | zh_TW |
dc.description.abstract | Due to global warming and the promotion of sustainability awareness, countries around the world are reducing the consumption of fossil fuels and strongly advocating for green energy generation. Taiwan has followed suit by constructing a large number of offshore wind turbines. The power generation efficiency of wind turbines is influenced by wind speed, while their structural resilience against strong winds is affected by maximum wind speed, which, during Taiwan's summer, is often impacted by typhoons. However, there appears to be a lack of in-depth domestic research on the maximum wind speeds caused by typhoons in specific wind fields, warranting further investigation. This study collects data from a specific onshore meteorological station, including annual maximum wind speeds over the past 14 years and hourly wind speed measurements recorded during typhoon warning periods over the past 33 years. For the former, statistical theories are introduced to estimate the maximum wind speed intensity for specific return periods in the wind field as a reference for comparison. For the latter, the Gumbel extreme value statistical theory is employed to predict the maximum wind speed that the station may encounter in 1, 5, 10, 25, and 50 years, based on different classification methods such as typhoon paths, typhoon intensities, K-means clustering, and within storm radii, with results presented as probability distributions. In the second half of this study, building on the aforementioned findings, a simple linear regression model is applied to convert onshore station wind speeds into nearby offshore station wind speeds. Based on short-term wind speed data from offshore stations, long-term maximum wind speeds likely to be encountered offshore are predicted. Numerical analysis results reveal that maximum wind speeds caused by typhoons are higher than those considered under non-typhoon conditions. Among path classifications, typhoons crossing directly over Taiwan produce the strongest maximum wind speeds. For intensity classifications, severe typhoons yield the highest long-term wind speeds among all categories, providing an upper limit for maximum wind speed considerations. In storm radius classifications, wind speeds in the typhoon center region are indeed higher than those in surrounding areas. In K-means classifications, the largest cluster was successfully identified, enabling accurate predictions of long-term wind speeds. Due to the lack of long-term observational wind speed data for offshore wind fields, this study successfully predicts maximum wind speeds for offshore wind fields, providing a reference for wind speed design during the structural and mechanical equipment lifespans within the wind field. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:12:56Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-20T16:12:56Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii 目次 iv 圖次 vi 表次 viii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 論文架構 6 第二章、研究方法 7 2.1 颱風路徑與風速資料相關概述 7 2.1.1 颱風及其路徑定義 7 2.1.2 颱風風速資料定義 8 2.2 常用機率分布 9 2.2.1 卜瓦松分佈 9 2.2.2 韋伯分佈 9 2.2.3 常態分佈 9 2.2.4 對數常態分佈 9 2.2.5 伽瑪分佈 10 2.2.6 廣義極值分佈 10 2.3 漸近分佈 10 2.3.1 Gumbel漸近分佈分類 11 2.3.2 極值理論 11 2.3.3 極值漸近分佈預測模型 12 2.4 Gumbel機率圖紙法 13 2.5 再現期 14 2.6 機器學習聚類方法 14 第三章、颱風風速分析 16 3.1 颱風長期觀測值分析 16 3.2 颱風分類預測長期最大風速 19 3.3 K-means分類預測長期最大風速 35 3.4 颱風發生率與長期最大風速 38 第四章、颱風危害與預測離岸長期最大風速 41 第五章、結論與建議 47 參考文獻 49 附錄 52 | - |
dc.language.iso | zh_TW | - |
dc.title | 以颱風為依據之風場最大風速探討 | zh_TW |
dc.title | A Study of Maximum Wind Speed in a Wind Farm Based on Typhoons | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃奎隆;盧南佑 | zh_TW |
dc.contributor.oralexamcommittee | Kwei-Long Huang;Nan-You Lu | en |
dc.subject.keyword | 颱風風速,離岸風場,最大風速,極值統計理論, | zh_TW |
dc.subject.keyword | Typhoon wind speed,offshore wind field,maximum wind speed,extreme value statistical theory, | en |
dc.relation.page | 62 | - |
dc.identifier.doi | 10.6342/NTU202500145 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-01-16 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工業工程學研究所 | - |
dc.date.embargo-lift | 2025-02-21 | - |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 2.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。