請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96605
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李紅春 | zh_TW |
dc.contributor.advisor | Hong-Chun Li | en |
dc.contributor.author | 邱浩庭 | zh_TW |
dc.contributor.author | Hao-Ting Chiu | en |
dc.date.accessioned | 2025-02-20T16:10:08Z | - |
dc.date.available | 2025-02-21 | - |
dc.date.copyright | 2025-02-20 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-17 | - |
dc.identifier.citation | Baker, A., Genty, D., Dreybrodt, W., Barnes, W. L., Mockler, N. J., & Grapes, J. (1998). Testing theoretically predicted stalagmite growth rate with recent annually laminated samples: Implications for past stalagmite deposition. Geochimica et Cosmochimica Acta, 62(3), 393-404.
Baker, A., Ito, E., Smart, P. L., & McEwan, R. F. (1997). Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology, 136(3-4), 263-270. Baker, A., Smith, C., Jex, C., Fairchild, I., Genty, D., & Fuller, L. (2008). Annually laminated speleothems: a review. International Journal of Speleology, 37(3), 193-206. Blaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bradley, R. (1999). PALEOCLIMATOLOGY: Reconstructing Climates of the Quaternary (Vol. 613). Academic Press. Cerling, T. E., & Sharp, Z. D. (1996). Stable carbon and oxygen isotope analysis of fossil tooth enamel using laser ablation. Palaeogeography, Palaeoclimatology, Palaeoecology, 126(1-2), 173-186. Dansgaard, W. (1953). The abundance of O18 in atmospheric water and water vapour. tellus, 5(4), 461-469. Dansgaard, W. (1964). Stable isotopes in precipitation. tellus, 16(4), 436-468. Dansgaard, W., Johnsen, S., Clausen, H., & Langway, C. (1973). Time scale and ice accumulation during the last 125,000 years is indicated by Greenland O18 curve. Geological Magazine, 110(1), 81-82. Dorale, J. A., & Liu, Z. (2009). Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. Journal of cave and karst studies, 71(1), 73-80. Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., & McDermott, F. (2006). Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 75(1-4), 105-153. Fairchild, I. J., & Treble, P. C. (2009). Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews, 28(5-6), 449-468. Fohlmeister, J., Voarintsoa, N. R. G., Lechleitner, F. A., Boyd, M., Brandtstätter, S., Jacobson, M. J., & Oster, J. L. (2020). Main controls on the stable carbon isotope composition of speleothems. Geochimica et Cosmochimica Acta, 279, 67-87. Friedman, I., & O'Neil, J. R. (1977). Compilation of stable isotope fractionation factors of geochemical interest (2330-7102). Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E., & Hamelin, B. (2001). Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica et Cosmochimica Acta, 65(20), 3443-3457. Haslett, J., & Parnell, A. (2008). A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society Series C: Applied Statistics, 57(4), 399-418. Hendy, C., & Wilson, A. (1968). Palaeoclimatic data from speleothems. Nature, 219(5149), 48-51. Hendy, C. H. (1971). The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta, 35(8), 801-824. Hoefs, J. (2009). Stable isotope geochemistry (Vol. 285). Springer. Koerner, R., & Russell, R. (1979). δ18O variations in snow on the Devon Island ice cap, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 16(7), 1419-1427. Lachniet, M. S. (2009). Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews, 28(5-6), 412-432. Li, H., Gu, D., Ku, T., Stott, L., & Chen, W. (1998). Applications of interannual-resolution stable isotope records of speleothem: Climatic changes in Beijing and Tianjin, China during the past 500 years—the δ 18O record. Science in China Series D: Earth Sciences, 41, 362-368. Li, J.-Y., Li, H.-C., Li, T.-Y., Mii, H.-S., Yu, T.-L., Shen, C.-C., & Xu, X. (2017). High-resolution δ18O and δ13C records of an AMS 14C and 230Th/U dated stalagmite from Xinya Cave in Chongqing: Climate and vegetation change during the late Holocene. Quaternary International, 447, 75-88. Libby, W. F. (1946). Atmospheric helium three and radiocarbon from cosmic radiation. Physical Review, 69(11-12), 671. McDermott, F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews, 23(7-8), 901-918. Noller, J. S. (2000). Lead‐210 geochronology. Quaternary geochronology: Methods and applications, 4, 115-120. O'Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20(4), 553-567. Oldfield, F., & Appleby, P. (1984). Empirical testing of 210 Pb-dating models for lake sediments. In Lake sediments and environmental history. Petit, J., White, J., Young, N., Jouzel, J., & Korotkevich, Y. S. (1991). Deuterium excess in recent Antarctic snow. Journal of Geophysical Research: Atmospheres, 96(D3), 5113-5122. Reimer, P. J., Austin, W. E., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., & Friedrich, M. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62(4), 725-757. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., & Friedrich, M. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), 1869-1887. Richards, D. A., & Dorale, J. A. (2003). Uranium-series chronology and environmental applications of speleothems. Reviews in Mineralogy and Geochemistry, 52(1), 407-460. Rozanski, K., Araguás‐Araguás, L., & Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. Climate change in continental isotopic records, 78, 1-36. Shen, C.-C., Wu, C.-C., Cheng, H., Edwards, R. L., Hsieh, Y.-T., Gallet, S., Chang, C.-C., Li, T.-Y., Lam, D. D., & Kano, A. (2012). High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta, 99, 71-86. Shen, T.-T., Li, H.-C., & Qiu, R. (2024). A HOMEMADE SEMIAUTOMATIC GRAPHITIZATION DEVICE FOR AMS 14C DATING AT NTUAMS LAB. Radiocarbon, 1-9. Smith, B. N., & Epstein, S. (1971). Two categories of 13C/12C ratios for higher plants. Plant physiology, 47(3), 380-384. Stenström, K., Skog, G., Georgiadou, E., Genberg, J., & Mellström, A. (2011). A guide to radiocarbon units and calculations. Stuiver, M., & Polach, H. (1977). Reporting of ¹⁴C data. Radiocarbon, 19(3), 355-363. Team, R. (2013). others R: A language and environment for statistical computing. GBIF: Copenhagen, Denmark. Wang, L. S., Ma, Z. B., Cheng, H., Duan, W. H., & Le Xiao, J. (2016). Determination of 230Th dating age of Uranium-series standard samples by multiple collector inductively coupled plasma mass spectrometry. Journal of Chinese Mass Spectrometry Society, 37(3), 262-272. Wong, C. I., & Breecker, D. O. (2015). Advancements in the use of speleothems as climate archives. Quaternary Science Reviews, 127, 1-18. Zhao, M., Li, H.-C., Liu, Z.-H., Mii, H.-S., Sun, H.-L., Shen, C.-C., & Kang, S.-C. (2015). Changes in climate and vegetation of central Guizhou in southwest China since the last glacial reflected by stalagmite records from Yelang Cave. Journal of Asian Earth Sciences, 114, 549-561. Zimmermann, U., Ehhalt, D., & Münnich, K. (1967). Soil-water movement and evapotranspiration: changes in the isotopic composition of the water. Isotopes in hydrology. Proceedings of a symposium, 狩野彰宏. (2012). 石筍古気候学の原理と展開. 地質学雑誌, 118(3), 157-171. 陳又瑄. (2020). 南西伯利亞一萬四千年氣候變遷: 石筍記錄. 國立臺灣大學地質科學系學位論文, 2020, 1-53. 蘇宗正. (2019). 利用高解析度石筍紀錄重建中國東北晚全新世以來的古氣候和植被變化: 吉林省無名洞石筍 S1S. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96605 | - |
dc.description.abstract | 高緯度地區在地球氣候系統中扮演著重要角色,俄羅斯南烏拉爾山地區便是如此,因該地為西風帶和極地東風帶兩大氣候系統的交匯處,具有極高的古氣候重建價值。本研究聚焦於分析來自該地區洞穴的兩根石筍樣本,於2022年從俄羅斯南烏拉爾山區的Ikenskaya Cave(54o43’1’’ N, 57o18’25’’ E)和Oktyabrskaya Cave(54°10'09.7"N, 56°50'56.5"E)採得,分別命名為IKEN-1及OTAR-1;IKEN-1長11.5公分,OTAR-1則長20.1公分。
210Pb定年結果表明,IKEN-1至少在200年前停止生長,而OTAR-1則持續生長至今。230Th/U定年的結果由於樣本中238U含量較低且232Th含量較高,導致誤差較大。通過高解析度AMS 14C定年,IKEN-1與OTAR-1的年代均呈現出良好的層序排列,IKEN-1樣品顯示除了40-90毫米處受死碳效應影響外,AMS 14C年代與230Th/U年代整體一致。而OTAR-1從樣本表層到底部年代層序雖然沒有出現倒序,但顯示14C年齡老於210Pb和鈾系年齡,表明AMS 14C年代存在相對穩定的死碳影響。利用AMS 14C與230Th/U年代之間的差異對死碳效應進行校正,基於校正後的AMS 14C年代框架通過Bacon模型建立石筍的年齡模式。IKEN-1從3700 Cal yr BP生長至600 Cal yr BP;而OTAR-1從5600 Cal yr BP生長至今。 本研究採集0.1mm間距的樣本進行碳氧同位素分析,IKEN-1共有1155個樣本,OTAR-1則有2010個樣本。首先,δ18O記錄不存在明顯的長期趨勢,利用各自的平均值進行距平計算,得到十年-百年尺度上的距平變化,反映雨量效應的影響,Δδ18O值越輕,氣候越濕潤,Δδ18O值越重,氣候越乾燥。而δ13C記錄存在長期變化趨勢,可能表明洞頂植被種類的變化。去趨勢化後的Δδ13C值與Δδ18O值的變化大致相同,指示此區域Δδ13C值主要受到氣候影響。兩根石筍的Δδ18O記錄變化在年齡誤差範圍內可以進行對比,說明石筍的Δδ18O記錄反映降水變化,可以為該地區5600年以來的古氣候記錄提供基礎。石筍紀錄顯示,該地區明顯濕潤的時期為:5~4.6, 3.6~3.3, 2.8~2.6, 1.3~1.1, 0.5~0 ka BP;明顯乾旱的時期為:4.6~3.8, 2.6~2.4, 0.8~0.6 ka BP。 | zh_TW |
dc.description.abstract | Climate in high-latitude regions plays a crucial role in the Earth's climate system, and the South Ural Mountain region in Russia is such a place. This region, located at the intersection of the Westerlies and the Polar Front, holds significant value for paleoclimate reconstruction. This study focuses on analyzing two stalagmites collected from two caves in the southern Ural Mountains, Russia, in 2022. The samples were obtained from Ikenskaya Cave ( 54o43’1’’ N, 57o18’25’’ E ) and Oktyabrskaya Cave ( 54°10'09.7"N, 56°50'56.5"E ), and were named IKEN-1 and OTAR-1, respectively. IKEN-1 is 11.5 cm long, while OTAR-1 measures 20.1 cm long.
210Pb dating results indicate that IKEN-1 stopped growth before 200 years, whereas OTAR-1 continuously grew to the present. The 230Th/U dating results with large uncertainties and reversed age sequences due to low 238U but high 232Th contents. High-resolution AMS 14C dating revealed a well-ordered chronological sequence for both IKEN-1 and OTAR-1. For IKEN-1, the AMS 14C dating ages are generally consistent with 230Th/U ages, except in the 40-90mm section, which was influenced by the dead carbon influence (DCI). For OTAR-1, although 14C ages were significantly older than 210Pb and 230Th/U ages, no chronological reversals were observed from the surface to the bases of the sample, indicating that the DCI in the AMS 14C ages was relatively stable. Corrections for the DCI were applied based on the differences between AMS 14C and 230Th/U ages, and the final chronological framework was constructed by using the Bacon model based on the corrected AMS 14C ages. IKEN-1 grew from about 3700 cal yr BP to about 600 cal yr BP; whereas OTAR-1 grew continuously during 5600~0 cal yr BP. In the carbon and oxygen isotope analysis, a total of 1,155 samples were analyzed for IKEN-1, and 2,010 samples for OTAR-1. Variations in δ18O and δ13C values provide insights into past climatic conditions. First of all, there is no apparent long-term trend in the δ18O records. One can use the average values of its own record to calculate the δ18O anomalies (Δδ18O). The Δδ18O values are primarily influenced by the rainfall effect: negative Δδ18O values correspond to wetter climatic conditions, while positive Δδ18O values indicate drier conditions. The δ13C record values show a trend broadly consistent with δ18O values, suggesting that δ13C is also primarily influenced by climatic factors in this region. The similar trends in Δδ18O values observed in both stalagmites provide a solid foundation for reconstructing paleoclimate variations over the past 5,600 years BP. Based on the two stalagmite records, climates in the study area were significantly wetter during 5~4.6, 3.6~3.3, 2.8~2.6, 1.3~1.1 and 0.5~0 ka BP; climates were drier during 4.6~3.8, 2.6~2.4 and 0.8~0.6 ka BP. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:10:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-20T16:10:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract V 目次 VII 圖次 IX 表次 X 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 石筍研究的優勢 2 第二章 石筍研究的原理及工具 3 2.1 石筍的形成 3 2.2 石筍的定年 4 2.2.1 鈾系定年 4 2.2.2 210Pb定年原理 5 2.2.3 AMS 14C定年 7 2.3 石筍的代用指標 8 2.3.1 碳同位素 8 2.3.2 氧同位素 9 第三章 研究區域、材料及方法 11 3.1 研究區域概況 11 3.2 研究材料 13 3.3 研究流程 16 3.3.1 樣本採集與處理 16 3.3.2 年代模式建立 16 3.3.3 代用指標記錄建立 16 3.3.4 數據分析與討論 17 3.4 實驗方法 17 3.4.1 鈾系定年實驗 17 3.4.2 210Pb定年實驗 17 3.4.3 AMS 14C定年實驗 18 3.4.4 碳氧同位素 19 第四章 研究結果 20 4.1 鈾系定年結果 20 4.2 210Pb定年結果 21 4.3 AMS 14C定年結果 23 4.4 碳氧同位素分析結果 25 第五章 討論 27 5.1 建立年代模型 27 5.1.1 IKEN-1 年代模型 27 5.1.2 OTAR-1 年代模型 30 5.2 氧同位素變化意義 32 5.3 碳同位素變化意義 37 5.4 南烏拉爾山脈地區氣候變遷 40 第六章 結論 42 參考文獻 44 附錄一 IKEN-1 AMS 14C定年結果 48 附錄二 OTAR-1 AMS 14C定年結果 49 | - |
dc.language.iso | zh_TW | - |
dc.title | 俄羅斯南烏拉爾山五千年氣候變遷:石筍記錄 | zh_TW |
dc.title | Climate change in the Southern Ural Mountains, Russia since 5 ka : stalagmite records | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳明德;米泓生 | zh_TW |
dc.contributor.oralexamcommittee | Min-Te Chen;Homg-Sheng Mii | en |
dc.subject.keyword | 石筍古氣候,AMS 14C定年,210Pb定年,230Th/U定年,碳氧同位素紀錄, | zh_TW |
dc.subject.keyword | Stalagmite,AMS 14C dating,210Pb dating,230Th/U dating,Stable isotope records, | en |
dc.relation.page | 49 | - |
dc.identifier.doi | 10.6342/NTU202500144 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2025-01-17 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
dc.date.embargo-lift | N/A | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 3.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。