請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96599完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | zh_TW |
| dc.contributor.advisor | Chih-Chung Yang | en |
| dc.contributor.author | 黃慶豪 | zh_TW |
| dc.contributor.author | Ching-Hao Huang | en |
| dc.date.accessioned | 2025-02-19T16:42:19Z | - |
| dc.date.available | 2025-02-20 | - |
| dc.date.copyright | 2025-02-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-19 | - |
| dc.identifier.citation | 1.D. Chen, H. Xiao, and J. Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism,” J. Appl. Phys. 112, 064303 (2012).
2.P. H. Griffin and R. A. Oliver, “Porous nitride semiconductors reviewed,” J. Phys. D: Appl. Phys. 53, 383002 (2020). 3.M. J. Schwab, D. Chen, J. Han, and L. D. Pfefferle, “Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching,” J. Phys. Chem. C 117, 16890-16895 (2013). 4.M. J. Schwab, J. Han, and L. D. Pfefferle, “Neutral anodic etching of GaN for vertical or crystallographic alignment,” Appl. Phys. Lett. 106, 241603 (2015). 5.W. J. Tseng, D. H. van Dorp, R. R. Lieten, P. M. Vereecken, and G. Borghs, “Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties,” J. Phys. Chem. C 118, 29492-29498 (2014). 6.R. Radzali, N. Zainal, F. K. Yam, and Z. Hassan, “Characteristics of porous GaN prepared by KOH photoelectrochemical etching,” Mater. Res. Innovations 18, S6-412-416 (2014). 7.W. J. Hsu, K. T. Chen, W. C. Huang, C. J. Wu, J. J. Dai, S. H. Chen, and C. F. Lin, “InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer,” Opt. Express 24, 11601-11610 (2016). 8.Y. Li, C. Wang, Y. Zhang, P. Hu, S. Zhang, M. Du, X. Su, Q. Li, and F. Yun, “Analysis of TM/TE mode enhancement and droop reduction by a nanoporous n-AlGaN underlayer in a 290 nm UV-LED,” Photon. Res. 8, 806-811 (2020). 9.C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. D: Appl. Phys. 46, 365102 (2013). 10.S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films,” ACS Appl. Mater. Interfaces 5, 11074-11079 (2013). 11.Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee, and J. Han, “The fabrication of large-area, free-standing GaN by a novel nanoetching process,” Nanotechnology 22, 045603 (2011). 12.J. H. Kang, M. Ebaid, J. K. Lee, T. Jeong, and S. W. Ryu, “Fabrication of vertical light emitting diode based on thermal deformation of nanoporous GaN and removable mechanical supporter,” ACS Appl. Mater. Interfaces 6, 8683-8687 (2014). 13.H. Yang, X. Xi, Z. Yu, H. Cao, J. Li, S. Lin, Z. Ma, and L. Zhao, “Light modulation and water splitting enhancement using a composite porous GaN structure,” ACS Appl. Mater. Interfaces 10, 5492-5497 (2018). 14.K. Maeda and K. Domen, “Photocatalytic water splitting: Recent progress and future challenges,” J. Phys. Chem. Lett. 1, 2655-2661 (2010). 15.C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering highly reflective GaN mirrors as an example,” ACS Photon. 2, 980-986 (2015). 16.M. Zhang, Y. Liu, J. Wang, and J. Tang, “Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose,” Microchimica Acta 186, DOI: 10.1007/s00604-018-3172-0 (2019). 17.A. Najar, M. Gerland, and M. Jouiad, “Porosity-induced relaxation of strains in GaN layers studied by means of microindentation and optical spectroscopy,” J. Appl. Phys. 111, 093513 (2012). 18.J. H. Kang, B. Li, T. Zhao, M. Ali Johar, C. C. Lin, Y. H. Fang, W. H. Kuo, K. L. Liang, S. Hu, S. W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890-30895 (2020). 19.T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, R. A. Oliver, “Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification,” Sci Rep 7, 45344 (2017). 20.J. R. Pugh, E. G. H. Harbord, A. Sarua, P. S. Fletcher, Y. Tian, T. Wang and M. J. Cryan, “A Tamm plasmon-porous GaN distributed Bragg reflector cavity, “J. Opt. 23 035003 (2021). 21.D. Chen, J. Han, “High reflectance membrane-based distributed Bragg reflectors for GaN photonics,” Appl. Phys. Lett. 101 221104 (2022). 22.P. H. Griffin, M. Frentrup, T. Zhu, M. E. Vickers, R. A. Oliver, “Structural characterization of porous GaN distributed Bragg reflectors using x-ray diffraction,” J. Appl. Phys. 126 213109 (2021). 23.P. Fletcher, G. Martínez de Arriba, Y. Tian, N. Poyiatzis, C. Zhu, P. Feng, J. Bai and T. Wang, “Optical characterisation of InGaN-based microdisk arrays with nanoporous GaN/GaN DBRs” J. Phys. D: Appl. Phys. 55 464001 (2022) 24.S. Mishkat-Ul-Masabih, T. S. Luk, A. Rishinaramangalam, M. Monavarian, M. Nami, D. Feezell, “Nanoporous distributed Bragg reflectors on free-standing nonpolar m-plane GaN,” Appl. Phys. Lett. 112 (4) 041109 (2018). 25.G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, C. F. Lin, “InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors,” Sci Rep 6, 29138 (2016). 26.C. Zhao, X. Yang, B. Wei, J. Liu, R. Chen, C. Luan, H. Xiao,” Enhancement in light-emission efficiency of InGaN/GaN multiple quantum well layer by a porous-GaN mirror,” Vacuum 182 109669 (2020). 27.R. T. Elafandy, J. H. Kang, C. Mi, T. K. Kim, J. S. Kwak, J. Han, “Study and Application of Birefringent Nanoporous GaN in the Polarization Control of Blue Vertical-Cavity Surface-Emitting Lasers,” ACS Photonics, 8, 4, 1041–1047 (2021). 28.C. Zhang, R. ElAfandy and J. Han, “Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Sci. 9(8) (2019). 29.Hsuan-Yu Liu, Reflection and Scattering Behaviors of Distributed Bragg Reflectors Formed with Periodical GaN Nano-porous Layers, MS Thesis, National Taiwan University, December 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96599 | - |
| dc.description.abstract | 利用週期性氮化鎵奈米多孔層結構來形成分散式布拉格反射器,因其多孔層與實心層之間的折射率對比可高於由不同材料交替實心層組成的分散式布拉格反射器,反射率可以提高。然而這種分散式布拉格反射器中的奈米孔結構會導致強烈的散射,進而影響其反射率高低和反射帶寬。在本研究中,我們使用週期性邊界條件的模擬方法,探討此類多孔層分散式布拉格反射器的散射行為。在本研究中,我們假設多孔層中具有管狀孔洞結構,以模擬實驗中觀察到的實際結構。此外,我們採用傳輸矩陣的理論方法,基於有效折射率模型來評估分散式布拉格反射器的性能。模擬結果與理論評估結果之間的差異顯示孔洞散射的效果。研究發現,當入射光的偏振方向垂直於孔管延伸方向時,特別是在分散式布拉格反射器反射帶的短波長側,散射現象較為強烈。 | zh_TW |
| dc.description.abstract | A periodic GaN nano-porous layer structure can be used as an effective distributed Bragg reflector (DBR) because of its large refractive-index contrast between a porous layer and a solid layer, when compared with a DBR consisting of the alternating solid layers of different materials. However, the nano-pore structure in such a DBR can lead to strong scattering, which can affect its reflectivity level and reflection bandwidth. In this research, we use the simulation scheme of periodic boundary condition for evaluating the scattering behaviors of such a porous-layer DBR. In the simulation study, we assume a pore tube structure in a porous layer, imitating the pipeline-like pore structure observed in experiment. Also, we use the theoretical method of transfer-matrix to evaluate the DBR performance based on the effective refractive index model. The differences of the results between the simulation and theoretical evaluation show the effects of pore scattering. It is found that the scattering is particularly strong when the incident polarization is perpendicular to the pore tube extension direction, particularly on the short-wavelength side of the DBR reflection band. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:42:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-19T16:42:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
中文摘要 ii 英文摘要 iii Contents iv List of Figure vi List of Table xii Chapter 1 Introduction 1 1.1 Subsurface GaN nano-porous structures 1 1.2 Distributed Bragg reflector formed with periodic nano-porous layers 1 1.3 Research motivations 2 1.4 Thesis structure 3 Chapter 2 Simulation Structures and Methods 7 2.1 Simulation structures 7 2.2 Simulation methods 8 Chapter 3 Simulation Results Based on the Scheme of Periodic Boundary Condition 15 3.1 Geometries of the simulation structures 15 3.2 Results of simulation structure A 16 3.3 Results of simulation structure B 20 Chapter 4 Conclusions 62 References: 63 | - |
| dc.language.iso | en | - |
| dc.subject | 分散式布拉格反射器 | zh_TW |
| dc.subject | 孔洞散射 | zh_TW |
| dc.subject | 孔管狀結構 | zh_TW |
| dc.subject | 傳輸矩陣方法 | zh_TW |
| dc.subject | 週期性邊界條件 | zh_TW |
| dc.subject | 氮化鎵多孔結構 | zh_TW |
| dc.subject | transfer-matrix | en |
| dc.subject | periodic boundary condition | en |
| dc.subject | distributed Bragg reflector | en |
| dc.subject | GaN porous structure | en |
| dc.subject | pore scattering | en |
| dc.subject | pore tube structure | en |
| dc.title | 以週期性氮化鎵奈米孔洞層形成分散式布拉格反射器內光散射行為的模擬研究 | zh_TW |
| dc.title | Simulation Study on the Light Scattering Behavior in a Distributed Bragg Reflector Formed with Periodic GaN Nano-porous Layers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖哲浩;郭仰 | zh_TW |
| dc.contributor.oralexamcommittee | Che-Hao Liao;Yang Kuo | en |
| dc.subject.keyword | 氮化鎵多孔結構,分散式布拉格反射器,週期性邊界條件,傳輸矩陣方法,孔管狀結構,孔洞散射, | zh_TW |
| dc.subject.keyword | GaN porous structure,distributed Bragg reflector,periodic boundary condition,transfer-matrix,pore tube structure,pore scattering, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202500176 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-01-20 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-02-20 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
