Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96611Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳丕燊 | zh_TW |
| dc.contributor.advisor | Pisin Chen | en |
| dc.contributor.author | 陳耀程 | zh_TW |
| dc.contributor.author | Yaocheng Chen | en |
| dc.date.accessioned | 2025-02-20T16:11:48Z | - |
| dc.date.available | 2025-02-21 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-21 | - |
| dc.identifier.citation | [1] The Standard Model — home.cern. https://home.cern/science/physics/standard-model. [Accessed 01-01-2025].
[2] A. Aab, P. Abreu, M. Aglietta, M. Ahlers, E.-J. Ahn, I. Albuquerque, I. Allekotte, J. Allen, P. Allison, A. Almela, et al. Probing the radio emission from air showers with polarization measurements. Physical Review D, 89(5):052002, 2014. [3] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. A. Khalek, A. A. Abdelalim, R. Aben, B. Abi, M. Abolins, O. AbouZeid, et al. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012. [4] M. Aartsen, M. Ackermann, J. Adams, J. Aguilar, M. Ahlers, M. Ahrens, C. Alispach, K. Andeen, T. Anderson, I. Ansseau, et al. A search for icecube events in the direction of anita neutrino candidates. The Astrophysical Journal, 892(1):53, 2020. [5] M. G. Aartsen, M. Ackermann, J. Adams, J. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, T. Anderson, G. Anton, C. Arguelles, et al. Icecube-gen2: a vision for the future of neutrino astronomy in antarctica. arXiv preprint arXiv:1412.5106, 2014. [6] Q. Abarr, P. Allison, J. A. Yebra, J. Alvarez-Muñiz, J. Beatty, D. Besson, P. Chen, Y. Chen, C. Xie, J. Clem, et al. The payload for ultrahigh energy observations (pueo): a white paper. Journal of Instrumentation, 16(08):P08035, 2021. [7] R. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Y. Arai, R. Arimura, E. Barcikowski, J. Belz, D. Bergman, S. Blake, et al. The energy spectrum of cosmic rays measured by the telescope array using 10 years of fluorescence detector data. Astroparticle Physics, 151:102864, 2023. [8] M. Ackermann, M. Bustamante, L. Lu, N. Otte, M. H. Reno, S. Wissel, S. K. Agarwalla, J. Alvarez-Muñiz, R. A. Batista, C. A. Argüelles, et al. High-energy and ultra-high-energy neutrinos: A snowmass white paper. Journal of high energy astrophysics, 36:55–110, 2022. [9] A. Addazi, J. Alvarez-Muniz, R. A. Batista, G. Amelino-Camelia, V. Antonelli, M. Arzano, M. Asorey, J.-L. Atteia, S. Bahamonde, F. Bajardi, et al. Quantum gravity phenomenology at the dawn of the multi-messenger era—a review. Progress in Particle and Nuclear Physics, 125:103948, 2022. [10] N. Agafonova, A. Alexandrov, A. Anokhina, S. Aoki, A. Ariga, T. Ariga, A. Bertolin, C. Bozza, R. Brugnera, A. Buonaura, et al. Opera tau neutrino charged current interactions. Scientific data, 8(1):218, 2021. [11] M. Ahlers and F. Halzen. Opening a new window onto the universe with icecube. Progress in Particle and Nuclear Physics, 102:73–88, 2018. [12] P. Allison, J. Auffenberg, R. Bard, J. Beatty, D. Besson, S. Böser, C. Chen, P. Chen, A. Connolly, J. Davies, et al. Design and initial performance of the askaryan radio array prototype eev neutrino detector at the south pole. Astroparticle physics, 35(7):457–477, 2012. [13] R. Aloisio et al. Ultra high energy cosmic rays propagation and spectrum. In AIP CONFERENCE PROCEEDINGS, 2011. [14] J. Alvarez-Muniz, R. Alves Batista, A. Balagopal V, J. Bolmont, M. Bustamante, W. Carvalho Jr, D. Charrier, I. Cognard, V. Decoene, P. B. Denton, et al. The giant radio array for neutrino detection (grand): science and design. Science China Physics, Mechanics & Astronomy, 63(1):219501, 2020. [15] J. Alvarez-Muñiz, W. R. Carvalho Jr, H. Schoorlemmer, and E. Zas. Radio pulses from ultra-high energy atmospheric showers as the superposition of askaryan and geomagnetic mechanisms. Astroparticle Physics, 59:29–38, 2014. [16] J. Alvarez-Muniz, E. Marqués, R. A. Vázquez, and E. Zas. Coherent radio pulses from showers in different media: A unified parametrization. Physical Review D—Particles, Fields, Gravitation, and Cosmology, 74(2):023007, 2006. [17] L. A. Anchordoqui. Ultra-high-energy cosmic rays. Physics Reports, 801:1–93, 2019. [18] L. A. Anchordoqui, V. Barger, J. G. Learned, D. Marfatia, and T. J. Weiler. Upgoing anita events as evidence of the cpt symmetric universe. arXiv preprint arXiv:1803.11554, 2018. [19] L. A. Anchordoqui, J. L. Feng, and H. Goldberg. Particle physics on ice: Constraints on neutrino interactions far above the weak scale. Physical review letters, 96(2):021101, 2006. [20] A. M. Ankowski, A. Ashkenazi, S. Bacca, J. Barrow, M. Betancourt, A. Bodek, M. Christy, L. Doria, S. Dytman, A. Friedland, et al. Electron scattering and neutrino physics. Journal of Physics G: Nuclear and Particle Physics, 50(12):120501, 2023. [21] A. Arámburo-García, K. Bondarenko, A. Boyarsky, D. Nelson, A. Pillepich, and A. Sokolenko. Ultrahigh energy cosmic ray deflection by the intergalactic magnetic field. Physical Review D, 104(8):083017, 2021. [22] G. Askaryan. Cerenkov radiation and transition radiation from electromagnetic waves. Sov. Phys. JETP, 15(5):943, 1962. [23] M. S. Athar, A. Fatima, and S. Singh. Neutrinos and their interactions with matter. Progress in Particle and Nuclear Physics, 129:104019, 2023. [24] W. Axford, E. Leer, and G. Skadron. The acceleration of cosmic rays by shock waves. In International cosmic ray conference, volume 11. Springer, 1977. [25] S. Barwick, D. Besson, A. Burgman, E. Chiem, A. Hallgren, J. Hanson, S. Klein, S. Kleinfelder, A. Nelles, C. Persichilli, et al. Radio detection of air showers with the arianna experiment on the ross ice shelf. Astroparticle Physics, 90:50–68, 2017. [26] R. A. Batista, R. M. De Almeida, B. Lago, and K. Kotera. Cosmogenic photon and neutrino fluxes in the auger era. Journal of Cosmology and Astroparticle Physics, 2019(01):002, 2019. [27] J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa, and T. J. Weiler. Measuring flavor ratios of high-energy astrophysical neutrinos. Physical Review D, 68(9):093005, 2003. [28] J. Becker. High-energy neutrinos in the context of multimessenger physics, phys. rept., 458, 173. arXiv preprint arXiv:0710.1557, 2008. [29] A. Bell. Cosmic ray acceleration. Astroparticle Physics, 43:56–70, 2013. [30] D. Biehl, D. Boncioli, C. Lunardini, and W. Winter. Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies. Scientific reports, 8(1):10828, 2018. [31] S. Bilenky. Neutrino in standard model and beyond. Physics of Particles and Nuclei, 46:475–496, 2015. [32] M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon, and J. Menendez. Neutrinoless double beta decay in seesaw models. Journal of High Energy Physics, 2010(7):1–31, 2010. [33] A. Burrows and J. M. Lattimer. Neutrinos from sn 1987a. Astrophysical Journal, Part 2-Letters to the Editor (ISSN 0004-637X), vol. 318, July 15, 1987, p. L63-L68., 318:L63–L68, 1987. [34] P. Cao. A search for astrophysical ultra high energy neutrinos with the ANITA-IV experiment. PhD thesis, University of Delaware, 2018. [35] A. Castellina. Astroparticle and particle physics at ultra-high energy: Results from the pierre auger observatory. SciPost Physics Proceedings, (13):034, 2023. [36] S. Chatrchyan, V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, E. Aguilo, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, et al. Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B, 716(1):30–61, 2012. [37] B. Chauhan and S. Mohanty. Leptoquark solution for both the flavor and anita anomalies. Physical Review D, 99(9):095018, 2019. [38] P. Chen, T. Tajima, and Y. Takahashi. Plasma wakefield acceleration for ultrahighenergy cosmic rays. Physical Review Letters, 89(16):161101, 2002. [39] Y. Chen. Simulation and design of new trigger system for the taroge project. Master’s thesis, National Taiwan University, Jan 2017. [40] Y. Chen, T. Collaboration, et al. Taroge experiment and reconstruction technique for near-horizon impulsive radio signals induced by ultra-high energy cosmic rays. In 37th International Cosmic Ray Conference, page 263, 2022. [41] A. Coleman, J. Eser, E. Mayotte, F. Sarazin, F. G. Schröder, D. Soldin, T. Venters, R. Aloisio, J. Alvarez-Muñiz, R. A. Batista, et al. Ultra high energy cosmic rays the intersection of the cosmic and energy frontiers. Astroparticle physics, 149:102819, 2023. [42] H. Collaboration and C. Adloff. Measurement of neutral and charged current cross sections in electron-proton collisions at high. The European Physical Journal C-Particles and Fields, 19(2):269–288, 2001. [43] I. Collaboration, M. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, I. Al Samarai, D. Altmann, K. Andeen, et al. Neutrino emission from the direction of the blazar txs 0506+ 056 prior to the icecube-170922a alert. Science, 361(6398):147–151, 2018. [44] I. Collaboration, MAGIC, AGILE, ASAS-SN, HAWC, HESS, INTEGRAL, Kanata, Kiso, Kapteyn, et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino icecube-170922a. Science, 361(6398):eaat1378, 2018. [45] P. A. Collaboration et al. The pierre auger cosmic ray observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 798:172–213, 2015. [46] T. A. Collaboration*†, R. Abbasi, M. Allen, R. Arimura, J. Belz, D. Bergman, S. Blake, B. Shin, I. Buckland, B. Cheon, et al. An extremely energetic cosmic ray observed by a surface detector array. Science, 382(6673):903–907, 2023. [47] A. Condorelli, J. Biteau, and R. Adam. Impact of galaxy clusters on the propagation of ultrahigh-energy cosmic rays. The Astrophysical Journal, 957(2):80, 2023. [48] P. Cristofari, P. Blasi, and D. Caprioli. Microphysics of diffusive shock acceleration: impact on the spectrum of accelerated particles. The Astrophysical Journal, 930(1):28, 2022. [49] A. Crivellin and B. Mellado. Anomalies in particle physics and their implications for physics beyond the standard model. Nature Reviews Physics, 6(5):294–309, 2024. [50] B. Dasgupta and J. Kopp. Sterile neutrinos. Physics Reports, 928:1–63, 2021. [51] K. D. de Vries and S. Prohira. Coherent transition radiation from the geomagnetically induced current in cosmic-ray air showers: Implications for the anomalous events observed by anita. Physical review letters, 123(9):091102, 2019. [52] G. Di Sciascio. Measurement of energy spectrum and elemental composition of pev cosmic rays: Open problems and prospects. Applied Sciences, 12(2):705, 2022. [53] K. R. Dienes, E. Dudas, and T. Gherghetta. Light neutrinos without heavy massscales: A higher-dimensional seesaw mechanism. Nuclear Physics B, 557(1-2):25–59, 1999. [54] S. Dodelson and L. M. Widrow. Sterile neutrinos as dark matter. Physical Review Letters, 72(1):17, 1994. [55] M. Drewes. The phenomenology of right handed neutrinos. International Journal of Modern Physics E, 22(08):1330019, 2013. [56] R. Engel, D. Heck, and T. Pierog. Extensive air showers and hadronic interactions at high energy. Annual review of nuclear and particle science, 61(1):467–489, 2011. [57] I. Esteban, S. Pandey, V. Brdar, and J. F. Beacom. Probing secret interactions of astrophysical neutrinos in the high-statistics era. Physical Review D, 104(12):123014, 2021. [58] K. Fang. Ultra-high-energy cosmic rays: Scientific motivation. Large Area Networked Detectors for Particle Astrophysics, pages 1–31, 2023. [59] G. R. Farrar and A. Gruzinov. Giant agn flares and cosmic ray bursts. The Astrophysical Journal, 693(1):329, 2009. [60] D. F. Fiorillo. High-energy and ultra-high-energy neutrino astrophysics. Universe, 10(3):149, 2024. [61] G. L. Fogli, E. Lisi, and D. Montanino. Comprehensive analysis of solar, atmospheric, accelerator, and reactor neutrino experiments in a hierarchical threegeneration scheme. Physical Review D, 49(7):3626, 1994. [62] J. A. Formaggio and G. P. Zeller. From ev to eev: Neutrino cross sections across energy scales. Reviews of Modern Physics, 84(3):1307–1341, 2012. [63] D. B. Fox, S. Sigurdsson, S. Shandera, P. Mészáros, K. Murase, M. Mostafá, and S. Coutu. The anita anomalous events as signatures of a beyond standard model particle, and supporting observations from icecube. arXiv preprint arXiv:1809.09615, 2018. [64] T. K. Gaisser, R. Engel, and E. Resconi. Cosmic rays and particle physics. Cambridge University Press, 2016. [65] R. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic. Neutrino interactions at ultrahigh energies. Physical Review D, 58(9):093009, 1998. [66] D. Góra. Particle physics in cosmic rays. International Journal of Modern Physics A, 36(34n35):2141010, 2021. [67] D. Gora and P. A. Collaboration. The pierre auger observatory: review of latest results and perspectives. Universe, 4(11):128, 2018. [68] P. Gorham, A. Ludwig, C. Deaconu, P. Cao, P. Allison, O. Banerjee, L. Batten, D. Bhattacharya, J. Beatty, K. Belov, et al. Unusual near-horizon cosmic-ray-like events observed by anita-iv. Physical review letters, 126(7):071103, 2021. [69] P. Gorham, J. Nam, A. Romero-Wolf, S. Hoover, P. Allison, O. Banerjee, J. Beatty, K. Belov, D. Z. Besson, W. Binns, et al. Characteristics of four upwardpointing cosmic-ray-like events observed with anita. Physical Review Letters, 117(7):071101, 2016. [70] P. Gorham, B. Rotter, P. Allison, O. Banerjee, L. Batten, J. Beatty, K. Bechtol, K. Belov, D. Besson, W. Binns, et al. Observation of an unusual upwardgoing cosmic-ray-like event in the third flight of anita. Physical review letters, 121(16):161102, 2018. [71] P. E. Greenwood and M. S. Nikulin. A guide to chi-squared testing, volume 280. John Wiley & Sons, 1996. [72] K. Greisen. End to the cosmic-ray spectrum? Physical Review Letters, 16(17):748, 1966. [73] D. Griffiths. Introduction to elementary particles. John Wiley & Sons, 2020. [74] W. F. Hanlon. Cosmic ray spectrum. [75] D. Heck, J. Knapp, J. Capdevielle, G. Schatz, T. Thouw, et al. Corsika: A monte carlo code to simulate extensive air showers. 1998. [76] E. Helder, J. Vink, A. Bykov, Y. Ohira, J. Raymond, and R. Terrier. Observational signatures of particle acceleration in supernova remnants. Space Science Reviews, 173:369–431, 2012. [77] L. Heurtier, Y. Mambrini, and M. Pierre. Dark matter interpretation of the anita anomalous events. Physical Review D, 99(9):095014, 2019. [78] P. W. Higgs. Broken symmetries and the masses of gauge bosons. Physical review letters, 13(16):508, 1964. [79] A. M. Hillas. The origin of ultra-high-energy cosmic rays. IN: Annual review of astronomy and astrophysics. Volume 22. Palo Alto, CA, Annual Reviews, Inc., 1984, p. 425-444., 22:425–444, 1984. [80] G.-y. Huang. Sterile neutrinos as a possible explanation for the upward air shower events at anita. Physical Review D, 98(4):043019, 2018. [81] T. Huege. Radio detection of cosmic rays with the auger engineering radio array. In EPJ Web of Conferences, volume 210, page 05011. EDP Sciences, 2019. [82] T. Huege and D. Besson. Radio-wave detection of ultra-high-energy neutrinos and cosmic rays. Progress of Theoretical and Experimental Physics, 2017(12):12A106, 2017. [83] T. Huege, M. Ludwig, and C. W. James. Simulating radio emission from air showers with coreas. In AIP Conference Proceedings, volume 1535, pages 128–132. American Institute of Physics, 2013. [84] A. Ismail, R. Mammen Abraham, and F. Kling. Neutral current neutrino interactions at faser ν. Physical Review D, 103(5):056014, 2021. [85] J. V. Jelley. Cerenkov radiation and its applications. British Journal of Applied Physics, 6(7):227, 1955. [86] B. Kayser. Neutrino mass, mixing, and oscillation. In Flavor Physics For The Millennium: TASI 2000, pages 625–650. World Scientific, 2001. [87] M. Koshiba. Observational neutrino astrophysics. Physics Reports, 220(5-6):229–381, 1992. [88] K. Kotera and A. V. Olinto. The astrophysics of ultrahigh-energy cosmic rays. Annual Review of Astronomy and Astrophysics, 49(1):119–153, 2011. [89] A. Letessier-Selvon and T. Stanev. Ultrahigh energy cosmic rays. Reviews of modern physics, 83(3):907–942, 2011. [90] A. Lichtenberg, M. Lieberman, and R. Cohen. Fermi acceleration revisited. Physical Review D: Nonlinear Phenomena, 1(3):291–305, 1980. [91] M. Livan and R. Wigmans. Calorimetry for collider physics, an introduction. Springer, 2019. [92] M. S. Longair. High energy astrophysics. Cambridge university press, 2011. [93] A. I. Lvovsky. Fresnel equations. Encyclopedia of Optical Engineering, 27:1–6, 2013. [94] J. Madsen. Ultra-high energy neutrinos. arXiv preprint arXiv:1901.02528, 2019. [95] D. Marfatia, D. McKay, and T. Weiler. New physics with ultra-high-energy neutrinos. Physics Letters B, 748:113–116, 2015. [96] G. C. McLaughlin and R. Surman. Supernova neutrinos: The accretion disk scenario. Physical Review D—Particles, Fields, Gravitation, and Cosmology, 75(2):023005, 2007. [97] R. N. Mohapatra and A. Y. Smirnov. Neutrino mass and new physics. Annu. Rev. Nucl. Part. Sci., 56(1):569–628, 2006. [98] S. Mollerach and E. Roulet. Progress in high-energy cosmic ray physics. Progress in Particle and Nuclear Physics, 98:85–118, 2018. [99] D. Morgan. Surface acoustic wave filters: With applications to electronic communications and signal processing. Academic Press, 2010. [100] M. Nagano and A. A. Watson. Observations and implications of the ultrahighenergy cosmic rays. Reviews of Modern Physics, 72(3):689, 2000. [101] J. Nam, C.-C. Chen, C.-H. Chen, C.-W. Chen, P. Chen, Y.-C. Chen, S.-Y. Hsu, J.-J. Huang, M.-H. Huang, T.-C. Liu, et al. Design and implementation of the taroge experiment. International Journal of Modern Physics D, 25(13):1645013, 2016. [102] J. Nam, C. Kuo, B. Shin, P. Chen, Y. Chen, S. Hsu, J. Huang, and M. HA. Droneborne calibration pulser for radio observatories detecting ultra-high-energy cosmic rays and neutrinos. 2023. [103] R. Nichol, A. Collaboration, et al. Radio detection of high-energy particles with the anita experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 626:S30–S35, 2011. [104] M. H. Olsen. Pcb design tutorial with eagle. Orsted-DTU, Automation, Technical University of Denmark, pages 1–15, 2004. [105] W. Pauli. On the earlier and more recent history of the neutrino. In Neutrino physics. 1991. [106] K. V. Ptitsyna and S. V. Troitsky. Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated hillas plot and radiation-loss constraints. Physics-Uspekhi, 53(7):691, 2010. [107] A. Raghav and Z. Shaikh. Cosmic ray acceleration via magnetic reconnection of magnetic islands/flux-ropes. arXiv preprint arXiv:1610.09628, 2016. [108] M. V. Rao and B. V. Sreekantan. Extensive air showers. World scientific, 1998. [109] F. Reines and C. L. COWANjun. The neutrino. Nature, 178(4531):446–449, 1956. [110] M. H. Reno. High-energy to ultrahigh-energy neutrino interactions. Annual Review of Nuclear and Particle Science, 73(1):181–204, 2023. [111] L. F. Roberts, J. Lippuner, M. D. Duez, J. A. Faber, F. Foucart, J. C. Lombardi, S. Ning, C. D. Ott, and M. Ponce. The influence of neutrinos on r-process nucle- osynthesis in the ejecta of black hole–neutron star mergers. Monthly Notices of the Royal Astronomical Society, 464(4):3907–3919, 2016. [112] E. Roulet and F. Vissani. Neutrinos in Physics and Astrophysics. World Scientific, 2022. [113] H. Schoorlemmer, K. Belov, A. Romero-Wolf, D. García-Fernández, V. Bugaev, S. Wissel, P. Allison, J. Alvarez-Muñiz, S. Barwick, J. Beatty, et al. Energy and flux measurements of ultra-high energy cosmic rays observed during the first anita flight. Astroparticle Physics, 77:32–43, 2016. [114] F. G. Schröder. Radio detection of cosmic-ray air showers and high-energy neutrinos. Progress in Particle and Nuclear Physics, 93:1–68, 2017. [115] L. Schumacher. Search for correlations of high-energy neutrinos and ultrahighenergy cosmic rays. In EPJ Web of Conferences, volume 207, page 02010. EDP Sciences, 2019. [116] I. M. Shoemaker, A. Kusenko, P. K. Munneke, A. Romero-Wolf, D. M. Schroeder, and M. J. Siegert. Reflections on the anomalous anita events: the antarctic subsurface as a possible explanation. Annals of Glaciology, 61(81):92–98, 2020. [117] D. Smith, D. Besson, C. Deaconu, S. Prohira, P. Allison, L. Batten, J. Beatty, W. Binns, V. Bugaev, P. Cao, et al. Experimental tests of sub-surface reflectors as an explanation for the anita anomalous events. Journal of Cosmology and Astroparticle Physics, 2021(04):016, 2021. [118] S. Sotirov. General constraints on sources of high-energy cosmic rays from interaction losses. Physical Review D, 107(12):123018, 2023. [119] D. Southall, C. Deaconu, V. Decoene, E. Oberla, A. Zeolla, J. Alvarez-Muñiz, A. Cummings, Z. Curtis-Ginsberg, A. Hendrick, K. Hughes, et al. Design and initial performance of the prototype for the beacon instrument for detection of ultrahigh energy particles. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1048:167889, 2023. [120] M. Spurio, Spurio, and Bellantone. Probes of Multimessenger Astrophysics. Springer, 2018. [121] B. Strutt. A Search for Ultra-High Energy Neutrinos and Cosmic Rays with ANITA-3. PhD thesis, UCL (University College London), 2017. [122] A. D. Supanitsky. Determination of the cosmic-ray chemical composition: Open issues and prospects. Galaxies, 10(3):75, 2022. [123] Ø. A. Tengesdal. Measurement of seawater refractive index and salinity by means of optical refraction. Master’s thesis, The University of Bergen, 2012. [124] D. Thomas and P. Moorby. The Verilog® hardware description language. Springer Science & Business Media, 2008. [125] M. Thomson. Modern particle physics. Cambridge University Press, 2013. [126] V. B. Valera, M. Bustamante, and C. Glaser. The ultra-high-energy neutrinonucleon cross section: measurement forecasts for an era of cosmic eev-neutrino discovery. Journal of High Energy Physics, 2022(6):1–72, 2022. [127] V. B. Valera, M. Bustamante, and C. Glaser. Comprehensive measurement forecasts of the eev neutrino-nucleon cross section with cosmic neutrinos at icecube-gen2. arXiv e-prints, pages arXiv–2307, 2023. [128] V. B. Valera, M. Bustamante, and C. Glaser. Near-future discovery of the diffuse flux of ultrahigh-energy cosmic neutrinos. Physical Review D, 107(4):043019, 2023. [129] M. P. van Haarlem, M. W. Wise, A. Gunst, G. Heald, J. P. McKean, J. W. Hessels, A. G. de Bruyn, R. Nijboer, J. Swinbank, R. Fallows, et al. Lofar: The lowfrequency array. Astronomy & astrophysics, 556:A2, 2013. [130] V. Verzi, P. A. Collaboration, et al. Measurement of the energy spectrum of ultrahigh energy cosmic rays using the pierre auger observatory. In 36th International Cosmic Ray Conference, volume 358, page 450. SISSA Medialab, 2021. [131] A. Vieregg, Q. Abarr, P. Allison, J. Ammerman Yebra, J. Alvarez-Muñiz, J. Beatty, D. Besson, P. Chen, Y. Chen, X. Cheng, et al. Discovering the highest energy neutrinos with the payload for ultrahigh energy observations (pueo). In Proceedings of Science, volume 395. Proceedings of Science, 2022. [132] E. Vitagliano, I. Tamborra, and G. Raffelt. Grand unified neutrino spectrum at earth: Sources and spectral components. Reviews of Modern Physics, 92(4):045006, 2020. [133] J. Wang. Unified model beyond grand unification. Physical Review D, 103(10):105024, 2021. [134] S.-H. Wang. Radio Detection of Ultra-high Energy Cosmic Rays and Earth-skimming Tau Neutrinos with TAROGE Antenna Arrays on High Mountains. PhD thesis, National Taiwan University, Jan 2023. [135] S.-H. Wang, J. Nam, P. Chen, Y. Chen, T. Choi, Y.-b. Ham, S.-Y. Hsu, J.-J. Huang, M.-H. A. Huang, G. Jee, et al. Taroge-m: radio antenna array on antarctic high mountain for detecting near-horizontal ultra-high energy air showers. Journal of Cosmology and Astroparticle Physics, 2022(11):022, 2022. [136] A. Watson. Extensive air showers and ultra high energy cosmic rays. Lectures given at a Summer School in Mexico, 87, 2002. [137] E. Waxman. Cosmological gamma-ray bursts and the highest energy cosmic rays. Physical Review Letters, 75(3):386, 1995. [138] T. Wibig and A. W. Wolfendale. Universal cosmic rays energy spectrum and the mass composition at the’ankle’and above. arXiv preprint arXiv:1706.05872, 2017. [139] W. Winter. Sources of high-energy astrophysical neutrinos. arXiv preprint arXiv:2402.19314, 2024. [140] S. Wissel, A. Romero-Wolf, H. Schoorlemmer, W. R. Carvalho Jr, J. Alvarez- Muñiz, E. Zas, A. Cummings, C. Deaconu, K. Hughes, A. Ludwig, et al. Prospects for high-elevation radio detection of> 100 pev tau neutrinos. Journal of Cosmology and Astroparticle Physics, 2020(11):065, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96611 | - |
| dc.description.abstract | 能量超過 10^18 eV 的超高能宇宙射線的研究是當前物理學中的一個活躍研究領域,物理學家希望揭示這些高能粒子的來源及其加速機制。該領域的主要挑戰在於超高能宇宙射線的稀有性——每平方公里每年僅有約一次事件發生。因此,實現大規模探測面積和長時間觀測變得尤為重要。一種有效的超高能宇宙射線觀測方法是探測由其引發的廣延大氣簇射所發射的無線電脈衝。無線電輻射的主要機制是地磁效應。當廣延大氣簇射的帶電粒子在地球磁場中傳播時,洛倫茲力會使其偏轉,從而產生橫向電流。這個隨時間變化的橫向電流會發射出地磁輻射,其偏振方向與洛倫茲力方向一致。這種地磁輻射在幾兆赫到幾百兆赫的頻率範圍內具有相干性,以相對論性前向束射的形式在廣延大氣簇射前進方向發出,形成可以被探測到的短暫脈衝(持續時間為數納秒)。
除了超高能宇宙射線,廣延大氣簇射還可以由超高能微中子在地球表面以下通過帶電流相互作用產生的濤輕子衰變引發。超高能微中子可能通過宇宙射線與宇宙微波背景輻射的相互作用(即 GZK 效應)產生。已觀測到在 4X10^17 eV 以上的超高能宇宙射線通量抑制,這支持了 GZK 效應的存在。與會被星際磁場偏轉的超高能宇宙射線不同,宇宙對超高能微中子幾乎是透明的,因此探測超高能微中子是間接發現超高能宇宙射線源的一個有效策略。 臺灣天文粒子地磁同步輻射電波觀測站(簡稱太魯閣,TAROGE)是一個位於臺灣東部沿海高山上的天線陣列,面向海洋,專為探測超高能宇宙射線引發的近地平線廣延大氣簇射和地表掠過的超高能濤微中子而設計。TAROGE 具有高有效觀測時間、低單位成本和良好擴展性等優點。從 2014 年到 2019 年,已有四個 TAROGE 站點在臺灣部署,每個站點的儀器都有所改進,以提高探測效率。最新部署的站點 TAROGE-4 配備了一種基於表面聲波濾波器的多頻帶觸發系統。該新型觸發系統能夠有效區分地磁同步輻射脈衝信號與郊區人類活動背景噪聲。 本文首先總結了 TAROGE-4 站點的概念和儀器設計。接著描述了用於校準接收系統響應以實現精確時間測量的分析步驟和差分響應反卷積方法。在降噪和響應反卷積的基礎上,本文實現了對廣延大氣簇射方向和入射電場的可靠重建。基於地磁輻射特性和環境噪聲,本文提出了事件選擇標準。包括觸發模擬以獲取探測效率。此外,還提出了蒙特卡羅探測模擬以驗證觸發和分析效率。最終目標是表徵探測事件的初級粒子並測量其通量。 | zh_TW |
| dc.description.abstract | The study of Ultra-High Energy Cosmic Rays (UHECRs) with energies greater than 10^18 eV is an active research area where physicists hope to find the sources and the acceleration mechanisms of such high energy particles. The primary challenge in this field is their rarity, approximately one event per square kilometer annually, it becomes essential to implement expansive detection area and lengthy observational periods. One effective way to observe UHECRs is by detecting radio pulses emitted from Extensive Air Shower (EAS) induced by them. The main mechanism of radio emission is geomagnetic effect. When charged particles of EAS propagating in the earth’s magnetic field, the Lorentz force will deflect them and thus induces a transverse current. The time-varying transverse current will emit geomagnetic radiation which polarization is aligning with the Lorentz force. This geomagnetic radiation is coherent at frequencies of a few to hundreds of MHz, generating short transient pulses (a few nanoseconds) relativistically beamed in the EAS forward direction at a detectable level.
In addition to UHECRs, EAS can also be induced by the decay of tau leptons created through charged-current interaction of UHE (Ultra High Energy) neutrinos under the Earth’s surface. UHE neutrinos could be produced through the interactions between cosmic rays and cosmic microwave background radiation (CMB), which is the so-called GZK effect. The suppression of the UHECR flux above 4X10^17 eV has been observed, which supports the existence of the GZK effect. Unlike UHECRs will be deflected by intergalactic magnetic fields, the universe is almost transparent to UHE neutrinos, thus detecting UHE neutrinos is a good indirect strategy to discover UHECR sources. Taiwan Astroparticle Radiowave Observatory for Geosynchrotron Emissions (TAROGE) is an antenna array atop the high mountains on the eastern coast of Taiwan, pointing to the ocean. It is designed for the detection of near-horizon EAS induced by UHECRs and Earth-skimming UHE tau neutrinos with advantages in high effective live time, low unit cost and scalability. Four TAROGE stations in Taiwan have been deployed from 2014-2019, each station has improvements in instruments to increase detection efficiency. The latest deployed station TAROGE-4 has been equipped with a new trigger system by using Surface Acoustic Wave (SAW) filters based multi-bands coincidence technique. This new trigger system provides an effective discriminating power for impulsive geo-synchrotron signals against suburban anthropogenic backgrounds. In this paper, The concept and the instrument of TAROGE-4 station are first summarized. Then the analysis steps and differnetial response deconvolution method to calibrate receiver response to get precise measurement of timing are described. Then the noise reduction and the deconvolution of the response are applied to obtain reliable reconstruction of EAS direction and incident electric field. Event selection criteria are proposed, based on the characteristics of geomagnetic emission and environmental noise. Trigger simulated are included to obtain the detedction efficiency. Monte-Carlo detection simulation are also proposed to verify trigger and analysis efficiency. The final goal is to characterize primary particles of detected events and measure their fluxes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:11:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:11:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要v Abstract vii Contents xi List of Figures xvii List of Tables xxix Denotation xxxi Chapter 1 ULTRA HIGH ENERGY PARTICLES AND THEIR DETECTIONS 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 The Components of The Standard Model . . . . . . . . . . . . . . . 3 1.2.2 The Relevance of The Standard Model to UHE Particles . . . . . . 4 1.3 Cosmic Ray Overview . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Cosmic Ray Acceleration . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1.1 Fermi Acceleration . . . . . . . . . . . . . . . . . . . 6 1.3.1.2 Magnetic Reconnection . . . . . . . . . . . . . . . . . 7 1.3.2 Cosmic Ray Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3 Cosmic Ray Composition . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.4 Potential Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.5 UHECRs Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Neutrino Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 The Need for the Neutrino . . . . . . . . . . . . . . . . . . . . . . 18 1.4.2 Neutrino Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4.3 Neutrino Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.4.4 Astrophysical Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.5 GZK Effect and Cosmogenic Neutrinos . . . . . . . . . . . . . . . 25 1.4.6 Messengers of the UHE Universe . . . . . . . . . . . . . . . . . . . 26 1.5 Radio Detection of Ultra High Energy Cosmic Particles . . . . . . . 27 1.5.1 Particle Cascades . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.2 Electromagnetic Radiation from Moving Particles . . . . . . . . . . 32 1.5.2.1 Cherenkov Radiation . . . . . . . . . . . . . . . . . . 33 1.5.2.2 Askaryan Effect . . . . . . . . . . . . . . . . . . . . . 34 1.5.2.3 Geomagnetic Emission . . . . . . . . . . . . . . . . . 34 1.5.3 Radio Antenna Array on High Altitude . . . . . . . . . . . . . . . . 35 1.5.3.1 ANITA Anomalous Events . . . . . . . . . . . . . . . 35 1.5.3.2 Radio Antenna Array on High Mountains . . . . . . . . 39 1.5.4 TAROGE Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.5.4.1 Detection Concept . . . . . . . . . . . . . . . . . . . . 39 1.5.4.2 TAROGE Stations in Taiwan and Antarctica . . . . . . 40 Chapter 2 TAROGE-4 System 43 2.1 Gneral Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2 Antenna Design and Frequency Response . . . . . . . . . . . . . . . 44 2.3 Front-End Electronics Module . . . . . . . . . . . . . . . . . . . . . 47 2.3.1 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3.2 Low Noise Amplifier Module . . . . . . . . . . . . . . . . . . . . . 50 2.3.3 Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4 Data Acquisition System . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4.2 Program Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.5 Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5.1 Photovoltaics Power Module . . . . . . . . . . . . . . . . . . . . . 56 2.5.2 Monitor and Control . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 TAROGE-4 Trigger System 59 3.1 Suburban Environment . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Trigger Banding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3 Design Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.1 Single Band L1 Trigger . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.2 Multi-band L2 Trigger . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.3 Multi-antenna L3 Trigger . . . . . . . . . . . . . . . . . . . . . . . 65 3.3.4 Global Trigger and Dynamic Threshold . . . . . . . . . . . . . . . 66 3.4 Trigger Board Design . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5 FPGA Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter 4 Event Angular Reconstruction and Calibration 73 4.1 Differential Responses Unfolding . . . . . . . . . . . . . . . . . . . 74 4.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.2 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2 Interferometric Map . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 Drone-borne Pulser . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.1 Pulser Event Identification . . . . . . . . . . . . . . . . . . . . . . 84 4.3.2 Flight Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4 Angular Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Chapter 5 UHECR Detection Simulation 91 5.1 Generation of Radio Signal . . . . . . . . . . . . . . . . . . . . . . . 92 5.1.1 UHECR Air Shower Simulation . . . . . . . . . . . . . . . . . . . 92 5.1.2 Radio Emission from Air Showers . . . . . . . . . . . . . . . . . . 94 5.1.3 Receiver Response Convolution . . . . . . . . . . . . . . . . . . . 96 5.2 Trigger Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2.1 Band Trigger Efficiency Modeling . . . . . . . . . . . . . . . . . . 98 5.2.2 Trigger System Simulation . . . . . . . . . . . . . . . . . . . . . . 98 5.2.3 Drone Pulser Verification . . . . . . . . . . . . . . . . . . . . . . . 100 5.3 Monte Carlo Detection Simulation . . . . . . . . . . . . . . . . . . . 101 5.3.1 Detection Efficiency for Individual Air Showers . . . . . . . . . . . 101 5.3.2 Effective Area Calculation . . . . . . . . . . . . . . . . . . . . . . 103 5.4 Acceptance and Event Distribution . . . . . . . . . . . . . . . . . . 104 5.4.1 Potential Improvement . . . . . . . . . . . . . . . . . . . . . . . . 109 Chapter 6 Cosmic Ray Searching 111 6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.2 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2.1 Dynamic Filtering and Cross-correlation . . . . . . . . . . . . . . . 113 6.2.2 Software Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.3 Power Ratio Between Antennas . . . . . . . . . . . . . . . . . . . . 115 6.2.4 Reconstruction Reliability . . . . . . . . . . . . . . . . . . . . . . 116 6.2.5 Multi-pulses Anthropagenic Noise . . . . . . . . . . . . . . . . . . 117 6.2.6 Lightning Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.7 Temporal and Spatial Cluster . . . . . . . . . . . . . . . . . . . . . 119 6.2.8 Template matching . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3 Analysis Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.4.1 Background Estimates . . . . . . . . . . . . . . . . . . . . . . . . 123 6.4.2 CR Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.4.3 Zenithal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 128 Chapter 7 Characteristics of TAROGE-4 UHECR Events 131 7.1 Ocean Reflected Event . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2 Double Pulses Events . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.1 Shower Maximum Estimation . . . . . . . . . . . . . . . . . . . . 136 7.3 Polarization Measurement . . . . . . . . . . . . . . . . . . . . . . . 137 7.4 Energy Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.4.1 Energy Parametrization Techniques . . . . . . . . . . . . . . . . . . 141 7.4.2 Fitting CR Events Spectrum . . . . . . . . . . . . . . . . . . . . . 142 7.4.3 Observed Energy Distribution . . . . . . . . . . . . . . . . . . . . 145 7.5 Flux Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Chapter 8 Conclusion and Discussion 149 References 153 Appendix A — Waveforms of CR candidates 171 | - |
| dc.language.iso | en | - |
| dc.subject | 微中子 | zh_TW |
| dc.subject | 大氣簇射 | zh_TW |
| dc.subject | 天線陣列 | zh_TW |
| dc.subject | 宇宙射線 | zh_TW |
| dc.subject | antenna array | en |
| dc.subject | neutrino | en |
| dc.subject | cosmic ray | en |
| dc.subject | air shower | en |
| dc.title | 以太魯閣-4 電波天線陣列探尋極高能宇宙射線 | zh_TW |
| dc.title | Searching for Ultra High Energy Cosmic Ray Signal with Radio Antenna Array TAROGE-4 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 南智祐 | zh_TW |
| dc.contributor.coadvisor | Jiwoo Nam | en |
| dc.contributor.oralexamcommittee | 王名儒;黃明輝;劉宗哲;林凱揚 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Zu Wang;Ming-Huey Alfred HUANG;Tsung-Che Liu;Kai-Yang Lin | en |
| dc.subject.keyword | 微中子,宇宙射線,大氣簇射,天線陣列, | zh_TW |
| dc.subject.keyword | neutrino,cosmic ray,air shower,antenna array, | en |
| dc.relation.page | 176 | - |
| dc.identifier.doi | 10.6342/NTU202500216 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-21 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-02-21 | - |
| Appears in Collections: | 物理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-1.pdf | 22.33 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
