Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96612
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳健輝zh_TW
dc.contributor.advisorGen-Huey Chenen
dc.contributor.author魏任擇zh_TW
dc.contributor.authorJen-Tse Weien
dc.date.accessioned2025-02-20T16:12:06Z-
dc.date.available2025-02-21-
dc.date.copyright2025-02-20-
dc.date.issued2024-
dc.date.submitted2025-01-17-
dc.identifier.citationS. Arnborg and A. Proskurowski. Linear time algorithms for np-hard problems re stricted to partial k-trees. Discrete applied mathematics, 23(1):11–24, 1989.
H. Balakrishnan, A. Rajaraman, and C. P. Rangan. Connected domination and steiner set on asteroidal triple-free graphs. In Algorithms and Data Structures: Third Workshop, WADS’93 Montréal, Canada, August 11–13, 1993 Proceedings 3, pages 131–141. Springer, 1993.
M.-S. Chang. Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM Journal on computing, 27(6):1671–1694, 1998.
L. Chen, C. Lu, and Z. Zeng. A linear-time algorithm for paired-domination problem in strongly chordal graphs. Information processing letters, 110(1):20–23, 2009.
L. Chen, C. Lu, and Z. Zeng. Labelling algorithms for paired-domination problems in block and interval graphs. Journal of combinatorial optimization, 19(4):457–470, 2010.
E. J. Cockayne, P. A. Dreyer Jr, S. M. Hedetniemi, and S. T. Hedetniemi. Roman domination in graphs. Discrete mathematics, 278(1-3):11–22, 2004.
P. A. Dreyer Jr. Applications and variations of domination in graphs. Rutgers The State University of New Jersey, School of Graduate Studies, 2000.
A. D'Atri and M. Moscarini. Distance-hereditary graphs, steiner trees, and connected domination. SIAM Journal on Computing, 17(3):521–538, 1988.
R. Laskar and J. Pfaff. Domination and irredundance in split graphs. In Tech. Rept. 430. Clemson University Clemson, SC, 1983.
C.-W. Liao, C.-C. Lin, and G.-H. Chen. The roman domination problem on circular arc graphs. Master’s thesis, Nation Taiwan University, 2023.
M. Liedloff, T. Kloks, J. Liu, and S.-L. Peng. Efficient algorithms for roman domina tion on some classes of graphs. Discrete Applied Mathematics, 156(18):3400–3415, 2008.
C.-C. Lin, K.-C. Ku, and C.-H. Hsu. Paired-domination problem on distance hereditary graphs. Algorithmica, 82(10):2809–2840, 2020.
C.-C. Lin and H.-L. Tu. A linear-time algorithm for paired-domination on circular arc graphs. Theoretical Computer Science, 591:99–105, 2015.
C.-H. Liu and G. J. Chang. Roman domination on strongly chordal graphs. Journal of Combinatorial Optimization, 26(3):608–619, 2013.
R. M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica, 37:93–147, 2003.
J. Pfaff, R. Laskar, and S. T. Hedetniemi. Np-completeness of total and connected domination and irredundance for bipartite graphs. In Tech. Rept. 428. Clemson Uni versity Clemson, SC, 1983.
H. Qiao, L. Kang, M. Cardei, and D.-Z. Du. Paired-domination of trees. Journal of Global Optimization, 25:43–54, 2003.
A. Rana, A. K. Sinha, and A. Pal. On roman domination of circular-arc graphs. International Journal of Advanced Intelligence Paradigms, 28(3-4):209–220, 2024.
I. Stewart. Defend the roman empire! Scientific American, 281(6):136–138, 1999.
V. Tripathi, T. Kloks, A. Pandey, K. Paul, and H.-L. Wang. Complexity of paired domination in at-free and planar graphs. Theoretical Computer Science, 930:53–62, 2022.
K. White, M. Farber, and W. Pulleyblank. Steiner trees, connected domination and strongly chordal graphs. Networks, 15(1):109–124, 1985.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96612-
dc.description.abstract圖形G上的羅馬支配是指為圖中的每個點分配一個值為0、1 或 2。每個分配值為0的點至少有一個分配值為2的鄰居點。羅馬支配的權重是所有點的分配值之總和。

圓弧圖G由圓上的一組弧F定義,其中每個弧對應於G中的一個頂點。頂點v和u是相鄰的,若且唯若它們對應的弧在圓上相交時。羅馬支配問題尋求一個羅馬支配函數,其總權重在所有可能的分配中是最小的。

在過去有人已經提出了一個O(n^2)的算法來解決圓環圖上的羅馬支配問題,本論文目標是開發一種線性算法,來有效地解決圓弧圖上的羅馬支配問題。
zh_TW
dc.description.abstractRoman domination in a graph G refers to an assignment of labels 0, 1, or 2 to each vertex. Vertices labeled 0 must have at least one neighbor labeled 2. The weight of a Roman domination is the sum of all vertex labels. A circular-arc graph G is defined by a set F of arcs on a circle, where each arc corresponds to a vertex in G. Vertices v and u are adjacent if and only if their corresponding arcs intersect on the circle. The Roman domination problem seeks a Roman domination function with the minimum total weight across all possible assignments.

In previous research, an O(n^2) algorithm was proposed to solve the Roman Domination Problem on circular-arc graphs. The objective of this thesis is to develop a linear-time algorithm to efficiently address the Roman Domination Problem on circular-arc graphs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:12:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-20T16:12:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
1.1 Roman Domination 1
1.2 Circular-arc graph and interval graphs 2
Chapter 2 Roman Domination on Circular-Arc Graphs 5
2.1 Preliminaries 5
2.2 Intuitive approach 8
Chapter 3 Proposed Algorithm and Time Complexity 11
3.1 Observations 11
3.2 Algorithm description 12
3.3 Time complexity analysis 17
Chapter 4 Conclusion 22
References 24
-
dc.language.isoen-
dc.title圓環弧圖上的羅馬支配問題zh_TW
dc.titleThe Roman Domination Problem on Circular Arc Graphsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.coadvisor林清池zh_TW
dc.contributor.coadvisorChing-Chi Linen
dc.contributor.oralexamcommittee呂育道zh_TW
dc.contributor.oralexamcommitteeYuh-Dauh Lyuuen
dc.subject.keyword支配問題,圓環弧圖,羅馬支配,區間圖,有向無環圖,zh_TW
dc.subject.keywordDomination problems,Circular-arc graphs,Roman domination,Interval graphs,Directed acyclic graphs,en
dc.relation.page26-
dc.identifier.doi10.6342/NTU202500109-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-01-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
dc.date.embargo-lift2030-01-13-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
1.15 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved