請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96600完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | zh_TW |
| dc.contributor.advisor | Chih-Chung Yang | en |
| dc.contributor.author | 朱盛凱 | zh_TW |
| dc.contributor.author | Sheng-Kai Chu | en |
| dc.date.accessioned | 2025-02-19T16:42:34Z | - |
| dc.date.available | 2025-02-20 | - |
| dc.date.copyright | 2025-02-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-20 | - |
| dc.identifier.citation | 1. D. Chen, H. Xiao, and J. Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism,” J. Appl. Phys. 112, 064303 (2012).
2. P. H. Griffin and R. A. Oliver, “Porous nitride semiconductors reviewed,” J. Phys. D: Appl. Phys. 53, 383002 (2020). 3. M. J. Schwab, D. Chen, J. Han, and L. D. Pfefferle, “Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching,” J. Phys. Chem. C 117, 16890-16895 (2013). 4. M. J. Schwab, J. Han, and L. D. Pfefferle, “Neutral anodic etching of GaN for vertical or crystallographic alignment,” Appl. Phys. Lett. 106, 241603 (2015). 5. W. J. Tseng, D. H. van Dorp, R. R. Lieten, P. M. Vereecken, and G. Borghs, Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties,” J. Phys. Chem. C 118, 29492-29498 (2014). 6. R. Radzali, N. Zainal, F. K. Yam, and Z. Hassan, “Characteristics of porous GaN prepared by KOH photoelectrochemical etching,” Mater. Res. Innovations 18, S6-412-416 (2014). 7. W. J. Hsu, K. T. Chen, W. C. Huang, C. J. Wu, J. J. Dai, S. H. Chen, and C. F. Lin, “InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer,” Opt. Express 24, 11601-11610 (2016). 8. Y. Li, C. Wang, Y. Zhang, P. Hu, S. Zhang, M. Du, X. Su, Q. Li, and F. Yun, “Analysis of TM/TE mode enhancement and droop reduction by a nanoporous n-AlGaN underlayer in a 290 nm UV-LED,” Photon. Res. 8, 806-811 (2020). 9. C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. D: Appl. Phys. 46, 365102 (2013). 10. S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films,” ACS Appl. Mater. Interfaces 5, 11074-11079 (2013). 11. Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee, and J. Han, “The fabrication of large-area, free-standing GaN by a novel nanoetching process,” Nanotechnology 22, 045603 (2011). 12. J. H. Kang, M. Ebaid, J. K. Lee, T. Jeong, and S. W. Ryu, “Fabrication of vertical light emitting diode based on thermal deformation of nanoporous GaN and removable mechanical supporter,” ACS Appl. Mater. Interfaces 6, 8683-8687 (2014). 13. H. Yang, X. Xi, Z. Yu, H. Cao, J. Li, S. Lin, Z. Ma, and L. Zhao, “Light modulation and water splitting enhancement using a composite porous GaN structure,” ACS Appl. Mater. Interfaces 10, 5492-5497 (2018). 14. K. Maeda and K. Domen, “Photocatalytic water splitting: Recent progress and future challenges,” J. Phys. Chem. Lett. 1, 2655-2661 (2010). 15. C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering highly reflective GaN mirrors as an example,” ACS Photon. 2, 980-986 (2015). 16. M. Zhang, Y. Liu, J. Wang, and J. Tang, “Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose,” Microchimica Acta 186, DOI: 10.1007/s00604-018-3172-0 (2019). 17. A. Najar, M. Gerland, and M. Jouiad, “Porosity-induced relaxation of strains in GaN layers studied by means of microindentation and optical spectroscopy,” J. Appl. Phys. 111, 093513 (2012). 18. J. H. Kang, B. Li, T. Zhao, M. Ali Johar, C. C. Lin, Y. H. Fang, W. H. Kuo, K. L. Liang, S. Hu, S. W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890-30895 (2020). 19. H. P. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. R. Hong, J. B. You, Y. S. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542-546 (2014). 20. M. A. Green, A. Ho-Baillie, H. J. Snaith, “The emergence of perovskite solar cells,” Nature Photonics 8, 506-514 (2014). 21. M. Grätzel, “The light and shade of perovskite solar cells,” Nature Materials 13, 838-842 (2014). 22. J. P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, “Promises and challenges of perovskite solar cells,” Science 358, 739-744 (2017). 23. D. N. Yu, M. L. Pan, G. Q. Liu, X. Y. Jiang, X. Wen, W. Z. Li, S. J. Chen, W. J. Zhou, H. Wang, Y. Lu, M. Y. Ma, Z. H. Zang, P. H. Cheng, Q. Q. Ji, F. Zheng, Z. J. Ning, “Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells,” Nature Energy 9, 298-307 (2024). 24. H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nature Materials 14, 636-642 (2015). 25. S. A. Veldhuis, P. P. Boix, N. Yantara, M. J. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, “Perovskite Materials for Light-Emitting Diodes and Lasers,” Advanced Materials 28, 6804-6834 (2016). 26. C. Y. Huang, C. Zou, C. Y. Mao, K. L. Corp, Y. C. Yao, Y. J. Lee, C.W. Schlenker, A. K. Y. Jen, L. Y. Lin, “CsPbBr3 Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability,” ACS Photonics 4, 2281-2289 (2017). 27. Q. Zhang, R. Su, W. N. Du, X. F. Liu, L. Y. Zhao, S. T. Ha, Q. H. Xiong, “Advances in Small Perovskite-Based Lasers,” Small Methods 1, 1700163 (2017). 28. K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong, Z. H. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent,” Nature 562, 245-248 (2018). 29. K. Y. Wang, S. Wang, S. M. Xiao, Q. H. Song, “Recent Advances in Perovskite Micro- and Nanolasers,” Advanced Optical Materials 6, 1800278 (2018). 30. J. Moon, Y. Mehta, K. Gundogdu, F. So, Q. Gu, “Metal-Halide Perovskite Lasers: Cavity Formation and Emission Characteristics,” Advanced Materials 36, 211284(2024). 31. M. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science 358, 745-750 (2017). 32. N. N. Wang, L. Cheng, R. Ge, S. T. Zhang, Y. F. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Q. Wei, Q. Guo, Y. Ke, M. T. Yu, Y. Z. Jin, Y. Liu, Q. Q. Ding, D. W. Di, L. Yang, G. C. Xing, H. Tian, C. H. Jin, F. Gao, R. H. Friend, J. P. Wang, W. Huang, “Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells,” Nature Photonics 10, 699-704 (2016). 33. Y. Gao, E. Z. Shi, S. B. Deng, S. B. Shiring, J. M. Snaider, C. Liang, B. Yuan, R. Y. Song, S. M. Janke, A. Liebman-Peláez, P. Yoo, M. Zeller, B. W. Boudouris, P. L. Liao, C. H. Zhu, V. Blum, Y. Yu, B. M. Savoie, L. B. Huang, L. T. Dou, “Molecular engineering of organic-inorganic hybrid perovskites quantum wells,” Nature Chemistry 11, 1151-1157 (2019). 34. A. Dey, J. Z. Ye, A. De, E. Debroye, S. K. Ha, E. Bladt, A. S. Kshirsagar, Z. Y. Wang, J. Yin, Y. Wang, L. N. Quan, F. Yan, M. Y. Gao, X. M. Li, J. Shamsi, T. Debnath, M. H. Cao, M. A. Scheel, S. Kumar, J. A. Steele, M. Gerhard, L. Chouhan, K. Xu, X. G. Wu, Y. X. Li, Y. N. Zhang, A. Dutta, C. Han, I. Vincon, A. L. Rogach, A. Nag, A. Samanta, B. A. Korgel, C. J. Shih, D. R. Gamelin, D. H. Son, H. B. Zeng, H. Z. Zhong, H. D. Sun, H. V. Demir, I. G. Scheblykin, I. Mora-Seró, J. K. Stolarczyk, J. Z. Zhang, J. Feldmann, J. Hofkens, J. M. Luther, J. Pérez-Prieto, L. Li, L. Manna, M. Bodnarchuk, M. Kovalenko, M. B. J. Roeffaers, N. Pradhan, O. F. Mohammed, O. M. Bakr, P. D. Yang, P. Müller-Buschbaum, P. Kamat, Q. L. Bao, Q. Zhang, R. Krahne, R. E. Galian, S. D. Stranks, S. Bals, V. Biju, W. A. Tisdale, Y. Yan, R. L. Z. Hoye, L. Polavarapu, “State of the Art and Prospects for Halide Perovskite Nanocrystals,” ACS Nano 15, 10775-10981 (2021). 35. L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T. W. Lee, E.H. Sargent, “Perovskites for Next-Generation Optical Sources,” Chemical Reviews 119, 7444-7477 (2019). 36. Z. J. Zhang, K. Suchan, J. Li, C. Hetherington, A. Kiligaridis, E. Unger, I. G. Scheblykin, J. Wallentin, “Vertically Aligned CsPbBr3 Nanowire Arrays with Template-Induced Crystal Phase Transition and Stability,” Journal of Physical Chemistry C 125, 4860-4868 (2021). 37. C. Wu, Y. T. Zou, T. Wu, M. Y. Ban, V. Pecunia, Y. J. Han, Q. P. Liu, T. Song, S. Duhm, B. Q. Sun, “Improved Performance and Stability of All-Inorganic Perovskite Light-Emitting Diodes by Antisolvent Vapor Treatment,” Advanced Functional Materials 27, 1700338 (2017). 38. Z. Wang, Y. Q. Zhang, X. D. Liu, Y. X. Yu, F. C. Xu, J. Ding, X. J. Liang, K. Q. Yang, W. D. Xiang, “High Stability and Strong Luminescence CsPbBr3/Cs4PbBr6 Perovskite Nanocomposite: Large-Scale Synthesis, Reversible Luminescence, and Anti-Counterfeiting Application,” Advanced Materials Technologies 6, 2100654 (2021). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96600 | - |
| dc.description.abstract | 鈣鈦礦材料除了在光伏應用中展現出巨大潛力外,亦適合於高效率發光應用。然而,除非形成奈米晶體結構,鈣鈦礦的發光效率相當低。在本研究中,我們將溴化銫鉛(CsPbBr₃)前驅溶液填入氮化鎵奈米孔隙結構中,形成鈣鈦礦奈米晶體。我們通過穿透式電子顯微鏡與能量分散X射線光譜量測探討這類奈米尺度腔體結構中的鈣鈦礦奈米晶體形貌與分佈。此外,我們對其發光行為進行簡要研究。通過毛細作用,鈣鈦礦前驅溶液可以流入水平奈米孔隙結構中的管狀孔洞,該孔隙結構可通過在樣品上製作條帶檯面圖案來實現。經固化後,鈣鈦礦奈米晶體能夠在管狀孔洞內形成,實現高效發光。鈣鈦礦奈米晶體亦可形成於垂直奈米孔隙結構內。 | zh_TW |
| dc.description.abstract | Perovskite has great potential for the high-efficiency light emission application besides its photovoltaic application. However, its emission efficiency is low unless a nanocrystal structure is formed. In this research, we insert the precursor solution of CsPbBr3 into GaN nano porous structures to form perovskite nanocrystals. Particularly, through transmission electron microscopy and energy dispersive X-ray spectroscopy, we investigate the nanocrystal morphology and distribution in such a nanoscale cavity structure. The light emission behavior is also briefly studied. Through the capillary action, the precursor solution of perovskite can flow into the pipeline line pores in a horizontal nano-porous structure, which can be formed by fabricating a stripe mesa pattern on the sample. After solidification, perovskite nanocrystals can be formed inside the pipeline like pores for effective emission. Perovskite nanocrystals can also be formed in a vertical nano-porous structure. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:42:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-19T16:42:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 ii Abstract iii 圖次 v 第一章 背景介紹 1 1.1 氮化鎵孔隙結構 1 1.2 鈣鈦礦奈米晶體 1 1.3 研究動機 3 1.4 論文架構 3 第二章 樣品結構與製作方法 6 2.1 磊晶樣品生長 6 2.2 氮化鎵孔隙結構製作 6 2.3 鈣鈦礦製備與塞入奈米洞方法 7 第三章 鈣鈦礦奈米晶體在橫向孔隙結構的研究結果 17 3.1 具有缺陷的週期性多孔層結構中的鈣鈦礦奈米晶體 17 3.2 週期性多孔層結構中的鈣鈦礦奈米晶體 19 第四章 垂直孔隙結構中鈣鈦礦奈米晶體的研究結果 51 4.1 深層垂直孔隙結構中的鈣鈦礦奈米晶體 51 4.2表面沉積銀奈米顆粒的淺層垂直孔隙結構中的鈣鈦礦奈米晶體 52 第五章 結論 75 參考文獻 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 能量分散X射線光譜 | zh_TW |
| dc.subject | 奈米晶體 | zh_TW |
| dc.subject | 穿透式電子顯微鏡 | zh_TW |
| dc.subject | 奈米孔隙結構 | zh_TW |
| dc.subject | 鈣鈦礦 | zh_TW |
| dc.subject | nanocrystal | en |
| dc.subject | Perovskite | en |
| dc.subject | nano-porous structure | en |
| dc.subject | Transmission Electron Microscopy | en |
| dc.subject | energy dispersive X-ray spectroscopy | en |
| dc.title | 於氮化鎵奈米結構內鈣鈦礦奈米晶體的穿透式電子顯微研究 | zh_TW |
| dc.title | Transmission Electron Microscopy Study on the Perovskite Nanocrystals in GaN Nanostructures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃建璋;林建中;廖哲浩;郭仰 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Jang Huang;Chien-Chung Lin;Che-Hao Liao;Yang Kuo | en |
| dc.subject.keyword | 鈣鈦礦,奈米孔隙結構,穿透式電子顯微鏡,能量分散X射線光譜,奈米晶體, | zh_TW |
| dc.subject.keyword | Perovskite,nano-porous structure,Transmission Electron Microscopy,energy dispersive X-ray spectroscopy,nanocrystal, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202500174 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-20 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2030-01-17 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2030-01-17 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
